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Surprising effects of cascading 
higher order interactions
Hsun‑Yi Hsieh1,2,4,5*, John Vandermeer3,4 & Ivette Perfecto4

Most species are embedded in multi‑interaction networks. Consequently, theories focusing on simple 
pair‑wise interactions cannot predict ecological and/or evolutionary outcomes. This study explores 
how cascading higher‑order interactions (HOIs) would affect the population dynamics of a focal 
species. Employing a system that involves a myrmecophylic beetle, a parasitic wasp that attacks the 
beetle, an ant, and a parasitic fly that attacks the ant, the study explores how none, one, and two 
HOIs affect the parasitism and the sex ratio of the beetle. We conducted mesocosm experiments 
to examine these HOIs on beetle survival and sex ratio and found that the 1st degree HOI does not 
change the beetle’s survival rate or sex ratio. However, the 2nd degree HOI significantly reduces the 
beetle’s survival rate and changes its sex ratio from even to strongly female‑biased. We applied Bayes’ 
theorem to analyze the per capita survival probability of female vs. male beetles and suggested that 
the unexpected results might arise from complex eco‑evolutionary dynamics involved with the 1st and 
2nd degree HOIs. Field data suggested the HOIs significantly regulate the sex ratio of the beetle. As 
the same structure of HOIs appears in other systems, we believe the complexity associated with the 
2nd degree HOI would be more common than known and deserve more scientific attention.

Ecological systems are complex systems that frequently involve many interacting  species1. However, the focus of 
ecological research over the last 50 years has been mostly on pair-wise interactions. The importance of higher-
order interactions (HOIs), here defined as the addition of a third (or multiple) species changing the strength of 
the pair-wise interaction (i.e. interaction modification, in contrast to interaction  chain2), has been widely rec-
ognized in ecological  studies3–10. Yet, studies remain in theoretical explorations of large communities focusing 
on diversity and  stability4,11–13, or consumption coefficients in small or large ecological communities with only 
one degree HOIs (i.e. one additional species modifying one pair-wise interaction)5,7,8,10,14,15. It is also unclear 
where HOIs occur in structured food  webs16,17. Empirical studies involved with communities composed of 
interacting 1st and 2nd degree HOIs are  rare18–21. In these studies, the 2nd degree HOI interferes with the 1st 
degree HOI, negatively impacting the pair-wise interaction. The two HOIs, therefore, interact and produce 
consequences that are not predictable in additive pair-wise interaction models. Such interactions as results of 
evolutionary consequences are not described in recent reviews or anthologies, suggesting an open subfield invit-
ing  investigations5,22,23. A multispecies community in which species interactions are relatively well studied would 
serve as a vehicle to further scientific understanding of the ecological and evolutionary dynamics concerning 
higher-order interactions.

Here we explore a subcomponent of a naturally occurring network involving six species, six direct trophic 
interaction and six HOIs (Fig. 1). This system has been well studied in a neotropical coffee farm in southern 
 Mexico21,24,25, but the cascading impact of the HOIs on target organisms is unknown.

At the core of our study system is the mutualism between the ant Azteca sericeasur and the green coffee 
scale, Coccus viridis (Fig. 1-A). The mutualism itself depends on an HOI since the ant exchanges nutrition by 
protecting the scale insects from the coccinellid beetle (Azya orbigera) predation, mostly by harassing the beetle 
adults (Fig. 1-A). The beetle larva is a classic example of myrmecophily, surviving in areas with high ant densities 
because its waxy filaments protects it from ant predation. The beetle larva is attacked and killed by a parasitic 
wasp (Homalotylus shuvakhinae). Importantly, the ant chases away parasitoid wasps attempting to access the 
scale insects but is unable to distinguish between scales’ parasitoids and beetle larvae’s parasitoids. Therefore, 
the ant protects the beetle larvae from parasitoid attacks. The ant is attacked by a phorid fly parasitoid (Pseudac-
teon lascinosus). The phorid fly has a strong HOI effect on the  ant26. When the phorid is around, the ant adopts 
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a catatonic anti-parasite behavior, significantly lowering ant foraging activity, reducing the strength of the ant 
interference with other organisms attempting to access the ant-foraging  patches27.

The subcomponent of this system in this paper includes: (1) the direct trophic interaction between the para-
sitoid wasp (H. shuvakhinae) and the beetle (A. orbigera) (Fig. 1-B-I); (2) the ant interference with the parasitoid 
wasp (Fig. 1-B-II); and (3) the anti-parasitism behavior of the ant induced by the presence of its parasitoid fly 
(Fig. 1-B-III).

The catatonic behavior of the ant is chemically mediated and results in the facilitation of the feeding and 
reproduction of the beetle that preys on the green coffee scale, the mutualistic partner of the ant (Fig. 1-A). The 
gravid female beetle uses the ant pheromone induced by the phorid to identify the right moment and location 
to oviposit within patches of high scale  densities21. However, the male beetle does not appear to be attracted 
to the ant pheromone at  all21. Therefore, phorid fly attacks represent an opportunity for gravid female beetles 
to lay eggs on coffee plants that have ants (A. sericeasur) and abundant scale insects, their source of nourish-
ment. Subsequently, the beetle larvae (which are protected from ant predation) enjoy abundant food resources 
(the scale insect) in the ant-hemipteran  patches21. Theoretically, the ant acts as the modification species of the 
consumer-resource interaction (i.e., the 1st degree HOI as it interferes with the feeding and the reproduction of 
the beetle). The parasitic phorid fly acts as the modification that interferes with the 1st degree HOI (i.e., the 2nd 
degree HOI that interferes with the 1st HOI). In other words, the effect of the phorid fly (P. lascinosus) cascades 
to the beetle via the interaction of the two HOIs (Fig. 1-A).

In this study, we focus on the effect of the HOI cascade on the survival and the sex ratio of the beetle, two 
parameters less studied than feeding but of interest to theoreticians exploring non-trophic effects in food  webs28. 
Oviparous females seek adequate locations and moments to lay eggs to optimize  fitness29. The presence of ants 

Figure 1.  (A) The diagram of the dynamics of the study system. The black solid lines with dots (resources) 
and arrows (consumers) represent trophic relationships. The gray curved arrows represent the growth and 
reproduction of the beetle. The blue dashed lines represent the 1st degree HOI—the in-discriminant interference 
of the ant with the beetle and the wasp, and the red dashed lines represent the disruptions of the 1st degree HOI 
in the presence of the phorid fly, the 2nd degree HOI. The current study aims to understand how the phorid 
fly would affect the parasitism and the sex ratio of the beetle, noting by the red question mark. (B) Diagram 
of the three types of interactions explored in the experiment. (I) Parasitism of beetle larvae with no HOI; (II) 
Parasitism of beetle larvae with 1st degree HOI; (III) Parasitism of beetle larvae with the 1st and 2nd degree 
HOIs (the ant interferes with the wasp and the fly affects ant activity). Black arrows represent direct parasitism, 
dashed blue lines represent the 1st degree HOI and dashed red line represents the 2nd degree HOI.
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and other predators may signal inappropriate habitats for oviparous female  insects30. However, the reverse is 
true for myrmecophilous beetles since they benefit from the  ants31,32. For A. orbigera, the presence of Azteca 
ants signals an enemy-free space with plenty  hemipterans21. Such myrmecophily may be responsible for the 
observed benefits of ant-hemipteran mutualism in  plants33,34, and suggests the importance of this mutualism 
in pest  control25,35.

In this study, we ask (1) how the phorid fly affects the ant aggressivity toward the parasitoid wasp; (2) how 
the parasitism rate of the beetle changes under the conditions of no-HOI (only the host-parasitoid interaction is 
present, Fig. 1-B-I), the 1st degree HOI (the ant interferes with the host-parasitoid interaction, Fig. 1-B-II), and 
the combination of the 1st and the 2nd degree cascading HOIs (the phorid fly interrupts with ant interference 
with the parasitoid wasp of the beetle, Fig. 1-B-III); (3) how the conditions of no-HOI, the 1st degree HOI, and 
the cascading 1st and 2nd HOIs affect the sex ratio of the beetle population surviving from parasitism.

As we were only able to identity beetle’s sexes when the beetles emerged, we employed Bayes’ theorem to 
explore beetle larvae’s sex-differential responses to the HOIs. We discussed how the wasp’s host preference and 
beetle larvae’s sex-differential responses to parasitism and HOIs cause the differences in the parasitism rate and 
the sex ratio of the beetle in different combinations of HOIs. We also explored the relevancy of our study to the 
existing literature.

Method
Study site. We conducted laboratory studies at the field site in Finca Irlanda, which is a 300-hectare organic 
shaded coffee farm located at 1100-m altitude, in the municipality of Tapachula, the state of Chiapas in Southern 
Mexico (92° 20′ 29″ W and 15° 10′ 65″ N). For the laboratory experiments, all organisms were freshly collected 
from Finca Irlanda or reared in the lab from insects collected from the field close by. The lab and field work was 
performed with a permit from the farm owner the Peters family.

Ant aggression test. To examine the effect of phorid flies (P. lascinosus) on the aggressivity of ants (A. 
sericeasur) towards the parasitoids of the beetle larvae (A. orbigera), we conducted an ant aggression test with 
two treatments: with and without phorids. In the first treatment, a small coffee branch containing two leaves 
with scale insects (C. viridis) and 20 ant workers were both introduced into a one-liter plastic container. This was 
done to mimic as much as possible field conditions where the ants are tending scale insects. After waiting for at 
least 15 min for the ants to calm down and start tending the scale insects, one third- or fourth-instar larva of the 
beetle was introduced. In the second treatment, all settings were the same except for the addition of 3–4 phorid 
flies. Once the two treatments were established, one female parasitoid wasp (H. shuvakhinae) was released into 
each container. During a forty-minute trial, each time that a parasitoid wasp encountered an ant worker, the 
response of the ant individual was recorded. Ant responses to parasitoids were classified into two categories: (1) 
the ant ignores the wasp; (2) the ant attacks the wasp. All insects were used for a single replicate and then dis-
carded. A total of four replicates were completed for both the presence and absence of phorids. For each trial, we 
calculated the proportion of actions (either aggressive or none) by ants when encountering the parasitoid wasp 
in the treatments with and without phorid flies. We used  R36 to conduct a two-sample Mann–Whitney U test on 
the proportion of ant actions.

Parasitism experiments and analyses. To examine the parasitoid wasp’s host preference and the effect 
of the 1st degree and the 2nd degree HOIs on the beetle’s parasitism and sex ratio, we conducted a laboratory 
experiment in insect tents (60 cm × 60 cm × 60 cm) with three treatments: (1) no ants (no HOIs but only the wasp 
and the beetle larvae), (2) ants (1st degree HOI), and (3) ants and phorids (1st and 2nd degree HOIs) (Fig. 1-B). 
We randomly assigned insect tents to each treatment in each trial, and the tents for each treatment were also 
shuffled in each trial. All beetle larvae used for these experiments were reared in the laboratory for at least two 
generations from freshly collected beetle adults. In each tent we placed a coffee branch with 4–6 leaves infested 
with approximately 100 scale insects inside a plastic container at the center of an insect tent. The set up for the 
three treatments of species combinations were as follows: (1) 4–5 third or fourth instar beetle larvae and a para-
sitoid wasp; (2) 4–5 third or fourth instar beetle larvae, a parasitoid wasp, and about 60–80 ant workers; (3) 4–5 
third or fourth instar beetle larvae, a parasitoid wasp, about 60–80 ant workers and 3–4 phorid flies. Organism 
densities in these treatments were close to those observed in the field. To allow for acclimation, we introduced 
organisms into the tents in the following order: first, we introduced the coffee branch containing scales, imme-
diately followed by the ants (in treatments 2 and 3). After the ants settled down and started tending the scale 
insects, we introduced the beetle larvae. Once the larvae began moving on the coffee leaves, we introduced the 
phorids (in treatment 3). When the three treatments were established, and the organisms exhibit normal behav-
ior, we released one lab-reared female parasitoid wasp (H. shuvakhinae) in each tent (treatments 1, 2, and 3). We 
allowed the organisms to interact for 24 h. After 24 h, we collected all beetle larvae in each treatment and reared 
them with sufficient scale insects as food, until beetle adults emerged or parasitism symptoms appeared (para-
sitized larvae turned into hardened black mummies). The treatments of no HOI and 1st + 2nd degree HOI were 
repeated for 10 consecutive times, and the treatment of 1st degree HOI was repeated for 11 consecutive times, 
with new individuals of each organism. We recorded parasitism instances and beetle sexes upon emergence. To 
estimate the sex ratio without parasitoid influence, 78 randomly selected beetle individuals were reared on coffee 
leaves with scale insects without any interaction with other organisms.

To analyze the effect of the parasitoid, the ant and the phorid fly on the parasitism rate and the sex ratio of 
the beetle, we developed a nested model, starting from
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where P̂(S) is the probability of an individual being parasitized, A is a binary variable, standing for the absence 
(0) and presence (1) of ants, a is the baseline probability of parasitism, and b is the magnitude of parasitism 
altered by ants in the logistic function. We further hypothesized that phorid attacks modify the strength of the 
interaction modification that ants exert upon the host-parasitoid interaction. Therefore,

where P is another binary variable, standing for the presence (1) and absence (0) of phorids. Substituting b, we 
obtain the following function,

where g represents the effect of ants on the parasitism rate of A. orbigera larvae, and h represents the effect of the 
fly’s facilitation, via interfering with the ant’s interference on the parasitism rate of A. orbigera larvae. We used 
binary responses (1: survival; 0: parasitized) of all available beetle individuals across the three treatments. We 
performed model selection based on the Akaike Information Criterion (AIC) and likelihood ratio tests. For the 
latter, we started model selection by fitting the full model and preceding each step by eliminating the term that 
had the least significance (the greatest p-value) on the explanation of the dependent variable. The analysis was 
performed with the application of the bbmle package in R. By doing this, we determined the maximum likeli-
hood estimates of survival probability of the beetle, P̂(S) , in the three treatments: (1) A = 0, AP = 0 (no HOI); (2) 
A = 1, AP = 0 (one HOI: ant interference) and (3) A = 1, AP = 1 (interacting HOIs: phorid interference with ant 
interference), and errors associated with these estimates.

The same idea applies to the sex ratio of the beetle under the influence of various organisms. We developed 
the following equation,

where P̂(F|S) is the probability of a parasitism survivor being female. A and P are both binary variables. Respec-
tively, they represent the ant and the phorid fly, and the numeric attributes, 0 and 1, denote their absence and 
presence. As before, model selection and parameter estimates were conducted with AIC. By doing this, we deter-
mined P̂(F|S) , the estimate of being a female beetle given survival, for the three treatments: (1) A = 0, AP = 0 (no 
HOI); (2) A = 1, AP = 0 (one HOI: ant interference) and (3) A = 1, AP = 1 (interacting HOIs: phorid interference 
with ant interference), and errors associated with these estimates. We employed the mle2 function in the bbmle 
package in R to estimate the female probability (1) in the absence of HOI (the beetle and the parasitoid alone), 
(2) in the presence of the 1st degree HOI (the beetle, the parasitoid and the ant), and (3) in the presence of the 
1st and the 2nd degree HOIs (the beetle, the parasitoid, the ant and the phorid fly).

Probabilities of per capita female and per capita male survival from parasitism under the influ‑
ence of ant and the phorid fly. To test whether the sex ratio of beetle survivors’ population is due to 
sex-differential survival probability, Bayes’ theorem was employed. Per capita female survival probability from 
parasitism in each treatment of the parasitism experiment was derived based on P̂(F) , P̂(F|S), and P̂(S) , and per 
capita male survival probability was derived based on P̂(M) , P̂(M|S), and P̂(S) . According to the Central Limit 
Theorem, the estimates of proportions, P̂(S|F) and P̂(S|M) , are approximately normally distributed,

with means P̂(S|F) and P̂(S|M) , and standard deviations 
√

P̂(S|F)×(1−P̂(S|F))
n∗  and 

√
P̂(S|M)×(1−P̂(S|M))

n∗  , where 
P̂(S|F) and P̂(S|M) , respectively, are the population proportions of females and males. Here we employ n*, the 
smallest sample size among those of the three variables in the Bayesian formulas for males and females. Since 
the three variables have different sample sizes, n* guarantees a conservative estimate of standard error, and thus 
confidence interval, of each derived probability.

Results
Ant aggression test. In general, ants behave aggressively against the parasitoid wasps. However, the 
number of ant attacks on parasitoids was significantly lower in the presence of phorid flies, declining from 
76.25 ± 9.47% without phorids to 43.75 ± 6.41% with phorids (p-value = 0.028; Fig. S1 in Supplementary Materi-
als).
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Survival and sex ratio of the beetle. Azya orbigera survival rate from parasitism in the treatment with 
no HOIs (i.e., no ants) was 43.06 ± 7.2%. The survival rate of beetles in the treatment with ants (the 1st degree 
HOI) was higher but not statistically significantly different from the survival rate without ants (Fig. 2). However, 
the survival rate of beetles exposed to ants (A. sericeasur) and phorid flies (the 1st + 2nd degree HOIs) declined 
significantly to 20.41 ± 5.82% (Fig. 2).

Concerning the sex ratio, the lab-reared population was female-biased with 62.82 ± 5.51% female beetles. Add-
ing parasitoid wasp altered the female-biased beetle population to be sex-balanced (female ratio = 43.48 ± 11.37%), 
suggesting that the parasitoid wasps, H. shuvakhinae, preferentially attack female beetles. However, adding the 
ants (A. sericeasur) (the 1st degree HOI) did not affect the sex ratio of the beetle survivors’ population. On the 
other hand, the phorid fly’s interference with ant harassment (the 1st + 2nd degree HOIs) reversed the sex ratio 
of the beetle to be strongly female-biased (female ratio = 80 ± 12.06%) (Fig. 3A).

Analyzing the derived per capita male and the per capita female beetle survival probabilities showed a higher 
survival probability for males when there is no HOIs, and when there is the 1st degree HOI. However, the per 
capita male survival probability declines dramatically in the presence of phorids. On the other hand, the per 
capita female beetle survival probability remains constant across the three treatments (Fig. 3B).

Discussions
Recent ecological literature has emphasized that HOIs have profound impacts on ecological systems. Reviews and 
empirical studies suggest that, by initiating the phenotypic response of a resource or a competitor, a modification 
species can cause strong effects on a pair-wise interaction, consequently leading to strong effects at population, 
community, and ecosystem  levels5,7,37. Theoretical and empirical studies found that HOIs increase the robustness 
of food  webs4,11–13, and the structure of two interactive HOIs can stabilize biodiversity-rich ecological  networks11. 
With such a recognition, however, most theoretical and empirical HOIs studies are limited to answer how a 
pairwise interaction is affected by a third  species5,14,15. Predicting the effects of HOIs in multispecies ecological 
networks is still  challenging28,38,39. Unknown evolutionary response of interacting organism might contribute 
to this difficulty.

In our study, we found clear evidence that the ant (A. sericeasur) interferes with the parasitic wasp (H. 
shuvakhinae), and that the presence of the phorid fly (P. lascinosus) reduces the strength of this interference 
(Fig. S1), likely facilitating the parasitism of the beetle (A. orbigera). Given these results, the expectation was 
that the presence of the 1st degree HOI (the ant), would increase the beetle survival, while the addition of the 
2nd degree HOI (the phorid flies) would reduce that effect. Instead, our results show that, although the survival 
rate of the beetle increased slightly with the introduction of the ants (the 1st degree HOI), that effect was not 
statistically significant. However, the introduction of the phorids (the 2nd degree HOI) significantly decreased 
the survival rate of the beetle (Fig. 2). Given the strong evidence that the ants do behave aggressively toward and 
interfere with the parasitic wasps, it is puzzling that we did not detect a significant positive effect of the ants on the 
survival rate of the beetle. A possible explanation for this result is that the wasps preferentially attack beetle larvae 
that are associated with the ants. This could be an evolutionary response since beetle larvae in areas with ants 
tend to have more food available since the ants protect the scale insects that the beetle larvae eat. Furthermore, 
olfactometer experiments with adult beetles show that female adult beetles are attracted to pheromones released 
by this ant  species21. It is possible that the wasp uses visual or chemical cues of the ant to locate their beetle host. 
If this is happening in this system, that means that the treatments with ants (1st degree HOI and the 1st + 2nd 
degree HOI) stimulate higher parasitoid attacks to the beetle, but, since the ants behave aggressively towards the 
parasitoid wasps, this effect is cancelled resulting in no significant increase in beetle survival. This explanation 
also fits with the result that the survival rate of the beetle in the 1st + 2nd degree HOI treatment (ants + phorid 

Figure 2.  The survival rate of Azya orbigera after being exposed to the wasp with no HOI (only the wasp), the 
1st degree HOI (the wasp and the ant), and the 1st and the 2nd degree HOIs (the wasp, the ant, and the phorid 
fly).
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flies), is much lower than the survival rate of the no HOI treatment, since the latter has no ants and therefore 
provides less stimulus for the parasitoid to search, find and attack the beetle larvae.

Our study also found that HOI have important and significant effects on the sex ratio of the beetle. A labora-
tory reared population of the beetle with no interference with other organisms demonstrated that beetle popula-
tions tend to be female biased. The wasp appears to favor female beetle hosts as it caused the female-biased beetle 
population to be sex balanced (Fig. 3A). Although wasp’s host preference and ant interference may explain the 
unchanged female ratio in the 1st degree HOI treatment, the window of opportunity opened up by the phorid 
(the 2nd degree HOI) counterintuitively results in a female-biased beetle population (Fig. 3A). To explore such 
discrepancy, we employ Bayes’ theorem to derive the per capita female vs. per capita male survival probability 
in each combination of HOIs (no HOI, the 1st degree HOI, and the 1st and the 2nd degree HOIs). We discover 
that the survival probability of the female beetle remains unchanged in these treatments. However, the survival 
probability of the male beetle is significantly reduced when the 1st and the 2nd degree HOIs both exist (Fig. 3B). 
The difference in sex ratio between the lab-reared beetle population with no interactions and the same population 
with wasp parasitism (Fig. 3A) supports the argument that the male beetle is unfavored by the wasp. But what 
emerges from examining the per capita survival rate of male and female beetles is the apparent resistance of the 
favored female beetle to parasitism (Fig. 3B). The mechanism for such resistance is not known but it could be 
that the female beetle larvae are spatially more tightly associated with ants and even under phorid attack, the ants 
managed to offer some protection to those beetles that are very close to them (I.P. personal observation). Male 
beetle larvae, on the other hand, are randomly distributed and therefore have less protection from the ants even 
when these are being attacked by the phorid flies. This interpretation of the results is supported by field surveys 
of beetle adults and phorid attack intensity on the ant in a 45-hectare permanent plot in Finca Irlanda (Fig. 4) 
(Methods in Supplementary Materials). These surveys show that the beetle population is female-biased when 
the phorid attack intensity is high in early rainy season (July–August). The population becomes sex-balanced or 
even male-biased when the phorid attack intensity on the ant declines. Although we cannot tell apart how much 
of the consequence of beetle’s female ratio in the ant patches comes from female adults’ attraction to the  ant21, 
and how much it comes from the complex parasitoid wasp—larvae—HOIs effects, the result does suggest that 
the phorid-ant interaction has an effect on the sex ratio of the beetle, making it more female biased.

Combined with our previous studies, we conclude that the phorid fly (1st + 2nd HOIs) can influence the 
 feeding20,  reproduction21, mortality (current study), and sex ratio (current study) of the beetle. Such a strong 

Figure 3.  (A) Female and male ratios in four different conditions, lab population, no HOI (only beetle 
larvae + wasps), the 1st degree HOI and two interacting HOIs. The dots in the bars are the means and the 
extends of the bars are the 95% confidence intervals. (B) The per-capita survival probability of the female 
( ̂P(F|S) ) and male beetles ( ̂P(M|S) ) is computed by Bayes’ Theorem. The result shows that the parasitism 
probability of the female remains the same across the treatments, while the presence of the phorid fly 
significantly reduces the survival probability of the male.
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effect from the phorid fly, however, is obtained in combination with the ant. We propose that the seemingly lack-
ing 1st degree HOI effect on beetle survival and sex ration is the result of two opposing forces associated with 
the parasitoid wasps and the ants. On the one hand parasitoid wasps are attracted to patches with ants, where 
they can find more and healthier beetle larvae. On the other hand, the ants in those patches behave aggressively 
toward the wasps offering some protection to the beetle larvae. Therefore, the pair-wise host-parasitoid interac-
tion is insufficient to explain consumer-resource dynamics. Instead, expanding the study system to include one 
or more HOIs may help obtain a better understanding of complex food webs dynamics. In this study we did not 
add a negative control (phorids with no ants) because the phorids do not do anything when their host is not 
present. Furthermore, since in nature the phorid fly that parasitize the ants do not occur without its host, adding 
such negative control would have added little to the interpretation of what happens in nature.

These results suggest that the phorid fly could be responsible for enhancing the beetle’s (and perhaps the 
wasp) myrmecophily through eco-evolutionary dynamics. Since the phorid fly increases the parasitism rate of 
the beetle (Fig. 2), beetles able to use the ant would consequently have higher fitness than the counterparts that 
are unable to do so. On the other hand, being able to use the ant and the phorid-ant interaction increases the 
fitness of the wasp offspring, as the beetle hosts in the ant patches enjoy ant protection against other natural 
enemies and abundant food resources (the green coffee scale). Stronger phorid attacks on the ant (the strength 
of the 2nd degree HOI) may speed up the selection of the myrmecophilous trait in the beetle and perhaps in the 
wasp as well. Nevertheless, this single dataset would not be sufficient to answer the question of ‘whether the two 
interactive HOIs increase female beetles’ fitness’ as the reduced number of male beetles, at its extreme, might 
become a limiting factor to female beetles’ mating opportunity. From our previous  study21, however, we learned 
that gravid female beetles were able to lay as many eggs in the presence of both HOIs as in the condition of no 
HOI (i.e., free of the ant interference and the phorid attacks on the ants) and more eggs than when there is only 
one HOI (i.e., ant interference). In the natural condition, the beetle larvae may also suffer from more predation 
in the condition of no ants. The situation of phorid attacks on the ants is one that the beetle is unable to avoid 
but adapt, as the phorids closely follow their Azteca ant hosts. There would be a certain cost of being associated 
with ants, in this case, increased male mortality of the beetle. The net effect of the phorid on the female beetles, 
however, might still be positive in a complex natural environment.

We expect that these multispecies and complex HOI structures are more ubiquitous than has been previously 
supported by the  literature16,19,40. Cascading 2nd degree HOI interfering with the 1st degree HOI, as in our study, 
occurs across trophic levels in both terrestrial and aquatic  ecosystems18,19,40. Although our system may seem 
idiosyncratic, the functional roles of the HOIs species are observable in other systems.

Figure 4.  Relationship between phorid attack intensity (attack counts/min) and female ratio of A. orbigera in 
multiple surveys in the 45-hectare permanent plot of Finca Irlanda in 2009 and 2012. Cross centers represent 
mean values, solid and dashed lines, respectively, along the y-axes, representing the 90% and 95% confidence 
intervals of female ratios, and errors on the x-axes represent the standard errors of phorid attack intensities.
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For example, the monarch butterfly suffers from the protozoic parasite (Ophryocytis elektroscirrha), and the 
cardenolides in the milkweed (Asclepias curaassavica) reduces the parasite infection of the butterfly. Yet, an aphid 
(Aphis nerii) alters the cardenolide concentration in the plant, increasing the infection rate of the  butterfly29. 
Potentially, other organisms able to utilize the cardenolides for protection would experience similar dynamics in 
this type of interaction structure. On the evolutionary side, we know that the infected female monarch butterfly 
tend to lay eggs on anti-parasite milkweeds that reduce the transmission and the virulence of the parasite on 
the monarch  caterpillars41. Such cross-generational medication would alter the intricacy of consumer-resource 
interaction between the butterfly and high vs. low-cardenolide milkweeds, an evolutionary consequence emerg-
ing from the 2nd degree HOI that a third-party herbivore (A. nerii) initiates. The habitat choices of infected vs. 
uninfected female butterflies might contribute to determining whether pair-wise density effects are sufficient 
for explaining the tri-trophic milkweed-butterfly-protozoic parasite system.

Similar effects have also been found in an arthropod-ant-bird system in pine canopies where predatory 
birds interrupt the mutualism between ants and ant-tended  aphids40. Birds here play a similar functional role 
as the phorid fly in our system. By changing the foraging behavior of ants, birds reduce the ant-tended aphid 
and herbivore abundances. A later study in the same system found that birds (the 2nd degree HOI) but not ants 
(the 1st degree HOI) have an emergent effect on plant phytochemistry. Such an emerging effect is only revealed 
while ants are  present42.

This study contributes to the emerging literature of empirical studies ofcascading 1st and 2nd order HOIs 
and demonstrate that these interactions affect important population parameters (survival and sex ratio) of an 
organism at the base of the cascade (in this case the coccinellid beetle; Fig. 1). We argue that these HOIs can 
have important evolutionary consequences for the organisms involved; in this case, strengthening myrmeco-
philic traits in coccinellid beetle. We also argue that cascading HOIs and its evolutionary consequences are more 
prevalent in nature than previously recognized. Predicting the occurrences and the functions of higher-order 
interactions have been a challenge in  ecology16,28. Systems such as ours, Lefèvre et al.43, and  Mooney40,42 would 
contribute to exploring the pathways and demographic parameters in modeling the ecological and evolutionary 
effects of higher-order  interactions1,11,44. From these studies, we learn that organisms at various trophic levels 
can be the initiators and receivers of such complex interactions, and non-feeding parameters are often involved. 
From a practical perspective, because the beetle in the study is a voracious predator of scale insects in coffee 
agroecosystems, understanding how these HOIs affect the survival and the sex ratio of the beetle is important 
for maintaining pest control services in these agroecosystems.

Data availability
All data generated or analysed during this study are included in this published article and its supplementary 
information files.
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