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Abstract: Current computation architectures rely on more processor-centric design principles. On the
other hand, the inevitable increase in the amount of data that applications need forces researchers to
design novel processor architectures that are more data-centric. By following this principle, this study
proposes an area-efficient Fast Fourier Transform (FFT) processor through in-memory computing.
The proposed architecture occupies the smallest footprint of around 0.1 mm2 inside its class together
with acceptable power efficiency. According to the results, the processor exhibits the highest area
efficiency (FFT/s/area) among the existing FFT processors in the current literature.

Keywords: Fast Fourier Transform; in-memory computing; associative processor; non-von neumann
architecture

1. Introduction

Today’s processor-centric design principle of computer architectures causes a great deal of energy
waste. This is mainly because processing on the data is performed far away from the data [1]. Moreover,
even though the processor systems are highly optimized, the data units are not considered much.
On the other hand, computer applications are becoming increasingly data hungry. This became an
indispensable fact especially after the rise of artificial intelligence (AI) and deep-learning domains
for which big data is necessary [2]. Therefore, data movement energy dominates to compute energy
in a traditional computer architecture serving today’s computational needs. For example, memory
access nearly consumes 1000× the energy of a complex addition operation [3]. Since the amount
of data required increases, this adversely affects the efficiency of computers. Not only for AI but
also in all domains ranging from signal processing to robotics, an efficient and memory-optimized
computation is desired for the sake of specific advantages. Therefore, this fact forces researchers
to find alternative computation methodologies. A paradigm shift to perform the computation with
minimal data movement is needed by computer scientists. The most reasonable way to achieve this is
by making the computation more data-centric than at present processor-centric. This research goal is
investigated by many different methodologies. In the ideal case, the most advantageous computing
methodology is in-memory computing means that data is processed where it resides.

In-memory computing can be achieved through different methodologies [4]. The most
straightforward method is placing memory and processor inside the same chip to facilitate ultra-fast
data processing instead of moving the data through the slow buses between the different chips [5]. Even
though the idea seems as simple, this combination requires special fabrication in-chip manufacturing.
The architecture targets to combine the processor logic with a stack of through-silicon-via (TSV) bonded

Micromachines 2019, 10, 509; doi:10.3390/mi10080509 www.mdpi.com/journal/micromachines

http://www.mdpi.com/journal/micromachines
http://www.mdpi.com
https://orcid.org/0000-0002-0096-0365
https://orcid.org/0000-0003-2410-7315
https://orcid.org/0000-0003-1849-083X
https://orcid.org/0000-0002-6982-365X
https://orcid.org/0000-0001-7742-1282
http://dx.doi.org/10.3390/mi10080509
http://www.mdpi.com/journal/micromachines
https://www.mdpi.com/2072-666X/10/8/509?type=check_update&version=2


Micromachines 2019, 10, 509 2 of 16

memory die [6,7]. The logical core of the memory system is a kind of single instruction multiple data
(SIMD) processor where the different memory portions are directly connected to different cores, thus
increasing the overall system bandwidth. As another methodology, some researchers focus to insert
extra abilities to existing memory chips with minimal modifications. As a basic motivation example,
5% of the overall cycles in Google’s data centers are spent on memcopy and memmove operations [8].
If a dynamic random-access memory (DRAM) has the capability to exchange data between its rows
without processor intervention, then these operations would not have to be carried over the central
processing unit (CPU). The study in [9] modifies the DRAM chip to perform this operation directly
inside the DRAM without moving the data. The modification increases the DRAM area only 0.01%.
Emergence of the new nonvolatile memory (NVM) technologies such as resistive RAM (ReRAM) and
phase change memory (PCM) created a widespread adaptation for in-memory processing due to their
inherently analog processing capability, high density, and scalability [10,11]. There are many studies
that aim to perform in-memory computation by using NVMs, but with different methodologies [12,13].
An example of this kind in-memory computation methods is using memristor crossbars where the
crossbar is configured in a way to perform corresponding specific operations. When an input is
applied to the programmed crossbar, its corresponding output becomes the result of the programmed
operation [14]. The study in [15] exploits the memristor crossbar for approximate addition and
multiplication operations. The prime architecture proposed in [16] uses memristor crossbars to create
a neural network realization which is the fundamental operation in deep learning. Another approach
of in-memory computing is integrating simple logic structures in each memory cell [17]. The study
in [18] proposes an architecture in which the memory cells can both store the data and perform simple
computations on it. Furthermore, two or more cells can be combined to perform more complex
operations. Another study in [19] proposes a systolic three-layer memory structure consists of memory,
routing, and logic planes.

As another methodology, associative in-memory processing performs the in-memory computation
by using look-up tables of the arithmetic and logical operations. Unlike the traditional von Neuman
or near-memory computation in which the data sent to a processor for computation, associative
processors (AP) sent the functionality (i.e., operation) over the data without moving it. In other
words, functionality is performed directly inside the memory. Table 1 summarizes the comparison
between these methodologies. According to the specifications, in-memory processing provides the
broadest constraint in terms of bandwidth. With the invention of resistive memory devices such as
ReRAM [20], STT-RAM (spin-transfer torque random-access memory) [21] this convention has started
to gain popularity recently. Since there are numerous studies performing in-memory computation
through different approaches, the study in [18] puts an extra effort for the taxonomy and proposes
a classification into four groups; computation-near-memory (processor and memory in the same
chip), computation-in-memory (computation is performed in the peripheral circuitry of the memory),
computation-with-memory (LUTs are used for computation), and logic-in-memory (the memory cells
have the computation ability). Regarding this classification, associative processing can be considered
to be a computation-with-memory approach.

Table 1. Computation types with respect to memory.

Computation Data Functionality Bandwidth
Type Location Location Constraint

Traditional Separate IC Processor Inter-chip Bus

Near-memory Same IC Processor In-chip Bus

In-memory Same IC Memory Memory Capacity

In this study, a fast and efficient in-memory accelerator/processor is proposed for the Fast Fourier
Transform (FFT) which is the most important and extensively used algorithm in signal processing.
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Since the computation domain has already reached to big data era, signal processing architectures
should be reconsidered from the data perspective. As a supportive case from health industry, magnetic
resonance imaging (MRI) requires huge data sampling and processing for better patient diagnosis.
Fast Fourier Transform is heavily used during the processing [22]. If the computation is inadequate in
performing the FFT at enough speed, the patient must stay longer inside the MRI [23,24], therefore be
exposed to more stress. On the contrary, if the sampled signal size is decreased, the accuracy is affected
negatively which is not acceptable in the health industry. Therefore, a fast FFT processor is required to
acquire both enough accuracy and processing speed. The proposed architecture exploits the different
FFT computation methodologies which have a coherence inherently for in-memory computing to come
up with the efficient architectures. The study also proposes the overall integration solution in which
accelerator can be used as a standalone processor on its own.

The rest of the paper is organized as follows: In the following section, the fundamental idea of
associative computing together with the architecture is presented. Section 3 introduces the proposed
two architectures of in-memory FFT processor that are throughput-optimized and area-optimized,
respectively. Experimentation and evaluation results are discussed in Section 4. The final section
concludes the work.

2. In-memory Associative Processing

Associative in-memory processing is a computing paradigm aims to perform the operations on
the data by using associativity principles [25]. The proposed FFT processor in this study bases the
associative in-memory processing. All primitive FFT operations are performed on the input data
placed inside the memory without moving it. The following two subsections form a background on
the AP architecture as well as how associative computing is performed.

2.1. Associative Computing

Figure 1 shows the overall architecture of an AP in detail. The key component of an AP is a
content addressable memory (CAM) [26,27]. A CAM is used to access the data by its content on the
contrary to the traditional memory where the data is accessed by its address. The CAM stores the
data on which the operations are performed. The figure shows the SRAM-based CAM cell structure.
In this cell, the one-bit data is stored by a coupled inverter where each inverter supports to the other
to keep its logical value. Associative processing exploits the associativity feature of the CAMs hence
the name comes from. The basic operation on a CAM is done through the key, mask, and tag registers
which are managed by the controller. A search operation inside the CAM can be performed as follows;
First, the content which searched for inside the CAM is written to the key. The mask register identifies
the columns on which the search is performed. If the content is found in a row, the corresponding tag
register of this row becomes logic-1.

In addition to CAM, AP needs an address decoder for the communication with the outer system.
This outer system can directly be a data source or a processor. Depending on the usage, AP can function
as either a standalone processor or an accelerator. The computation inside the CAM is performed in a
SIMD fashion. On the other hand, the traditional processors or outer systems (e.g., sensors) provide
the data as sequential. To interact between these two different systems, an address decoder is used to
feed or output data as sequential by activating the specific rows of the CAM.

As detailed in the next subsection, APs are very powerful for performing parallel operations
when the provided data is on the same row. On the other hand, if the benchmark requires computation
not only as pairwise (e.g., vector dot product) but also between the different pairs (e.g., matrix
multiplication), it needs data exchange between the rows. For this purpose, a switching matrix is used
to move the data as column-wise between the APs or to the same AP. This communication must be
configurable if the processor supports different kinds of tasks with different communication patterns.
On the other hand, if the processors is an application specific, it can be fixed. Figure 1 shows these two
kinds of approaches in the interconnection matrix.
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Figure 1. Associative processor architecture.

2.2. Operation

The main idea of associative in-memory processing is performing the function/operation on the
data without moving it. In traditional processors, to perform an operation on a set of data, the data is
moved to the processor through the special high-speed buses and brought to the processor. Inside the
processor, the data passes through the functionality (e.g., a full adder or multiplier) and the computed
results are written back to the memory. Unlike this approach of sending data over functionality,
in in-memory associative processing, the functionality is sent over the data (see Table 1). Even though
this approach seems unconventional, the CAM structure inside the AP makes it feasible.

The operations on the AP are performed through the compare and write cycles. During the
compare cycle, a specific key (data) is searched for inside the CAM and in the write cycle, the specific
data can be written to the columns which have the searched content (i.e., matched as a result of
compare operation). Since a specific content can be selected in the CAM through the compare cycles,
the corresponding function on this specific content can be applied to data inside the CAM. As an
example, to perform the logical NOT operation (i.e., B = ∼A where column B is initialized with
logic-0), the CAM is searched for logic-0 on the input column (i.e., column A) and a logic-1 is written
to the column B of the matched rows. Therefore, the logical not operation can be applied to the
data which is logic-0. In the end, the rows with logic-1 in Column A have logic-0 in Column B and
vice versa. Therefore, by applying the special functionality with respect to the searched content, the
intended function can be performed. The functionalities of the AP operations are defined by look-up
tables (LUTs). Depending on the LUT, the corresponding functionality is applied to the rows of
the CAM separately. Table 2 shows two example LUTs for in-place addition (i.e., B ← B + A) and
subtraction (i.e., B← B− A) operations where Cr and Br are stand for carry and borrow respectively.
The operations are performed as bitwise, starting from the least significant bit (LSB) of the operand
towards the most significant bit (MSB). On each bit, the LUT passes are applied through the compare
and write cycles. As an example of addition operation, in the first LUT pass, “011” is searched for in
the CAM array for Cr, B, and A bits respectively during the compare cycle and then “10” is written to
the Cr and B columns of the matched rows. The entries of LUT are iteratively applied to all bits of B
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and A in sequence by following the order. The comment column indicates the order that LUT entries
are applied required to perform the operation correctly. Some LUT entries are unnecessary and do
not participate in the result; therefore, they are indicated as NC (no change) in the comment column.
The studies in [27–29], show the detailed examples of some arithmetic and logical AP operations in
detail together with the step-by-step illustrations.

Table 2. LUTs for addition and subtraction.

Addition Subtraction

Compare Write Write

Cr/Br B A Cr B Comment Br B Comment
0 0 0 0 0 NC 0 0 NC
0 0 1 0 1 2nd Pass 1 1 1st Pass
0 1 0 0 1 NC 0 1 NC
0 1 1 1 0 1st Pass 0 0 2nd Pass
1 0 0 0 1 3rd Pass 1 1 4th Pass
1 0 1 1 0 NC 1 0 NC
1 1 0 1 0 4th Pass 0 0 3rd Pass
1 1 1 1 1 NC 1 1 NC

3. FFT Processor Architecture

The Fourier transform is a function used to decompose the given signals into its sinusoidal
components [30]. It is used in nearly all scientific domains ranging from signal processing to artificial
intelligence. In 1965, Cooley and Tukey proposed a faster algorithm named FFT to compute the
Discrete Fourier Transform (DFT) [31] where the complexity of the transform decreased to O(n log2 n)
from O(n2). The proposed faster methodology consists of the interleaved computation stages where
each stage composes of basic butterfly operations performed on data pairs. Since the algorithm is
highly parallel, it inherently provides a widespread adaptation for in-memory associative processing
both has a computation structure in an SIMD fashion [32]. On the other hand, the architecture requires
some modifications to fulfill the requirements of an efficient processing platform. The following
subsections detail the proposed implementations of FFT on in-memory AP in a hierarchical manner.

3.1. Butterfly Operation

The butterfly operation is the fundamental building block of an FFT stage. Figure 2 shows the
simplest butterfly diagram consisting of two inputs, two outputs and one exponential coefficient
(twiddle factor) where all numbers are complex (i.e., X0, X1 = butterfly(e0, x0, x1)).

x0 X0 = x0 + e0.x1

x1

X0

X1
X1 = x0 – e0.x1

e0

Figure 2. Simple butterfly operation.

Figure 3 shows the data flow of radix-2, decimation in time, 8-point Cooley-Tukey’s FFT in three
stages where each stage consists of four butterfly operations. After each stage, the partial outputs
of previous stages are rearranged as an input of the next stage. From the AP-based point of view
where each row can be regarded as a different processor with their own registers, two input and
one exponential factor must be stored in the same row to perform a butterfly operation. However,
after completion of a butterfly stage, the output of the current stage must be rearranged for the next
stage since the computation pattern changes and the AP can perform the butterfly operation if and
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only if the operands (i.e., two inputs and coefficient) are in the same row. The exponential coefficients
(exy) can be placed to the CAM arrays before the operations. For an n-point FFT operation, the overall
system requires log2(n) APs and each AP requires n

2 rows. For example, the system requires 10 APs
and 512-rows in each AP for 1024-point FFT operation. Since this is an in-memory FFT processor,
the memory requirement is higher than the traditional FFT processors (e.g., [33–35]). On the other
hand, the proposed processor does not need any traditional logic circuit, therefore provides an overall
area efficiency. Section 4 discusses the comparison in detail.

x0
x1
x2
x3
x4
x5
x6
x7

X0
X1
X2
X3
X4
X5
X6
X7

Stage #1 Stage #2 Stage #3

Figure 3. 8-point traditional FFT.

3.2. Data Movement

To process the data inside the AP accelerator, the outer system (i.e., processor) needs to
communicate well enough with the accelerator (i.e., FFT processor). To feed the input data and
retrieve the output data, the processor should have access to the data of the CAMs as row addressed.
The main reason for this is that the traditional processors process the data as row-wise on the contrary
of APs where data is processed as column-wise (see Section 2). Additionally, the sensors sample the
data in time as sequential and provide it in this manner. The Figure 1 shows this hierarchy where the
address decoder handles the communication between the AP and the processor. This decoder activates
the specific row of the AP as described in the address input. The previous studies on associative
computing [27,36] also provide a decoder mechanism for this purpose. In such an architecture,
every row of the AP becomes addressable by the outer processor. On the other hand, the main purpose
of in-memory accelerators is parallelizing the jobs done on large chunks of data where the sequential
access to the individual memory locations is not much necessary during the operation. It is only needed
during the initialization of the CAM array where the processor feeds the data as serial. However, even
for this purpose, the random-access feature is still not much needed since this copy operation are done
in order from the first line until the end. Therefore, the decoder circuit provides over functionality to
the overall system which has no additional benefit.

Instead of using an address decoder, the shift register mechanism is introduced for the sake of
area, performance, and energy efficiencies. Figure 4 shows the proposed in-memory FFT architecture
explicitly where the costly decoder mechanism is replaced with the shift register-based approach.
In this approach, a shift register is placed as vertical to the rows of the AP. The shift register has the
same number of registers (flip-flops) as the number of rows in the AP. The outputs of each shift register
are connected to the activation input of the corresponding rows. In this case, if the register outputs
a logic-1, the row becomes activated while the logic-0 deactivates the corresponding row. The data
movement operation from the processor to the AP is performed as follows; First, the processor selects
the location of the AP’s columns to which data is written by setting the corresponding mask registers.
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The processor also asserts the init pin of the shift register to initiate the bulk data movement, so that
the first register in the shift register becomes logic-1 in the next clock cycle. Therefore, in the first cycle,
the first row is activated and ready to be written. At the same time, the outer processor synchronously
provides the input data that is written to the selected columns of the first row. In the second cycle, shift
register content is shifted by a single bit and the second row is activated and write operation is done for
this row. At every time, the activated row by the shift register is written. The processor feeds the data
as synchronized with the shift register, so they must be clocked by the same source. In this manner,
the write operation for each row continues until reaching to the end row of the AP. To initialize an AP
with n rows, n + 1 cycles are required. In this case, even though the inter-communication between
the APs is column-wise through the switching matrix, the communication between the processor and
the AP is handled as row-wise but more efficiently. After processing the data in the AP accelerator,
the data can be retrieved by the processor in the same manner where the processor reads the data
of the activated row from the bit lines as serial. The same shift register can be used for both writing
and reading. When compared with the complexity of a decoder circuitry which needs n-1 1-to-2
demultiplexers for n-row CAM, the shift register approach requires n flip-flops only.
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Figure 4. Pipelined in-memory FFT processor architecture.

3.3. Area-Optimized Architecture

For the in-memory FFT processors, two different architectures are proposed which are throughput
and area-optimized, respectively. The throughput-optimized architecture performs each stage of
the FFT in an AP-CAM as shown in Figure 4. The communication patterns between the APs can
be fixed since the FFT size is fixed to 1024-point and it is known as a priori. On the other hand,
the communication pattern varies with respect to the current stage as seen in Figure 3. Even though this
architecture provides high-throughput in-memory FFT, it needs to replacement of AP-CAMs 10 times
(i.e., log2(n)). An area-efficient alternative can be possible through the reconfigurable switching matrix
where the results of a single AP stage are feedbacked back to the AP itself (see Figure 5). After
completion of a butterfly stage, the reconfigurable switching matrix can be configured according to
the next stage. However, this approach requires additional area and control costs. If the number of
rows of a CAM array (n) is more than the number of columns (m) in an AP which is generally so since
parallelism is obtained as row-wise, the area complexity of a reconfigurable switching matrix (n× n)
becomes more than CAM itself (n × m). For instance, to perform a 1024-point FFT on 12-bit data,
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132 × 512-bit CAM array is required. On the other hand, it requires a 512 × 512-bit reconfigurable
switching matrix. Even the CAM cell size is assumed as 2× of the traditional memory, the switching
matrix requires about 1.94×more area. Furthermore, the control over the switching matrix becomes
intractable also since every cell must be controlled individually.
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Figure 5. The ultra-area-efficient FFT processor based on singleton’s FFT and feedback.

There are many algorithmic implementation of FFT (e.g., prime-factor FFT [37], Krukar’s FFT [38],
and Bluestein’s FFT [39]) where some of them are optimized for specific input types (e.g., prime sizes,
powers of two). Singleton’s FFT [40] is an approach for performing FFT in the same manner and
operational complexity as Cooley-Tukey FFT in traditional computers. On the other hand, it provides
an incomparable advantage for APs. Even though the traditional FFT requires the change in the
communication pattern where each FFT stage requires different input pairs, Singleton’s FFT fixes
the pattern of the data flow between the butterfly stages. For the visualization, Figure 6 shows
an 8-point FFT using Singleton’s method where the input xi of every step goes into butterfly with
input xi+n/2 where n is the FFT size. Even though variable computation pattern is not an issue
for general-purpose processors or ASICs which always have a random-access memory structure,
it provides a vital advantage for parallel in-memory processing systems detailed as follows.

x0
x1
x2
x3
x4
x5
x6
x7

X0
X1
X2
X3
X4
X5
X6
X7

Figure 6. 8-point Singleton’s FFT.
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The area-optimized architecture exploits the Singleton’s FFT to fix the inter-communication
pattern between the stages. In this way, the whole FFT computation can be performed by using a single
FFT stage. If the FFT implementation was the traditional one (i.e., Cooley-Tukey), the switching matrix
would have to be reconfigurable. Figure 5 exploits the proposed area-optimized FFT architecture.
To move the data from/to processor, a single shift register is used as described above. The switching
matrix has a fixed pattern feedbacked to the AP itself so that every FFT stages are performed on the
same AP. One drawback of this architecture is that after every computation, the new twiddle factors of
the corresponding stage must be loaded to the APs from the outer processor by using the proposed
shift register-based data movement approach. On the other hand, the cost of this overhead seems
negligible compared with the whole butterfly operation on 1K data.

3.4. Dual-Issue Butterfly Operation

For the further optimization on the performance, the data flow diagram of a single butterfly
operation on the AP (i.e., A, B = butterfly(e, a, b)) are inspected. Figure 7 shows the corresponding
directed acyclic graph (DAG) of a butterfly operation on the AP where each box corresponds to an
operation described inside and the lines show the data dependencies (flow of the data). Since AP
performs a complex multiplication operation as four real multiplications, the diagram shows the
operations on the real and imaginary parts with subscripts r and i respectively. At the first insight,
it is obvious that the operations show a perfectly symmetric flow. For example, at the beginning
while multiplying er with br, the same multiplication operation of bi × ei are performed. The set of
instructions for performing these operations are the same, therefore can be performed as parallel.
At that point, an AP row can be divided into two parts to perform the operations as parallel by adding
extra matching circuit. Figure 8 shows the modified architecture for dual-way issue AP. The proposed
modification does not require any additional cost to the controller part since the performed operations
are identical, so the generated signals for the key and mask registers are exactly the same. At some point,
if any operations needs to be performed between the operands on these two parts (e.g., ti computation),
the switch between them can be closed and it behaves as a single row. While this modification requires
an 10% area overhead to the overall system because of the additional matching circuit, it provides
around 1.9× speedup due to the parallel execution of the costly multiplication operations.

er br bi ei

er x br ei x bi er x bi ei x br

tr = er x br + ei x bi ti = er x bi + ei x br aiar

Br = ar - tr  Ar = ar + tr  Ai = ai + ti  Bi = ai - ti  

Figure 7. Directed acyclic graph of a butterfly operation.
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Figure 8. Dual-issue FFT on the AP.

4. Evaluation

For the evaluation of the proposed in-memory FFT processors (both area-optimized and
throughput-optimized), the simulator in [29] are used to perform both system-level and circuit-level
(pre-layout) simulations in Matlab and HSPICE, respectively. For the transistor model, the Predictive
Technology Models (PTM) [41] is used to simulate high-density memories with 65 nm feature sizes [42].
Even though the used technology is 65 nm, the CAM cells are custom designed to decrease the current
leakage and therefore energy consumption since traditional ternary CAM functionality is not needed
for APs. The area of the cell design is calculated by referencing the fabricated SRAM and CAM designs
in 65 nm [43,44]. The parasitic effects such as the line resistances are taken into account during the
circuit simulation to obtain the accurate results [45]. Performance metrics and results are obtained
by cross-checking the output of both Matlab and HSPICE simulations. For the sense amplifier, a
low-power, sub-ns amplifier design in [46] is employed in the circuit. While comparing the results
with the previous studies in the literature, the processors that are in the same category are taken into
account. For example, for the data type, only fixed-point FFT processors are compared since it is not
fair to compare a fixed-point processor with floating point one.

Table 3 shows the comparison of two in-memory FFT processors with other state-of-the-art FFT
processors. The table includes both area-efficient (feedbacked) and throughput-efficient (pipelined)
versions of the AP processors indicated as AP (F) and AP (P) respectively. In the AP, all butterfly
operations on a CAM are performed simultaneously, so the running time of one stage does not depend
on the number of samples if it fits into the memory. On the other hand, the word-length of the FFT
operands affects the effective throughput since the operations are done as bitwise. The table shows that
the proposed feedbacked in-memory FFT processor has the smallest area. Actually, to store the m-bit
FFT operands (i.e., complex numbers) for n-point FFT, 6m× n bits memory is needed. On the other
hand, the feedbacked FFT processor performs both storage and computation by using about 11m× n
bits memory. When the area of a CAM cell is assumed as 2× of a normal memory cell, this leads to an
inference that both computation and storage can be done in around 3.6× of the overall storage area.
According to the normalized power results, the proposed processor shows a fair performance. On the
other hand, the figure of merit (FOM), an overall evaluation metric of (FFT/s/Energy/Area) shows
the best result within the others since the proposed FFT processor provides ultra-area efficiency.

One can put a single multiplier and adder and claim the invention of the smallest FFT processor.
Therefore, the smallest area cannot be the sole claim. For this reason, while reporting the results,
the GSample/s per area (GS/s/mm2) are provided. Figure 9 proves the overall claim of the study
which is proposing an ultra-area-efficient FFT processor. According to the figure, the proposed
processors shows the best area efficiency in terms of GSample/s/area when compared with the
other processors. In other words, the in-memory FFT processors exhibit the best FFT performance
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per unit area. The recent study in [34] claims the better normalized throughput per unit area than
the state-of-the-art available designs. Beyond this study, the proposed design accomplishes a 33.2%
improvement over their reported results.

Table 3. Comparison of FFT Processors without normalization.

Specification AP (F) AP (P) [47] [33] [48] [35] [34]

FFT Size (N) 1024 1024 1024 256 2048 1024 4096

Technology 65 nm 65 nm 65 nm 90 nm 65 nm 65 nm 65 nm

Vdd 0.45 V 0.45 V 0.27 V 1 V 0.45 V 0.6 V 1.2 V

Word-length 12-bit 12-bit 16-bit 10-bit 12-bit 32-bit * 14-bit

Area 0.099 mm2 0.99 mm2 8.29 mm2 5.1 mm2 1.37 mm2 3.6 mm2 1.46 mm2

Power 12 mW 123 mW 4.15 mW 165 mW 1.01 mW 60.3 mW 68.6 mW

Throughput/Area (GS/s/mm2) 0.89 0.89 0.03 0.47 0.015 0.22 0.67

FOM (FFT/Energy/Area) 70.4 7.09 6.82 15.3 7.04 3.60 2.37

* The bitwidth of the architecture is variable over the FFT stages and the maximum one is 32-bit.

AP (F) AP (P) [47] [33] [48] [35] [34]
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Figure 9. Area efficiencies of FFT processors (GS/s/mm2).

In some cases, custom FFT processors can be used as directly coupled with an outer data source
(sensor, channel, etc.) without any intermediate processor. If there is no outer processor, the coupled
system must generate the address while sending the data. A basic counter can be used for this purpose.
The proposed methodology of shift register also eliminates this need where the requirement can
be fulfilled with a basic shift register. The shift register-based approach can also support multiple
writings at the same time (i.e., multi-row activation); however, this is not necessary for the current
content. According to the comparison between shift register and address decoder approaches for
1K-FFT processor, the synthesized design on Cadence shows that the shift register consists of fewer
flip-flops and logic gates, and hence takes up 25% less area. Furthermore, the shift register is also
shown to be more energy efficient which consumes around 0.4× of the address decoder.

For a further inspection on the designed architecture, a design space exploration is performed on
the architecture with different operand bit widths (12-32 bits) and FFT sizes (128-4K). Figure 10 shows
the energy/FFT and throughput results of the area-efficient FFT processors (feedbacked) normalized to
12-bit 1K-point FFT proposed above. Since proposed architecture performs the operations as bitwise,
both throughput and energy are highly correlated with it, therefore decreases as bitwidth increases.
On the other hand, if the FFT data can fit inside the memory, the throughput of a single butterfly
stage increases as O(n). Overall, FFT throughput depends on the total number of stages as well
which is formulated as O(log2 n). In overall, the normalized throughput with respect to FFT size
changes by O(n/ log2 n). In traditional FFT architectures, the throughput of a single butterfly stage
decreases as FFT size increases since it needs to use the available resources sequentially, therefore,
overall throughput changes by O(1/(n× log2 n)). Figure 11 shows the energy/FFT results for both
the proposed FFT and the architectures from [48,49] where the FFT size changes between 128–2048
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points. The architectures in [48,49] can be configured to perform 128, 256, 512, 1024, or 2048-point FFTs.
The result demonstrates that proposed AP-based FFT shows better scaling in terms of energy/FFT
with respect to increasing FFT sizes. Since the need for higher point FFT increases in the domains
such as MRI which also requires parallel computation on the data coming from many receivers [50],
the in-memory FFT architecture can propose an efficient solution together with the high-speed data
placement through the proposed shift register-based approach.

(a) Normalized energy/FFT (b) Normalized throughput
Figure 10. Design space exploration for the area-optimized FFT processor.
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Figure 11. Comparison of normalized Energy/FFT scaling with respect to FFT size.

Even though the proposed FFT processor achieves a great deal of area efficiency due to the
dense structure of the memory arrays, another paradigm that can be beneficial on this architecture is
approximate computing. Approximate computing is a popular computing paradigm that relaxes the
correctness constraints of a system for the sake of energy and performance improvement [51,52].
The paradigm can be applied to the error-tolerant applications. APs facilitate the approximate
computing inherently since the operations are performed bit-by-bit basis [28]. As an example case,
the proposed architecture can be evaluated for communication applications in which the bitwidth
of the FFT processor can be adjusted dynamically during the run time concerning the estimated
channel signal-to-noise ratio (SNR), aiming at achieving the desired performance at a reduced energy
consumption [32]. Figure 12 shows an example case for 1K FFT where the change in average peak
signal-to-noise ratio (PSNR) and error rate with respect to the bitwidth are shown where the reference
is 32-bit FFT. When interpreted with Figure 10 where the normalized energy and throughput results
are presented with respect to bitwidth, the approximate in-memory FFT can be performed dynamically
by adjusting the bitwidth during runtime to obtain the optimum energy consumption together with
the required throughput.
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Figure 12. Bitwidth vs. average PSNR and error rate of 1024-point FFT.

5. Conclusions

In this study, an ultra-area-efficient FFT processor through the in-memory associative processor
is introduced. The proposed processor performs FFT directly inside the memory. For better
communication with the external systems, the traditional accelerator architecture is improved by
proposing a better data moving mechanism specific to the AP-based accelerators. Furthermore,
the study introduces a dual-way associative processing methodology to perform the symmetric tasks
of the butterfly operation at nearly 2× speed without any cost to the controller. The proposed design
has the smallest area occupancy reported until now. The efficiency of the proposed architecture is
proven by comparing it with the state-of-the-art FFT processors in terms of performance, power, and
area. Beyond the smallest reported area, the proposed processor achieves the best area efficiency
(normalized throughput per area) within its own class of FFT processors. It means that the proposed
architecture delivers the best performance in a given area.
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