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Abstract

Kenaf (Hibiscus cannabinus L.) is an industrial crop used as a raw material in various fields

and is cultivated worldwide. Compared to high potential for its utilization, breeding sector is

not vigorous partially due to laborous breeding procedure. Thus, efficient breeding methods

are required for varieties that can adapt to various environments and obtain optimal produc-

tion. For that, identifying kenaf’s characteristics is very important during the breeding pro-

cess. Here, we investigated if RGB based vegetative index (VI) could be associated with

traits for biomass. We used 20 varieties and germplasm of kenaf and RGB images taken

with unmanned aerial vehicles (UAVs) for field selection in early and late growth stage. In

addition, measuring the stem diameter and the number of nodes confirmed whether the veg-

etative index value obtained from the RGB image could infer the actual plant biomass.

Based on the results, it was confirmed that the individual surface area and estimated plant

height, which were identified from the RGB image, had positive correlations with the stem

diameter and node number, which are actual growth indicators of the rate of growth further,

biomass could also be estimated based on this. Moreover, it is suggested that VIs have a

high correlation with actual growth indicators; thus, the biomass of kenaf could be predicted.

Interstingly, those traits showing high correlation in the late stage had very low correlations

in the early stage. To sum up, the results in the current study suggest a more efficient breed-

ing method by reducing labor and resources required for breeding selection by the use of

RGB image analysis obtained by UAV. This means that considerable high-quality research

could be performed even with a tight budget. Furthermore, this method could be applied to

crop management, which is done with other vegetative indices using a multispectral

camera.

Introduction

Kenaf (Hibiscus cannabinus L.) is an important industrial crop worldwide [1]. The total area in

the world for kenaf, jute (Corchorus olitorius), and allied fiber were 1.50 mha, with a total
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annual production of 3.38 million tonnes in 2019 (http://www.fao.org/faostat/en/#data/QC).

The crop is a fiber source for packaging, textiles, cushions, doors, fiberboards, absorption

materials, insulation mats, carpet backings, animal bedding, and paper and pulp industries [2,

3]. In addition, kenaf has been shown to have great potential for the production of bio-energy

[4]. Compared to other industrial fiber crops, kenaf has widespread adaptability in various

soils and climates [5]. Kenaf is a fast-growing plant that can reach 4–6 m in height, with an

average increase of 10 cm in a day [6].

Accurate plant phenotyping is essential for linking the environment and plant genetic char-

acteristics to accelerate crop breeding [7–9]. However, high labor costs remit a single measure-

ment of the final yield in diverse testing environments over multiple seasons in crop breeding

programs [10]. Field monitoring using remote sensing technologies has been introduced to

address this problem [11]. A black and white (B&W) rendition of an aerial color-infrared

video composite was useful for detecting initial plant stress and for monitoring the progression

of Phymatotrichum root rot and RKN/soil fungi complex damage [12]. Also, using airborne

multi-spectral images produce various indices or images, which can be used to evaluate bio-

mass, crop health, biotypes, and pest infestations in agricultural fields [13]. One such technol-

ogy is the unmanned aerial vehicle (UAV) technology, which is rapidly developing and

suggesting new methods for precise crop monitoring [14]. RGB (Red, green and blue) images

obtained from cameras mounted on UAVs can be utilized for monitoring crop growth, devel-

opment, and round coverage ratio [15–17]. Furthermore, visible remote sensing ramie (Boeh-
meria nivea L.) images from UAV showed that the germplasm resources had rich variation

and wide diversity [18]. The various vegetation indices (VIs) can be derived from RGB images,

which show good performance for evaluating various traits, including biomass [15].

In this study, (i) we investigated traits of randomly selected 20 kenaf entries to determine

what traits affect biomass production. Those tratis include surface area, stem diameter, and the

number of nodes manually. Furthermore, we estimated plant height from RGB images and

widely used RGB-based VIs, such as the excess green index (EXG), excess green minus excess

red index (EXGR), excess red index (EXR), normalized difference index (NDI), green leaf

index (GLI), and the visible atmospheric resistant index (VARI) using UAVin order to deter-

mine if any traits abtained above are associated with biomass of kenaf in the early and late

growth stage. If they are asscociated, it would be helpful for developing pre-breeding matetials

for biomass in kenaf.

Materials and methods

Experiment site and plant materials

The remote sensing study was conducted within a field in Jeju National University (33˚72’N,

126˚33’E, altitude 257m), located in 102, Jejudaehak-ro, Jeju-si, Jeju-do, Republic of Korea

during the growing season in 2019 (June to August) (Fig 1). On May 5, 2019 twenty-four culti-

vars of kenaf were planted randomly with three replication in totally 72 plots. Each plot con-

tained fifteen kenaf seeds 25 cm apart. Watering was started 14 days after planting, once a day,

till the end of the experiment. Black plastic mulch films were used to reduce damage from

weed in growing season. One data was extracted from each plot for phenotyping resulting to

acquire three data form each genotype in every UAV flight. While germination was generally

80–90%, entry ‘EF-2’ did not germinate. In addition, lodging caused by typhoons was solved

by using crutches.

For accurate geo-referencing of UAV images, a set of ground control points (GCPs) made

with 21.0 by 29.7 cm paper sheets were distributed across the study field. The GCP locations
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were measured with a C099-F9P based on real-time kinematic-global system (RTK-GPS) pro-

viding positioning precision within 0.01 m horizontal and vertical precision.

Data acquisition

The aerial images of the experimental field at each set were captured using the unmanned aerial

vehicle (UAV) as the MAVIC 2 Pro (SZ DJI Technology Co., China), the UAV which mounted

RGB sensors recording the radiation values in the red (~600 nm), green (~550 nm), and blue

(~450 nm) spectral bands with 2D array pixels (L1D-20c, Hasselblad, Sweden). The RGB camera

acquired 12-megapixels (4000×3000) using a 1/2.3" CMOS sensor and a 24 mm-48 mm zoom

lens. The angular field of views (FOVs) is 72.3˚ horizontal and 57.5˚ vertical, generating approxi-

mately 1.4 cm ground sampling distance (GSD) at 40 m above ground level. Before planting, an

image of an empty field was taken for the estimation of the digital terrain model (DTM).

The UAV platform was set to automatically fly tracking waypoints and acquire aerial

images over the experimental plot using Pix4Dcapture (Pix4D SA, Lausanne, Switzerland),

free UAV flight planning application on mobile phone. In each flight, Pix4D software triggered

image acquisition including position data based on global navigation satellite systems (GNSS).

The flight missions were conducted to cover the whole experimental plot and acquire images

with slow speed, 90% overlap and 40 m altitude set in Pix4Dcapture. However only on 22 June

the flight altitude was 20m and low overlapping ratio (70%) was set in Pix4Dcapture (Table 1).

Moreover, to compare and verify the UAV image data in the exact process, the number of

nodes, main stem diameters, and plant height were measured using bare eyes, digital vernier

calipers, and measuring tape immediately after the UAV flight. Three individuals of each entry

were randomly selected from the plots. The number of nodes was measured by counting the

number of nodes was measured by counting the points of the main stem where buds, leaves,

and branching twigs originate, the stem diameter was estimated at the middle of the first and

Fig 1. Experimental plots and total cultivars of kenaf used in this study.

https://doi.org/10.1371/journal.pone.0256978.g001

Table 1. UAV aerial images acquisition during growing seasons (June to August).

Image date Flight Altitude (m) The number of Images Covering Area (m2) Ground Sampling Distance (cm/pixel) Illumination Wind (m/s)

22062019 (50 DAS) 20 74 4300 0.69 Mist 3.9

14072019 (72 DAS) 40 77 9000 1.43 Mist 2.7

26072019 (85 DAS) 40 68 7800 1.39 Cloudy 3.9

06082019 (99 DAS) 40 97 10600 1.34 Cloudy 3.2

31082019 (121 DAS) 40 93 9100 1.40 Clear 2.7

https://doi.org/10.1371/journal.pone.0256978.t001
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second nodes of the main stem, and the height was measured from the ground to the tip of the

individuals using a measuring tape.

Image processing

Images acquired on each date were processed in the semi-automated flow of the photogram-

metry software Pix4Dmapper 3.0.17 (Pix4D SA, Lausanne, Switzerland) to generate ortho-

image and digital surface model (DSM). Orthoimage and DSM were used for extraction of

image variable related color and elevation information, respectively.

In the ‘Initial Processing’ step, key points between overlapping images were extracted based

on geometrical similarities to aligning the images, estimating the camera position. After ‘Initial

Processing’ step, the GCPs data based on RTK-GPS were imported to Pix4D program for geo-

referencing of aerial images accurately. GCPs imported were located, and matched on aerial

images manually, determining camera position for each image and correcting lens distortion.

In the ‘Point Cloud and Mesh’ step, a dense 3D point cloud was generated based on 3D recon-

struction among the key points extracted from aligned image set using Structure from Motion

(SfM) algorithm. Then, 3D point cloud was interpolated to build the 3D mesh. In the ‘DSM,

Orthomosaic and index’ step, 3D mesh was placed on real-world coordinate system, calculat-

ing elevation data for generating DSM. Then, orthoimage was generated through adding the

color to 3D model by putting the aerial images on generated mesh. Finally, DSM and ortho-

image were generated in the ‘GeoTIFF’ format including RGB pixel value and geographic

information. The detail parameters in the processing are shown in Table 2.

To reduce the effects of difference illumination and atmospheric conditions, a radiometric

calibration of the aerial images was conducted using Empirical Line Method (ELM) on every

flight. Calibration targets (1.2 by 1.2 m Group 8 Technology Type 822 ground calibration pan-

els) with four scales (3%, 12%, 36%, and 56%) which provide standard reflectance values were

placed in a location within the flight path to be captured by UAV platform (Fig 2). The target’s

digital number (DN) values of each red, green and blue bands were extracted from orthoimage

using ENVI software (L3 HARRIS Geospatial, USA). Then, the DNs of the calibration targets

were fitted to the reflectance value, deriving Equation, exponential regression model:

rk ¼ Ake
BkDN ð1Þ

where rk represents the reflectance values of the acquired images, DN represents the digital

number for each band, and Ak and Bk are the coefficients of the exponential regression model.

Table 2. Parameters of the Pix4D processing used in this study.

Step Items Values

Initial Processing Keypoits Image Scale Full

Matching Image Pairs Aerial Grid of Corridor

Targeted Number of Keypoits Automatic

Point Cloud and Mesh Point Cloud Image Scale 1

Point Cloud Point Density High

Point Cloud Minimum Number of

Matches

2

3D Textured Mesh Settings High Resolution

Matching Window Size 7×7 pixels

DSM, Orthomosaic and

index

DSM and Orthomosaic Resolution Automatic

DSM Filters Use Noise Filtering Use Surface Smooting

(Sharp)

https://doi.org/10.1371/journal.pone.0256978.t002
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As a result, DNs in orthoimage on every flight were converted to standard reflectance value

by applying Equation obtained at different dates. The coefficients of Equation on every flight

date are introduced in Table 3.

ENVI software (L3 HARRIS Geospatial, USA) was used to calculate plant height and vege-

tation indices. Plant height was estimated from the maximum values in each entry plot of the

Fig 2. (A) Calibration targets within the experimental field; (B) Standard reflectance spectrum of the calibration

targets; (C) Empirical Line Method (ELM) sample of the red, green and blue band mounted on the UAV (22 June

2019).

https://doi.org/10.1371/journal.pone.0256978.g002

Table 3. Results of the exponential regression model on each flight date.

Image date Band Ak Bk R2

20190622 (50 DASa) R 0.0078 0.0181 0.98

G 0.0104 0.0168 0.99

B 0.0062 0.019 0.96

20190714 (72 DAS) R 0.0095 0.0165 0.98

G 0.0066 0.0178 0.94

B 0.0043 0.0192 0.93

20190726 (85 DAS) R 0.0078 0.0181 0.97

G 0.0104 0.0168 0.99

B 0.0062 0.019 0.96

20190806 (99 DAS) R 0.0105 0.0158 0.99

G 0.0087 0.0164 0.97

B 0.0072 0.0174 0.97

20190831 (121 DAS) R 0.0042 0.0211 0.96

G 0.0043 0.021 0.94

B 0.0037 0.0217 0.94

a DAS represents day after seeding.

https://doi.org/10.1371/journal.pone.0256978.t003
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model that extracted the DTM from the digital surface models (DSMs) on July 14 and August

31 [15]. Six vegetation indices (VIs), excess green (EXG), excess green minus excess red

(EXGR), excess red (EXR), green-red vegetation index (GLI), normalized difference index

(NDI), and visible-band difference vegetation index (VARI), were calculated from the spectral

band raster (Table 4). The region of interest (ROI) of each plot was identified, and the values

of VIs were segmented by ROIs of each entry plot to estimate the mean pixel values of the indi-

ces per entry. The surface area of individual entry plots was produced from the plot surface

areas divided by the number of plants in each plot, and the plot surface area was estimated

using Otsu’s threshold for EXG [19].

Statistical analysis

All statistical analysis was performed by "R" software (Ver. 1.3.1056., RStudio Team, R Foun-

dation for Statistical Computing, Boston). The data sets were checked for normality by the

Shapiro-Wilk test. Because some data sets did not show a normal distribution, the non-

parametric Kruskal-Wallis rank sum test followed by the Dunn-Bonferroni post hoc test was

used to compare measured traits of 20 entries of kenaf. For the same reason, correlation analy-

sis was carried out with the Spearman correlation test.

For a more comprehensive description of the results, principal component analysis (PCA)

was used to summarize the relationship among the measure traits. In this experiment, the EXR

value has a negative value. Since this indicator has the opposite meaning of the other VIs, PCA

analysis was performed using the absolute value of EXR.

Results

Growth characteristic of 20 kenaf entries at two different stages

Table 5 shows that replications are not significantly different while the traits are significantly

different between each entry except the surface area of individual plants in set 1 (p = 0.06). EF-

1 which has the largest surface area in set 1 was approximately three times larger than that of

the WIR425 which has the smallest surface area. However, in set 2, Everglades 41 which has

the largest surface area was approximately five times larger than WIR274 which has the small-

est surface area. There was also a change in ranking, but it could be seen that entries generally

maintained a ranking between set 1 and set 2. Fig 4 suggests that, in particular, the entry "Ever-

glade 71" ranks in the middle in set 1 but ranks 3rd out of the total 20 entries in set 2, suggest-

ing that this entry grows faster than the others. The estimated plant height values fluctuated in

rank between the set and the surface of individual plant areas but generally retained their rank

Table 4. Formulas of vegetation indices.

VI Formulaa, b Ref

EXG 2g−r−b [20]

EXR 1.4r−g [20]

NDI (g−r)/(g+r) [20]

EXGR 3g−2.4r−b [20]

GLI (2g−b−r)/(2g+b+r) [21]

VARI (g−r)/(g+r−b) [21]

a R = red band (630–690 nm), G = green band (520–600 nm), B = blue band (420–450 nm).
b r = R/(R+G+B), g = G/(R+G+B), b = B/(R+G+B).

https://doi.org/10.1371/journal.pone.0256978.t004
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(Figs 3 and 4). The rank of "Everglade 71" was maintained, but "WIR274" ranked in the middle

in set 1 and 17th in set 2. For stem diameter, "Everglade 71" and "PI46875" showed rapid

growth between sets (Figs 3 and 4). The most rapid rank fluctuation was observed among the

traits observed in the number of nodes. The entry "WIR214" was the highest-ranked in set 1,

but ranked 19th out of 20 entries in set 2. Similarly, entries "WIR452" and "WIR276" were

highly ranked in set 1, but not in set 2. In contrast, entries "EF-1" and "G-1" showed low rank-

ing in set 1 but ranked 2nd and 5th in set 2, respectively (Figs 3 and 4). The differences among

the other entries increased between sets (Figs 3 and 4).

Growth indices of the 20 kenaf entries at two different stages

Figs 5 and 6 shows the EXG, EXGR, EXR, GLI, NDI, and VARI changes between the sets.

Except for entry in “C” presenting EXR values, all graphs in Fig 5 are similar. This is because

the EXR value has the opposite meaning to that of the other VIs. In Fig 5, the rank of entries

between sets fluctuates more than that between the VIs. The differences among other entries

increased between sets (Figs 5 and 6).

Table 5. Kruskal-Wallis rank sum test at two growth stages.

Sur a Eph Sd Nn EXG b

Source Df Set1 c Set2 Set1 Set2 Set1

Rep 2 NS d NS NS NS NS

Entry 19 NS ��� � �� NS

EXGR EXR GLI NDI VARI

Source Df Set1 Set2 Set1 Set2 Set1

Rep 2 NS NS NS NS NS

Entry 19 �� ��� � ��� ��

a Sur = Surface area of individual plants (cm2); Eph = Estimated plant height (mm); Sd = Stem diameter (mm); and Nn = Number of nodes
b EXG (excess green index), EXGR (excess green minus excess red index), EXR (excess red index), GLI (green leaf index), NDI (normalized difference index), and VARI

(visible atmospheric resistant index).
c Set 1 and Set 2 measured July 14 and August 31.
d NS, nonsignificant at p� 0.05

�significant at the 0.05

�� significant at the 0.01

��� significant at 0.001.

https://doi.org/10.1371/journal.pone.0256978.t005

Fig 3. Growth of kenaf (Hibiscus cannabinus L.) entry traits affecting biomass production at two different growth

stages. (A) Surface of the individual plant (cm2), (B) Expected plant height (mm), (C) Stem diameter (mm), and (D)

Number of nodes of 20 kenaf entries at two different growth stages. Set 1 and Set 2 measured June 22 and August 31.

https://doi.org/10.1371/journal.pone.0256978.g003
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Spearman’s rank correlations among measured traits

Spearman’s rank correlations between an individual plant’s surface, estimated plant height,

stem diameter, number of nodes, EXG, EXGR, EXR, GLI, NDI, and VARI are shown in

Table 6. In set 1, the surface of the individual plant showed a moderate correlation with the

stem diameter and VIs. However, this was not significant for the estimated plant height and

number of nodes. In set 2, the surface of individual plants showed a high positive correlation

(rho > 0.71) with all measured traits, except for the number of nodes that showed a moderate

correlation (rho = 0.56) and EXR that showed negative correlation (rho = -0.73). The esti-

mated plant height had a low correlation (rho < |0.28|) with measured traits, except for stem

diameter, which showed a moderate correlation (rho = 0.54). Stem diameter had a low to mod-

erate correlation in set 1 with the number of nodes and VIs. In set 1, Vis and the number of

nodes were not correlated; however, in set 2, the number of nodes showed a moderate correla-

tion with the VIs. Among the VIs, GLI and NDI showed a high correlation with the individual

plant’s surface, estimated plant height, stem diameter, and node number. In addition, the cor-

relation was high between VIs. In particular, EXR was highly negatively correlated with other

VIs.

Fig 4. Variation of traits among kenaf (Hibiscus cannabinus L.) entry two growth stage. (A) Surface of the

individual plant (cm2), (B) Expected plant height (mm), (C) Stem diameter (mm), and (D) Number of nodes of 20

kenaf entries at two different growth stages. Set 1 and Set 2 measured June 22 and August 31. The black bar and letter

represent set 1, and the grey bar and letter represent set 2. Different letters on the bar are significantly different by

Dunn test with Bonferroni adjustment. Non-parametric rank data were used for the statistical analysis; however,

untransformed data are represented.

https://doi.org/10.1371/journal.pone.0256978.g004
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PCA analysis of the measured traits

The PCA indicated that the first two components accounted for 98.7% of growth traits with

RGB-VIs, 96.56% of growth traits, and 99.24% of RGB-VIs (Table 7). In the PCA results of

growth traits with RGB-VIs, all measured traits and RGB-Vis in the first component contrib-

uted similarly and accounted for 84.29% of the total variation. The second component was

characterized by the estimated plant height and the number of nodes accounting for 12.27% of

the variation (Fig 7A). One group was set 1, and the other was set 2. Most of the entries in set 1

are located in the left-down corner. In set 2, most of the entries except for WIP214, WIR274,

WIR276, WIR453, WIR275, WIR333, and WIR119 are located on the right side. These entries

are located on the right upper side, including the estimated plant height and number of nodes.

In the PCA of growth traits, the first component accounted for 90.67% of the total variation.

The second component was characterized by individual plant surfaces and the number of

nodes accounting for 5.90% of the variation (Table 7). The scatter plot represents the entries in

set 1 located left of the X-axis and those in set 2 located right of the X-axis and are more spread

out than in set 1 (Fig 7B). The RGB-VIs PCA results show that the first components account

Fig 5. VIs of 20 kenaf entries at two different growth stages. (A) EXG, (B) EXGR, (C) EXR, (D) GLI, (E) NDI, and

(F) VARI of 20 kenaf entries at two different growth stages. Set 1 and Set 2 measured June 22 and August 31.

https://doi.org/10.1371/journal.pone.0256978.g005
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for 97.21% of the total variation, with a similar rate of each VI. NDI, GLI, and EXG character-

ize the second component accounting for only 1.83% of the variation (Table 7). The PCA scat-

ter plot shows that set 1 entries are located from -0.1 to 0.2 of the X-axis and are overlapped by

set 2 entries which spread from -0.3 to 0.3 (Fig 7C).

Fig 6. Variation of VIs among kenaf (Hibiscus cannabinus L.) entry two growth stage. (A) EXG, (B) EXGR, (C)

EXR, (D) GLI, (E) NDI, and (F) VARI of 20 kenaf cultivars at two different growth stages. Set 1 and Set 2 measured

June 22 and August 31. The black bar and letter represent set 1, and the grey bar and letter represent set 2. Different

letters on the bar are significantly different by Dunn test with Bonferroni adjustment. Non-parametric rank data were

used for the statistical analysis; however, untransformed data are represented.

https://doi.org/10.1371/journal.pone.0256978.g006
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Table 6. Spearman’s rank correlation among surface of an individual plant, estimated plant height, actual plant height, stem diameter, number of nodes, EXG,

EXGR, EXR, GLI, NDI, and VARI in kenaf germplasm at two growth stages.

Eph Sd Nn EXG EXGR EXR GLI NDI VARI

Sur a Set1b 0.23 NS c 0.66 ��� 0.08 NS 0.50 ��� 0.50 ��� -0.47 ��� 0.50 ��� 0.47 ��� 0.43 ���

Set2 0.73 ��� 0.79 ��� 0.56 ��� 0.76 ��� 0.76 ��� -0.73 ��� 0.76 ��� 0.75 ��� 0.71 ���

Eph Set1 1.00 0.54 ��� -0.07 NS 0.24 NS 0.27 � -0.28 � 0.25 NS 0.27 � 0.25 NS

Set2 1.00 0.61 ��� 0.63 ��� 0.76 ��� 0.76 ��� -0.74 ��� 0.76 ��� 0.75 ��� 0.73 ���

Sd Set1 0.54 ��� 1.00 0.32 � 0.37 �� 0.41 �� -0.44 ��� 0.38 �� 0.44 ��� 0.43 ���

Set2 0.61 ��� 1.00 0.69 ��� 0.60 ��� 0.61 ��� -0.61 ��� 0.60 ��� 0.61 ��� 0.61 ���

Nn Set1 -0.07 NS 0.32 � 1.00 -0.11 NS -0.07 NS 0.01 NS -0.11 NS -0.01 NS 0.04 NS

Set2 0.63 ��� 0.69 ��� 1.00 0.49 ��� 0.50 ��� -0.52 ��� 0.48 ��� 0.51 ��� 0.53 ���

EXG Set1 0.24 NS 0.37 �� -0.11 NS 1.00 0.97 ��� -0.87 ��� 1.00 ��� 0.86 ��� 0.77 ���

Set2 0.76 ��� 0.60 ��� 0.49 ��� 1.00 0.99 ��� -0.96 ��� 1.00 ��� 0.98 ��� 0.89 ���

EXGR Set1 0.27 � 0.41 �� -0.07 NS 0.97 ��� 1.00 -0.96 ��� 0.97 ��� 0.95 ��� 0.88 ���

Set2 0.76 ��� 0.61 ��� 0.50 ��� 0.99 ��� 1.00 -0.99 ��� 0.99 ��� 1.00 ��� 0.94 ���

EXR Set1 -0.28 � -0.44 ��� 0.01 NS -0.87 ��� -0.96 ��� 1.00 -0.87 ��� -1.00 ��� -0.98 ���

Set2 -0.74 ��� -0.61 ��� -0.52 ��� -0.96 ��� -0.99 ��� 1.00 -0.96 ��� -0.99 ��� -0.98 ���

GLI Set1 0.25 NS 0.38 �� -0.11 NS 1.00 ��� 0.97 ��� -0.87 ��� 1.00 0.86 ��� 0.77 ���

Set2 0.76 ��� 0.60 ��� 0.48 ��� 1.00 ��� 0.99 ��� -0.96 ��� 1.00 0.98 ��� 0.89 ���

NDI Set1 0.27 � 0.44 ��� -0.01 NS 0.86 ��� 0.95 ��� -1.00 ��� 0.86 ��� 1.00 0.98 ���

Set2 0.75 ��� 0.61 ��� 0.51 ��� 0.98 ��� 1.00 ��� -0.99 ��� 0.98 ��� 1.00 0.96 ���

a Surface of individual plant = Sur, estimated plant height = Eph, stem diameter = Sd, and number of nodes = Nn.
b Set 1 and Set 2 measured June 14 and August 31.
c NS, nonsignificant at p� 0.05

�Significant at the 0.05

��Significant at the 0.01

��� Significant at the 0.001 probability level.

https://doi.org/10.1371/journal.pone.0256978.t006

Table 7. The eigenvalues of the correlation matrix for four Growth Traits (GT) and 5 RGB-based growth index (RGB-VI) on 20 entries of kenaf.

Traits Principle components

GT+ RGB-VI GT RGB-VI

First (84.29%) Second (12.27%) First (90.67%) Second (5.90%) First (97.21%) Second (1.83%)

Sur a 0.327 0.127 0.486 0.733

Eph 0.291 0.444 0.511 -0.110

Sd 0.300 0.389 0.511 0.054

Nn 0.262 0.532 0.491 -0.669

EXG 0.322 -0.303 -0.409 -0.434

EXGR 0.327 -0.279 -0.413 -0.229

EXR 0.333 -0.194 -0.410 0.218

GLI 0.321 -0.314 -0.409 -0.470

NDI 0.343 -0.008 -0.401 0.635

VARI 0.328 -0.214 -0.407 0.296

a Surface of individual plant = Sur, estimated plant height = Eph, stem diameter = Sd, and number of nodes = Nn.

https://doi.org/10.1371/journal.pone.0256978.t007
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Discussion

This study aimed to confirm whether RGB images from UAVs could estimate biomass in

kenaf planted in the field for breeding selection. If the image from the UAV successfully esti-

mated kenaf biomass, the image could be used as a selection tool for kenaf breeding, saving

considerable effort and costs for measuring the characteristics of field-planted kenaf.

We collected significant traits, such as the surface area of plants, height, stem diameter,

node number, and RGB images to estimate each kenaf entry’s biomass (S1 Table). The surface

area, plant height, and RGB-VI were calculated or estimated from the UAV image. In contrast,

collecting stem diameter and node number data requires human effort, time, and resources.

Similarly, in other crops, because of multiple environments over many seasons and replica-

tions, phenotyping of agricultural traits is recognized as the most laborious [22]. Interestingly,

in kenaf, the growth traits had no or moderate correlation at the early stage (set 1); however,

the stem diameter and node number had a significantly positive correlation with estimated

plant height in set 2, that is, at the later stage (Table 6). Other studies have also reported that

plant height, stem diameter, and node number are positively correlated with kenaf biomass

Fig 7. PCA analysis of 20 kenaf entries at two different growth stages. (A) PCA analysis by surface of individual

plant, expected plant height, stem diameter, number of nodes, EXG, EXGR, EXR, GLI, NDI, and VARI; (B) PCA

analysis by surface of individual plant, expected plant height, stem diameter, and number of nodes; (C) PCA analysis

by EXG, EXGR, EXR, GLI, NDI, and VARI. Set 1, and set 2 measured June 22, and August 31.

https://doi.org/10.1371/journal.pone.0256978.g007
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[23, 24]. Therefore, the correlation between the plant surface area and height, which is advan-

tageous for measurement, the kenaf biomass can be effectively predicted.

In addition, by using RGB-VIs, Kenaf biomass might be efficiently estimated. Except for

EXR, VIs showed a strong positive correlation with the surface area of plants, estimated height,

stem diameter, and node number. The chlorophyll in leaves and stems absorbs red light (cen-

tered around 0.67 μm) and blue light (centered around 0.45 μm), and reflects green light (cen-

tered around 0.55 μm), and the green digital image number in RGB images is larger than red

or blue [25]. Since EXR is a VI, it emphasizes red and subtracts green; it negatively correlated

with the measured kenaf traits. Furthermore, other VIs appeared to have similar positive cor-

relations in set 2 with the surface area, plant height, stem diameter, and node number. In set 1,

there was no or low correlation, suggesting that a late growth stage should be preferred when

selecting plants for breeding based on VIs. Similar results were observed in the PCA. As

shown in Fig 7, the entries in set 2 are scattered compared to set 1, which means that each

entry’s characteristics appear better in the later stage.

Taken together, the results herein make it possible to estimate the biomass using kenaf’s

surface area and estimated plant height using RGB images obtained from the UAV. In addi-

tion, it is possible to estimate biomass through VIs while minimizing the additional effort

required for breeding selection. Hence, this study is unique in that it suggests a UAV operation

with an RGB camera for breeding selection programs, especially those with a tight budget.
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S1 Fig. Schematic drawing of ground and aerial measuring process.

(TIF)
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ual plant, estimated plant height, stem diameter, number of nodes, EXG, EXGR, EXR,
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