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Abstract: (1) Background: The coronavirus (COVID-19) pandemic is still a major global health
problem, despite the development of several vaccines and diagnostic assays. Moreover, the broad
symptoms, from none to severe pneumonia, and the various responses to vaccines and the assays,
make infection control challenging. Therefore, there is an urgent need to develop non-invasive
biomarkers to quickly determine the infection severity. Circulating RNAs have been proven to be
potential biomarkers for a variety of diseases, including infectious ones. This study aimed to develop
a genetic network related to cytokines, with clinical validation for early infection severity prediction.
(2) Methods: Extensive analyses of in silico data have established a novel IL11RA molecular network
(IL11RNA mRNA, LncRNAs RP11-773H22.4 and hsa-miR-4257). We used different databases to
confirm its validity. The differential expression within the retrieved network was clinically validated
using quantitative RT-PCR, along with routine assessment diagnostic markers (CRP, LDH, D-dimmer,
procalcitonin, Ferritin), in100 infected subjects (mild and severe cases) and 100 healthy volunteers.
(3) Results: IL11RNA mRNA and LncRNA RP11-773H22.4, and the IL11RA protein, were significantly
upregulated, and there was concomitant downregulation of hsa-miR-4257, in infected patients,
compared to the healthy controls, in concordance with the infection severity. (4) Conclusion: The
in-silico data and clinical validation led to the identification of a potential RNA/protein signature
network for novel predictive biomarkers, which is in agreement with ferritin and procalcitonin for
determination of COVID-19 severity.
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1. Introduction

Human coronaviruses are newly recognized airborne viruses (family coronaviridae,
genus Betacoronavirus) of zoonotic origin. They are positive-stranded RNA viruses with
nucleocapsids, and are considered some of the largest RNA viruses, having about 26 to
32 kilobases of RNA. They mainly cause severe acute respiratory syndrome (SARS) [1]. The
first coronavirus outbreak appeared in China in 2003, along with four other countries [2].
This newly identified coronavirus was called SARS-CoV-1. Moreover, a second outbreak
caused by another species of coronavirus was discovered in Saudi Arabia in 2011, called
Middle East respiratory syndrome (MERS-CoV) [3]. At the end of 2019 in Wuhan, Hubei,
China, a novel third coronavirus outbreak was reported, caused by severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2). The disease is known as coronavirus disease 2019
(COVID-19) [2,4]. On 11th March 2020, the World Health Organization (WHO) announced
COVID-19 as a global pandemic [5]. Before the 6 June 2021, there were over 172.5 million
cases reported, and over 3.5 million deaths globally [6].

The clinical picture of COVID-19 cases varies markedly among patients: from asymp-
tomatic to severe pneumonia and death [6]. Clinical features/laboratory investigation-
based classifications have been proposed by Yuki et al. [7].

The blood levels of interleukin 2 receptor (IL-2R), IL-6, IL-8 and IL-10 were significantly
more upregulated in deceased patients than in recovered ones [8]. Notably, the levels of
these serum cytokines were higher in severe SARS-CoV-2-positive cases compared with
moderate cases, highlighting the necessity of IL-6 detection for the early prediction of the
infection severity [9]. IL-6 and IL-11 both signal through a homodimer of the ubiquitously
expressed β-receptor glycoprotein 130 (gp130) [10]. An individual IL-6/IL-11 α-receptor
causes the initial binding of cytokine to the α-receptor, leading to the final formation of
a complex with the β-receptors. Both cytokines activate the same downstream signaling
pathways, primarily the mitogen-activated protein kinase (MAPK) cascade and the Janus
kinase/signal transducer and activator of transcription (Jak/STAT) pathway [11]. Several
studies refer to IL-6 as having a much broader expression profile of IL-11R compared to
IL-6R [10,12]. COVID-19 infection results in significant elevations in IL-6, ferritin and D-
dimer, which are effectively associated with disease severity and progression [13]. Ruscitti
et al. described the role of the heavy chains of ferritin (FeH) in activating macrophages
(macrophage-activating syndrome; MAS), which stimulate the secretion of inflammatory
cytokines, and thus cause massive cytokine storms in severe COVID-19 cases [14,15]. IL-6
induces the synthesis of many proteins, or can reduce their degradation. These include
higher procalcitonin (PCT) levels in the presence of pro-inflammatory cytokines, probably
due to the inhibition of PCT proteolysis [16]. All in all, it seems that IL 11R, ferritin and
procalcitonin dysregulation are promising biomarkers of COVID infection.

Following viral RNA replication and the synthesis of its structural protein, the inflam-
matory cascade is activated by inflammatory sensors [17]. The cytokine storm is common
in severe to critical cases of COVID-19, along with concomitant reductions in natural killer
cells (NK) and lymphocyte cell counts, and increases in levels of C-reactive protein (CRP),
D-dimer, procalcitonin and ferritin [18].

Moreover, SARS-CoV-2 components (proteins/nucleic acid) interact with the host’s
biomolecules in a phenomenon known as host–pathogen interaction. One of the major
actions of these long, highly mutated RNA viruses is their intrusion into the host’s coding
and non-coding RNAs (RNA-related cellular processes), which plays a major role in
viral pathogenesis and severity, affecting the host’s response to different stages of the
infection [19,20].
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LncRNAs [21] and miRNAs [22] have been identified as prognostic markers in viral
infections, including COVID-19. For instance, miR-200c-3p was found to be activated
during SARS infection, resulting in the downregulation of ACE2 [23]. Moreover, Sheng
et al. [24] have studied the effects of different expressions of 20 miRNAs on COVID-19
patients and healthy controls, and concluded that these miRNAs are potential biomarkers
for COVID-19. Recently, Farr et al. revealed three circulating miRNAs as a diagnostic
signature useful in classifying patients in early stages, with the ability to discriminate
COVID-19 and H1N1 infections from healthy controls [25]. On the other hand, MALAT1
LncRNA [26] and ANRIL LncRNA [27] have been identified to play roles in the induction
of the inflammatory response, along with cytokine release. It has also been reported that the
main causes of inflammatory cytokine storm in COVID-19 patients are interleukin-6 (IL-6)
and the NOD-like receptor protein 3 (NLRP3) inflammasome [28]. Recently, Byron et al. [29]
computationally determined that there are 22 Lnc-RNAs acting on the overexpression of
10 cytokines involved in the cytokine storm during COVID-19 infection. The authors
recommend the utilization of these LncRNAs as assorted diagnostic/prognostic non-
invasive biomarkers for the prediction of infection severity and phenotype.

The early prediction of severe and critical COVID-19 cases is a challenging diagnostic
demand, but it would markedly enhance the available treatment plan/protocol, and
provide subsequent improvements in infection control and disease management [9].

In this pilot study, we aimed to build an integrated, genetically linked [mRNA-miRNA-
lncRNA] RNA panel based on extensive in silico analysis using various databases, such as
KEGG, Gene cards, Gene ontology, miRWalk 3.0, MiRBase, mirDB, Target scan and RNAup
Web server tool, to confirm the COVID-19 specificity of the selected IL11RA mRNA and its
related non-coding RNAs, and of miRNA, with cytokine–cytokine receptor interaction. The
main aim of the study is to a provide simple, sensitive and specific panel that will enhance
our capacity for the early predication of severe cases of COVID-19, and thus improve the
treatment protocol. Clinical validation of the whole panel in the context of COVID-19
patients and healthy controls has been performed. To the best of our knowledge, we were
the first to develop a complete genetic network related to COVID-19 infection severity
prediction.

2. Materials and Methods
2.1. Study Population

The current study was approved by the Ain Shams ethical committee, Faculty of
Medicine, Cairo, Egypt. All the participating COVID-19 cases were admitted to the pul-
monology department of Ain Shams University Hospital in 2020. The classification of
SARS-CoV-2 severity was performed according to the Egyptian Ministry of Health (MOH)
protocol version 1.4 [30] into mild, moderate and severe groups. There were 100 study
subjects. In total, 59 were mild cases and 41 were severe cases, and there were 100 healthy
volunteers who came for routine checkups at the hospital clinics (Pediatric, Chest and
geriatric departments, Ain Shams University hospitals) and were confirmed by negative
PCR results for SARS-CoV-2. All the study subjects were informed about the study, and
written informed consent was received.

COVID-19 was diagnosed based on the clinical presentation along with qRT-PCR and
routine laboratory investigations, including those for CBC, CRP, LDH, D-dimer, ferritin
and procalcitonin. CT chest examinations were also performed.

Blood samples were collected upon hospital admission. The samples were processed
by centrifugation at 4000 rpm for 20 min. The resulting sera were kept in aliquots at−80 ◦C
in a freezer for further processing.

2.2. Total RNA Extraction and Quantitative Real-Time PCR (RT-qPCR)

Using a miRNEasy extraction kit (Qiagen, Hilden, Germany), total RNA was extracted
and purified from the serum samples according to the manual. Further assessments of RNA
concentration and purity were performed using the QubitTM ds DNA HS Assay Kit (cata-
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logue number Q32851) and the Qubit TM RNA HS Assay Kit (catalogue number Q32852)
(Invitrogen by Thermo Fisher Scientific, Eugene, OR, USA) with Qubit 3.0 Fluorimeter
(Invitrogen by life technologies, Kuala Lumpur, Malaysia).

Reverse transcription was performed using equivalent amounts of RNA with a
TaqManTM MicroRNA Reverse Transcription Kit (catalogue number 4366596) (Applied
biosystems by Thermo Fisher Scientific, Balitics, UAB, made in Lithuania) and a High-
Capacity cDNA Reverse Transcription Kit with RNAse Inhibitor (catalogue number 4374966,
Applied Biosystems by Thermo Fisher Scientific, Carlsbad, CA, USA), using ProFlexTM

Base (Applied biosystems by Thermo Fisher Scientific, Woodlands, Singapore).
An IL11RA TaqMan probe and miR-4257 TaqMan probe with universal TaqMan master

mix were used, and U6 was used as an endogenous reference.
The assessment of LncRNA RP11-773H22.4 was performed using the miScript II

RT Kit (Qiagen, Hilden, Germany) to form cDNA; then, RT2 SYBR Green ROX qPCR
Master Mix (Qiagen, Germany) was applied, and endogenous reference samples of ACTB-1
were assessed in duplicates. The relative quantification of expression was calculated via
RQ = 2−∆∆Ct using the Livak method [31], using real-time PCR, a 7500 Fast System (Applied
Biosystems, Foster City, CA, USA) and a data analyzer. Ct values over 36 were interpreted
as negative expression.

2.3. IL11RA and Procalcitonin Protein Quantification

A Human Interleukin 11 RA ELISA kit (Invitrogen, Thermo Fisher Scientific, Frederick,
MD, USA) was used to measure the level of IL11RA protein in a patient’s serum, within
the reference range of 3.29–800 pg/mL.

Additionally, a Human Procalcitonin ELISA kit (Invitrogen, Thermo Fisher Scientific,
Carlsbad, CA, USA) was used to measure the level of procalcitonin in a patient’s serum,
within a reference range of 27.43–20,000 pg/mL. Both proteins were assessed with a
Varioskan microplate reader (Thermo Fisher Scientific, Woodlands, Singapore).

2.4. Statistical Analysis of Results

The software package of statistical analysis version number 25 (SPSS25, IBM, Illinois,
Chi, USA) was used to statistically analyze the output data. Quantitative variables were
analyzed using the median and mean ranks for the non-parametric data, and the mean± SD
were used for the symmetrically distributed raw numerical data. One-way ANOVAs, cross-
tabulation and Mann–Whitney test were also used as appropriate. Qualitative variables
were evaluated using chi-square tests for number and percentage calculations. Correlations
between quantitative variables were assessed using Spearman correlation tests; correlation
coefficients were estimated. To evaluate the predictive value of the RNA panel as regards
COVID-19, the receiver operating characteristic (ROC) curve was used, in order to estimate
the best cut-off points for different parameters with optimal sensitivity and specificity.
To determine the predictive power of different biomarkers for SARS-CoV-2 severity, we
performed a multivariable logistic regression analysis. A p-value < 0.05 was considered
significant.

3. Results
3.1. Bioinformatics and Dataset Analysis

We first reviewed the currently available literature on the pathophysiology and
molecular signaling pathways involved in the cytokine storm related to the pathogen-
esis and severity of COVID-19, focusing on the Kyoto Encyclopedia of Genes and Genomes
(KEGG) map pathways database, and specifically on cytokine-related pathways. Of note,
interleukin-6 (IL-6) is proposed to be associated with the severity of COVID-19 [32].

Then, pursuing our interest in the cytokine signaling pathway, we assessed IL11RA,
as previous studies have asserted that cytokines IL-11 and IL-6 stimulate intracellular
signaling events through a homodimer of β-receptor glycoprotein 130 [10,12].
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Thus, IL11RA mRNA was first selected based on its strong correlation with IL-6, its
novelty and its basal expression in the peripheral blood (Supplementary Figures S1 and
S4). Secondly, higher ferritin levels related to secondary cytokine storm syndrome have
been reported in severe COVID-19 patients due to secondary hemophagocytic lymphohis-
tiocytosis. Increased ferritin is a central characteristic of cytokine syndromes, COVID-19
severity and poor prognosis [13,33]. Yesupatham and colleges assessed interleukin-6 and
ferritin levels, and their clinical correlations, among COVID-19 patients.

Thirdly, Sharma and his colleagues [34] found interesting correlations between inter-
leukin expression and sepsis in neonates, which strengthens the literature on this topic.

Our results were confirmed via the NCBI and Gene cards databases. Gene ontology
was performed to ensure the link of the genes to cytokine response, using the online
database, Enrichr (http://amp.pharm.mssm.edu/Enrichr) (accessed 1 November 2021)
(Supplementary Figure S2) [35,36]. Using the Enrichr software, three integrated genes were
mapped into the PPI network, providing more evidence of their putative interactions. In
general, IL 11R, ferritin and procalcitonin dysregulation may serve as promising biomarkers
of COVID infection based on both the literature search/review and in silico data analyses.

Interactions among miRNAs and the selected mRNAs were predicted using the avail-
able online databases miRWalk 3.0 (http://mirwalk.umm.uni-heidelberg.de/) (accessed
1 November 2021), which integrated the prediction results of both TargetScan (v7.0; tar-
getscan.org) [37] and MiRBase (accessed online 1 November 2021) [38]. Fourthly, the mirDB
database was used for retrieving miR-4257(Accession number: MIMAT0016878), using
the same criteria regarding expression in peripheral blood, novelty and high numbers
of complementarily binding sites (Supplementary Figures S4, S5 and S7). Confirmatory
pathway enrichment analysis was performed for the selected miRNA to ensure its relations
to cytokines. A target scan confirmed the predicted consequential pairing between miRNA-
4257 (ENSG00000264553) and IL11RA mRNA (ENSG00000137070) (raw 3’ pairing score
<3.0) at position 170–177 of IL11RA 3’ UTR (Supplementary Figures S8 and S9). Then, using
the miRWalk database, we selected LncRNA RP11-773H22.4 (ENST00000588211.1) as the
controller of the selected genes, based on its complementary alignment with miRNA-4257
and IL11RA mRNA. Sequence alignment was performed among LncRNA RP11-773H22.4,
miR-4257 and IL11RA mRNA (Supplementary Figures S10–S12)).

Moreover, the enricher database analysis of the retrieved genetic network returned
interactions with different cell cycle cytokines and pro-inflammatory proteins, such as,
but not limited to, EOMES, which is essential for the T-cell mediated immune response
against pathogens; and also the depending of Ras-MAPK activation on E2F (Supplementary
Figure S2).

Finally, we assessed the thermodynamic interaction of LncRNA–miRNA binding,
using the online database (accessed 1 November 2021) RNAup web server tool in Vienna
RNA web server: (http://rna.tbi.univie.ac.at/ (accessed 1 November 2021) to determine
whether the interaction between them is thermodynamically favorable or not (Supplemen-
tary Figures S13 and S14)

3.2. Clinical and Biochemical Indices

Sex, age and serum hemoglobin level showed no significant differences between the
COVID-19 group and the healthy control group (p > 0.05). On the contrary, there were
significant differences between the studied groups concerning total leukocyte count (TLC;
p = 0.002), lymphocyte count (p = 0.000), platelet count (p = 0.006), C-reactive protein serum
level (p = 0.000), LDH serum level (p = 0.000) and D-dimer serum level (p = 0.000), as shown
in Table 1.

http://amp.pharm.mssm.edu/Enrichr
http://mirwalk.umm.uni-heidelberg.de/
http://rna.tbi.univie.ac.at/
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Table 1. The demographic, clinical and biochemical indices of the study groups.

Cases
N = 100

Control
N = 100

Test of
Significance

Sex
Male: n = 108 (54%)
Female: n = 92(46%)

56 (56%)
44 (44%)

52 (52%)
48 (48%)

X2 = 0.322
p = 0.57

Chest CT finding
Ground glass opacity
Single lung infiltrate

Bilateral lung infiltrate

42(42%)
34(34%)
24(24%)

NA NA

Co-morbidities
+ve: n = 74(37%)
−ve: n = 126 (63%)

56 (56%)
44 (44%)

18 (18%)
82 (82%)

X2 = 30.9
p = 0.000 *

Severity
Mild

Severe
59 (59%)
41(41%) NA NA

Ventilation
+ve
−ve

64 (64%)
36 (36%) NA NA

Outcome
Recovery

Recurrence
Death

49 (49%)
19 (19%)
32 (32%) NA NA

Mean ±SD Standard
error Mean ±SD Standard

error Test of Sig.

Age/years 32.795 19.9122 1.9912 34.275 21.6260 2.1626 F = 0.623
p = 0.43

TLC (thousands/cmm3) 16.7375 28.29100 2.82910 9.3620 11.59069 1.15907 F = 6.7
p = 0.002 *

Lymphocytes (×109/L) 1.1871 0.53824 0.05382 3.2460 0.86672 0.08667 F = 19.17
p = 0.000 *

Hemoglobin (g/dL) 11.9730 2.18696 0.21870 12.2080 2.46518 0.24652 F = 0.017
p = 0.897

Platelets (thousands/cmm) 262.7300 84.96331 8.49633 244.5200 99.78001 9.97800 F = 7.6
p = 0.006 *

C-reactive protein (mg/L) 66.5030 75.35360 7.53536 0.8818 1.34212 0.13421 F = 129.74
p = 0.000 *

Lactate dehydrogenase
(LDH)(U/L) 357.24500 244.410944 24.441094 166.52000 50.399311 5.039931 F = 160.056

p = 0.000 *

D-dimer (mg/L) 137.20964 442.970546 44.297055 0.12720 0.108172 0.010817 F = 31.058
p = 0.000 *

F: One-way ANOVAs test, X2: chi-square test; TLC: total leukocyte count; co-morbidities, including diabetes mellitus, hypertension, asthma
and combined co-morbidities. *: statistically significant.

3.3. Differential Expression of the Severity Predictors in the Investigated Groups

The expression of the IL11RA molecular network was assessed via the fold-change
(RQ) values in the different investigated groups (mild COVID-19, severe COVID-19 and
healthy control) in order to confirm the retrieved bioinformatics data. As expected, IL11RA
mRNA and LncRNA RP11-773H22.4 expressions were upregulated, and hsa-miR-4257 was
downregulated in the COVID-19 group compared to the healthy control group (p < 0.000)
(Figure 1A–C). Interestingly, the expression pattern of the IL11RA molecular network was
discriminative between COVID-19-positive patients and healthy controls, and between
mild and severe COVID-19 compared to healthy controls.

IL11RA mRNA and LncRNA RP11-773H22.4 were overexpressed by 100-fold and 6-fold
in mild COVID-19 cases compared to the healthy control group, and by 9-fold and 72-fold
in severe COVID-19 cases compared to mild COVID-19 cases, respectively (Figure 1A–C).
Additionally, hsa-miR-4257 was discriminatory between COVID-19-positive patients and
healthy controls; mild cases and healthy controls; and mild and severe cases of COVID-19,
compared to healthy controls. The expression of hsa-miR-4257 was downregulated 35-fold
in mild COVID-19 cases compared to the healthy control group, and 3-fold in severe
COVID-19 cases compared to mild cases, as shown in Table 2 and Figure 1A–C.
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Figure 1. The differential box plot analysis of the investigated biomarkers, measured by qRT-PCR or ELISA, among the
study groups. (A) LncRNA RP11-773H22.4, (B) HSA-MIR-4257, (C) IL11RA mRNA, (D) IL11RA protein, (E) pro-calcitonine
and (F) ferritin. The median is represented as a line inside the box, and the 1st and 3rd quartiles are represented by the top
and bottom lines of the box, respectively. Dots represent outliers.

Moreover, by assessing the serum levels of ferritin, procalcitonin (ENSGOOOOO110680)
and IL11RA proteins (ENST00000441545.7) in the studied groups, we found significant
increases in the three proteins in the COVID-19 group compared to the healthy control
group (p < 0.000) (Table 2, Figure 1D–F). These increases in the IL11RA, ferritin and procal-
citonin are in agreement with other findings, as ferritin and procalcitonin have been used
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as prognostic biomarkers for determining disease severity [39–41]. However, based on the
obtained results, procalcitonin cannot discriminate among mild and severe cases.

Table 2. The differential expression of various parameters is shown among the different study groups, in addition to severe
versus mild cases.

Median Mean Rank Chi-Square p

LncRNA RP11-773H22.4

Healthy control 1.1000 67.60 a 78.9 a 0.000

Mild 6.2000 115.19 22.050 b b 0.978

Severe 448.0000 159.62 c 0.001

HSA-MIR-4257

Healthy control 10.5050 141.61 a 106.8 a 0.001

Mild 0.3000 70.58 b 9.416 b 0.002

Severe 0.1000 43.29 c 0.012

IL11RA mRNA

Healthy control 0.1000 51.9 a 148.07 a 0.000

Mild 10.7000 135.5 b 26.4 b 0.578

Severe 91.3910 176.7 c 0.000

IL11RA protein (pg/mL)

Healthy control 8.9000 52.37 a 146 a 0.000

Mild 321.0000 135.30 b 26.4 b 0.00

Severe 667.0000 167.83 c 0.000

Procalcitonin protein (pg/mL)

Healthy control 60.0000 69.78 a 65.5 a 0.000

Mild 550.0000 133.09 b 0.118 b 0.00

Severe 600.0000 128.54 c 0.731

Ferritin (ng/mL)

Healthy control 31.5000 63.58 a 83.16 a 0.000

Mild 162.3000 131.09 b 4.429 b 0.00

Severe 203.0000 146.52 c 0.035
a Statistics among all groups. b Statistics: mild versus healthy control; c mild versus severe cases; p-value > 0.05 is considered statistically
non-significant; and p-value < 0.05 is considered statistically significant. F: one-way ANOVA.

ROC curve analysis was performed for the investigated COVID-19 patients versus the
healthy control group to determine the best cutoff value. The ideal cutoff values were 1.15
for IL11RA mRNA (AUC = 0.985), 2.25 for LncRNA RP11-773H22.4 (AUC = 0.829) and 2.07
for hsa-miR-4257 (AUC = 0.911) (Figure 2). The estimated sensitivities were 100%, 86.2%
and 88%, respectively; the IL11RA protein showed 100% sensitivity and an AUC = 0.995%,
which validates the genetic network data. Consequently, the retrieved genetic network can
be used for discrimination between COVID-19 patients and healthy individuals (Table 3,
Figure 2).

The routine COVID-19 serum markers (ferritin and procalcitonin), along with our
retrieved novel marker, the IL11RA protein, have been analyzed using the ROC curves of
the investigated groups. The ideal cutoff values were 77 for ferritin (AUC = 0.869), 174
for procalcitonin (AUC = 0.807) and 42 for IL11RA (AUC = 0.981) (Figure 3). Accordingly,
these cutoff values could be used to differentiate between COVID-19 cases and healthy
controls, with sensitivity values of 74%, 70% and 100%, respectively (Table 3, Figure 3).

The use of the selected LncRNA and IL11RA mRNA in assessing the severity of
infection was made efficient using ROC curve analysis, with the ideal cutoff values of 15.95
for IL11RA mRNA (AUC = 0.803) and 40.5 for LncRNA RP11-773H22.4 (AUC = 0.777).
These can be used to differentiate mild from severe COVID-19 cases, with sensitivities
of 73.2% and 78% and specificity values of 76% and 71%, respectively (Table 4, Figure 3).
Additionally, the best cutoff values were 146 for ferritin (AUC = 0.624), 447 for procalcitonin
(AUC = 0.480) and 425 for IL11RA protein (AUC = 0.803), with sensitivities of 61%, 61%
and 80.5%, respectively (Figure 3).
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Figure 2. The receiver operator characteristic (ROC) curve presents the diagnostic accuracy of the IL11RA mRNA panel
used to discriminate between SARS-CoV-2 and the control. (A) LncRNA RP11-773H22.4, (B) HSA-miRNA-4257, (C) IL11RA
mRNA and (D) IL11RA protein.

These data support the other data showing that discrimination between mild and
severe COVID-19 cases could be achieved at the protein level (Table 3, Figure 3). Moreover,
the best cutoff values were 15.95 for IL11RA mRNA (AUC = 0.803) and 40.5 for LncRNA
RP11-773H22.4 (AUC = 0.777), and these could be used to differentiate mild from severe
COVID-19 cases, with sensitivities of 73.2% and 78% and specificity values of 76% and 71%,
respectively (Table 3, Figure 4). Thus, the selected RNA panel was superior to other clinical
parameters, such as ferritin and procalcitonin. Indeed, identifying patients at risk of severe
COVID-19 infection will help clinicians to plan the most appropriate early management
approach for each patient.
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Table 3. The performance characteristics of the different investigated laboratory parameters.

Performance Characteristics in SARS-CoV-2 Patients Versus Healthy Control

Test Result
Variables

Area under
Curve

Std. Error p

Asymptotic 95%
Confidence Interval

Cutoff Sensitivity Specificity
Lower
Bound

Upper
Bound

Procalcitonin
protein (pg/mL) 0.807 0.032 0.000 0.744 0.871 174 70% 80%

Ferritin (ng/mL) 0.869 0.027 0.000 0.817 0.922 77 74% 80%

IL11RA mRNA 0.985 0.007 0.000 0.972 0.999 1.15 100% 83%

IL11RA protein
(pg/mL) 0.981 0.007 0.000 0.967 0.995 42 100% 84%

HSA-MIR-4257 0.911 0.021 0.000 0.871 0.951 2.07 88% 81%

LncRNA
RP11-773H22.4 0.829 0.032 0.000 0.766 0.892 2.25 86.2% 84%

Performance Characteristics in Mild Versus Severe SARS-CoV-2 Patients

Procalcitonin
protein (pg/mL) 0.480 0.059 0.731 0.365 0.594 447 61% 41%

Ferritin (ng/mL) 0.624 0.060 0.036 0.507 0.741 146 61% 50%

LncRNA
RP11-773H22.4 0.777 0.046 0.000 0.687 0.867 40.5 78% 71%

IL11RA mRNA 0.803 0.047 0.000 0.710 0.895 15.95 73.2% 76%

IL11RA protein
(pg/mL) 0.803 0.046 0.000 0.712 0.894 425 80.5% 76%

Figure 3. The receiver operator characteristic (ROC) curve presents the diagnostic accuracy of the IL11RA mRNA panel
discriminating between mild and severe cases of SARS-CoV-2: (A) IL11RA mRNA and protein, and LncRNA RP11-773H22.4.
(B) Procalcitonin and ferritin.

The above two ROC curve analyses (RNA level and protein level) show that the
IL11RA mRNA and its protein have the best cutoff values and AUCs for discriminating
between mild and severe cases of SARS-COV-2 (Figure 3). Moreover, lncRNA RP11-
773H22.4 and hsa-miR-4257 showed better sensitivities (86.2% and 88%) than ferritin and
procalcitonin (74% and 70%, respectively). These results suggest that the selected RNA
panel could be used as a tool to differentiate mild from severe COVID-positive cases.
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Table 4. Predictors’ outcomes regarding COVID-19 severity in infected patients.

Recovery
N = 49

Recurrence
N = 19

Death
N = 32

Test of
Significance

Age/years Mean
25.235

SD
18.7053

Mean
38.053

SD
16.6616

Mean
41.250

SD
19.5498

KWχ2 = 809
p = 0.001 *

Sex
Male: n = 56 (56%)

Female: n = 44 (44%)
28 (51.7%)
21 (42.9%)

12 (63.2%)
7 (36.8%)

16 (50%)
16 (50%)

X2 = 0.889
p = 0.641

Co-morbidities
+ve 44 (44%)
−ve 56 (56%)

26 (53.1%)
23 (46.9.7%)

10 (52.6%)
9 (47.4%)

8 (25%)
24 (75%)

X2 = 6.896
p = 0.032 *

Ventilation
+ve 36 (36%)
−ve 64 (64%)

2 (4.1%)
47 (95.9%)

4 (21.1%)
15 (78.9%)

30 (93.7%)
2 (6.3%)

X2 = 69.9
p = 0.000 *

Severity
Mild (n = 59)

Severe (n = 41)
46 (93.3%)
3 (6.1%)

13 (68.4%)
6 (31.6%)

0 (0%)
32 (100%)

X2 = 71.378
p = 0.000 *

Chest CT finding
Ground glass opacity
Single lung infiltrate

Bilateral lung infiltrate

29 (59.2%)
18 (36.7%)
2 (4.1%)

13 (68.4%)
1 (5.3%)

5 (26.3%)

0 (0%)
15 (46.9%)
17 (53.1%)

X2 = 45.778
p = 0.000 *

Mean SD Mean SD Mean SD

Hemoglobin (gm/dL) 12.2510 2.36556 12.2158 1.75159 11.4031 2.08195 KWχ2 = 1.6
p = 0.223

Total leukocyte count (TLC)
(thousands/cmm) 18.6347 31.86161 10.4316 4.04352 17.5766 30.72309 KWχ2 = 591

p = 0.556

Platelets (thousands/cmm) 253.6327 96.43169 260.8421 59.18076 277.7813 79.08498 KWχ2 = 0.784
p = 0.459

Lymphocytes (×109/L) 1.2435 0.50182 1.1395 0.50617 1.1291 0.61368 KWχ2 = 0.542
p = 0.594

C-reactive protein (mg/L) 63.6531 77.46586 84.2947 88.52500 60.3031 63.59897 KWχ2 = 0.668
p = 0.515

Serum LDH (U/L) 344.74490 275.867800 310.73684 216.314288 300.00000 231.899867 KWχ2 = 0.337
p = 0.715

D-dimer (mg/L) 53.03259 267.717708 31.48211 64.400389 328.88147 676.230333 KWχ2 = 4.7
p = 0.01 *

Ferritin (ng/mL) 275.4490 363.82781 354.3684 424.74139 413.9188 412.48398 KWχ2 = 0.308
p = 0.735

Procalcitonin 1152.4694 1628.97473 1031.9474 2225.97301 865.5313 1050.06679 KWχ2 = 1.24
p = 0.294

IL11RA mRNA
Positive (100%)
Negative (0%)

49 (100%)
0 (0%)

19 (100%)
0 (0%)

32 (100%)
0 (0%)

NA

IL11RA protein (pg/mL)
Positive (100%)
Negative (0%)

49 (100%)
0 (0%)

19 (100%)
0 (0%)

32 (100%)
0 (0%)

NA

HAS-MIR-4257
Positive (88%)

Negative (12%)
43 (87.8%)
6 (12.2%)

15 (78.9%)
4 (21.1%)

30 (93.8%)
2 (6.3%)

X2 = 2.479
p = 0.29

LncRNA RP11-773H22.4
Positive (81%)

Negative (19%)
35 (71.4%)

14 (28.6.2%)
16 (84.2%)
3 (15.8%)

30 (93.8%)
2 (6.3%)

X2 = 6.424
p = 0.04 *

X2: Chi-square test; KWχ2: Kruskal–Wallis test; * statistically significant.

In the same context, the pattern of increases in ferritin, procalcitonin and IL11RA was
highly discriminative between mild and severe cases of COVID-19, compared to healthy
controls. On the other hand, the elevation of ferritin, procalcitonin and IL11RA by 5-fold,
9-fold and 36-fold in mild COVID-19 cases compared to the healthy control group, and by
1.2-fold, 1-fold and 2-fold in severe COVID-19 cases compared to mild COVID-19 cases,
respectively, confirmed that the selected protein panel could be used in COVID-19 severity
discrimination (Figure 4).

Regarding the severity of COVID-19, by using univariate analysis, it was determined
that LncRNA RP11-773H22.4 (p = 0.04) is an independent prognostic factor besides age
(p = 0.001), co-morbidities (p = 0.032), ventilation, the case severity and CT chest findings
(p = 0.000), as shown in Table 4.

Additionally, the multivariate analysis revealed that LncRNA RP11-773H22.4, hsa-
miR-4257, IL11RA mRNA, and IL11RA protein levels were independent prognostic factors
besides the serum ferritin level and CT findings, encouraging the use of novel COVID-19
severity predictors along with the more routine ones (p ≤ 0.05), as shown in Table 5.
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Figure 4. Bar chart showing the positivity rates of the studied parameters: (A) between SARS-CoV-2 patients and control,
and (B) the diagnostic value of the studied parameters in discriminating mild from severe patients with SARS-CoV-2.

Table 5. Multivariate analysis using the existing and the proposed predictors of SARS-CoV-2 severity.

Variable Score Degree of
Freedom Significance B S.E. Exp(B)

CRP 0.512 1 0.474 0.088 34.487 1.092

Hb 8.936 1 0.003 * 1.862 522.178 6.440

TLC 0.001 1 0.976 −0.171 138.882 0.843

Lymphocytes 3.825 1 0.051 −3.762 2063.186 0.023

LDH 0.588 1 0.443 −0.091 10.364 0.913

PLT 0.725 1 0.394 0.041 11.637 1.042

Co-morbidities 16.604 1 0.000 * 2.245 1006.505 9.441

Relative quantity of
LncRNA RP11-773H22.4 11.286 1 0.001 * −0.006 1.071 0.994

Relative quantity of HSA-MIR-4257 5.178 1 0.023 * 5.602 3992.203 271.090

Relative quantity of IL11RA mRNA 23.629 1 0.000 * 0.733 52.176 2.081
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Table 5. Cont.

Variable Score Degree of
Freedom Significance B S.E. Exp(B)

IL11RA protein (pg/mL) 26.835 1 0.000 * 0.073 6.966 1.076

Procalcitonin protein (pg/mL) 1.503 1 0.220 −0.032 4.628 0.968

CT finding 64.862 1 0.000 * 139.118 8519.213 2.620 × 106

Ferritin (ng/mL) 5.528 1 0.019 * 0.095 7.335 1.100

* Statistically significant.

3.4. Correlations among the IL11RA Molecular Network and Protein Predictors (Ferritin,
Procalcitonin and IL11RA)

There was strong positive correlation among lncRNA RP11-773H22.4, ferritin, pro-
calcitonin, IL11RA protein and IL11RA mRNA (p = 0.000). Contrarily, there was a strong
negative correlation between hsa-miR-4257 and IL11RA mRNA (p = 0.000) (Supplemen-
tary Table S1, Figure 5). SARS-CoV-2 infection results in the upregulation of LncRNA
RP11-773H22.4, which leads to the downregulation of hsa-miR-4257 and the subsequent
upregulation of IL11RA mRNA. These data validate our bioinformatics findings and high-
light the role of the novel molecular network in COVID-19 disease and the prediction of its
severity.

Figure 5. Correlations among IL11RA molecular network and IL11RA protein. As shown each two parameters are correlated
together (A) the relative quantity of has-miR-4257 and Ln RNA H22.4, showing increase in the Long nc RNA compared to
the miRNA negative correlation, (B) The correlation between the IL-11R mRNA and the Lnc RNA H22.4, showing that
positive correlation between the two variables, (C) The correlation between the IL-11R mRNA and has-miR-4257, showing
negative correlation and finally (D) the correlation between IL 11RA protein and the has-miR-4257, which shows negative
correlation and so as the IL-11RA increase the has-miR-4257 decrease. ** are Statistically significant.



Cells 2021, 10, 3098 14 of 20

4. Discussion

The COVID-19 pandemic is a serious global problem for many reasons, the most
important of which being that it causes severe acute respiratory syndrome. Consequently,
the infection can cause critical, life-threatening respiratory injuries, for which there is no
specific therapeutic treatment available to date [32].

The SARS-CoV-2 pandemic is not just a health problem—social and economic di-
mensions have become involved too, which have affected the entire globe over the last
two years.

As regards the constant and significant mutations taking place in the virus’s whole
genome, and specifically in the spike protein (enabling it to escape the immune system and
thus increase infectivity, leading to serious novel symptoms/complications [42]), there is a
strong demand for a robust, sensitive, rapid and specific diagnostic tool/assay that can
evaluate the severity of the infection.

Despite the presence of many serum-based laboratory tests, antibody detection sero-
logical tests and many real-time PCR-based assays, most still have drawbacks. Moreover,
there is great variability in the sensitivity and specificity of existing PCR-based tests, de-
pending on the vendor, the strain, the viral load and the location at which the swab is
used [43,44]. Additionally, PCR results should be correlated with patient history and
symptoms for infection confirmation; for instance, a negative COVID-19 PCR test does
not exclude infection for the above-mentioned reasons. Thus, negative PCR results should
be confirmed through clinical observation, chest CT scans and other diagnostic serum
markers, to reach the best clinical decision concerning infection, severity and treatment
protocol [45].

The severity of COVID-19 infection is critical, affecting disease mortality and spread
rate [45]. Thus, developing novel, and non-invasive biomarkers, will empower the early de-
tection and infection severity; leading to control the virus spreading, and enhance treatment
management. Therefore, research should be interested not only in therapy and vaccine
development, but also in developing markers for COVID-19 severity prediction [46].

Zeng et al. found a higher concentration of SARS-CoV-2 IgG in females than in males
in severe cases, and this could be a protective mechanism in females [46]. In another study
by Shen et al. [47], severe cases that received convalescent plasma with a high titer of
COVID-19 antibodies recovered, and despite the low number of subjects in this study, this
result, along with those of other studies, suggests that detecting COVID-19 severity as early
as possible will lead to significantly better disease management and potential treatment
outcomes [46].

The non-coding RNAs ((Lnc-RNAs), miRNAs, Piwi RNAs and others) play a crucial
regulatory role in the cell at various levels, such as in epigenetics, structure–structure (RNA,
DNA and proteins) interactions and interactions of complementary sequences, in addition
to cancer progression and the inhibition or activation of infections [48–50].

Long non-coding RNAs (Lnc-RNAs) are a group of cellular RNAs that are more than
200 nucleotides in length. Increasing amounts of evidence suggest that both Lnc-RNAs
and miRNAs play vital roles in the pathogenesis of different diseases. Much literature has
reported the strong relation between viral infections and Lnc-RNAs in different ways [51,52].

In the same context, there is increasing evidence that miRNAs play major roles in
the pathogenesis, diagnostics and treatment of viral infections, such as human immun-
odeficiency virus 1 (HIV-1) [53–55], hepatitis C (HCV) [56,57] and herpes simplex viruses
(HSV) [58–60]. For instance, miR-122 is a main component of HCV, with complementary
sequences in its 5′UTR. The presence of the virus depends mainly on the replication of
miR-122; by knocking down miRNA-122, HCV replication is reduced, and the virus is
limited. An anti-sense targeting of miR-122 is in the clinical trial stage as a treatment for
HCV [61]. Additionally, miRNA 332 and miRNA 628 clearly interact with the MERS-CoV
viral genome [62]. Based on the importance of miRNAs, it is essential to recognize the
miRNAs regulating and interacting with COVID-19 disease [63]. As miRNAs have binding
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sites for both mRNAs and Lnc-RNAs, the latter can act as a competitive endogenous RNA
(ceRNA) to suppress the miRNA function, or as a precursor and encoder of miRNAs [64].

Furthermore, miRNAs/Lnc-RNAs play a vital role in the relation between host and
virus, mainly in regulating the transcription of virus and host genes [65]. Cheng et al.
reported the upregulation of ENSG00000231412 and ENSG00000274173 LncRNA in severe
cases of COVID-19 [66].

Regarding IL-11, its upregulation and overexpression in the lungs is usually linked
with viral infections, including SARS-CoV-2, and IL-11 induces lung fibrosis and epithelial
dysfunction [67]. Hence, IL-11 RA is overexpressed to mediate the cascade of IL-11 function,
as discussed below [68] (Figure 1), Table 1.

Interleukin 11 (IL11) is usually compared to interleukin 6 (IL6), both of them begin
signaling by making hexameric complexes with their receptors IL11RA, IL6R and Glyco-
protein 130 (gp130) receptor, respectively [69].IL11 is a multifunctional cytokine derived
from stromal cells, and is a member of the gp130 family. It was first isolated from a bone
marrow-derived cell line [70]. The signaling mechanism initiated by IL-11 is mediated by
its receptor, IL11RA, which uses common subunits of the gp130 receptor, such as IL-6, on-
costatin M, leukemia inhibitory factor and ciliary neurotrophic factor [71].IL11RA requires
the co-expression of a common subunit of the gp130 receptor for signal transduction [72].
The main pathways activated upon IL-11 stimulation are Ras-MAPK, JAK-STAT, PI3K-AKT
and NF-kappa B [73].

In addition to the pathways that act synergistically with IL6 via their hexameric
complexes [74], two isoforms of IL11RA that differ in their cytoplasmic domains have
been recognized [75]. Nakayama et al. reported high levels of IL11RA mRNA in gastric
cancer [76]. Lay et al. found high levels of IL11RA in endometrial cancer [77]. It is
expected that the expression of IL11 will increase during COVID-19 infection, as it is a
pro-inflammatory cytokine that regulates platelet maturation and causes bone resorption
along with IL6 [78,79], all of which comprise the clinical picture of COVID-19 infection.

Our in silico analysis, as described in the Methods section, Results and Supplementary
Materials, revealed an IL11RA protein/IL11RA mRNA/miR-4257/ lncRNA RP11-773H22.4
molecular network that is highly determinative of COVID-19 severity and acts along
with procalcitonin and ferritin (Figures 1 and 2, Table 1). These supposed RNAs of the
panel, together with IL-11, procalcitonin and ferritin, are formed in the liver and other
inflammatory cells, and then released to the blood as inflammation associated markers [80].

To confirm and validate the in silico findings, this pilot study assessed the differen-
tiation among normal, mild and severe cases in clinical subjects. There are three main
novel findings. The first finding was the significant expression level of LncRNA RP11-
773H22.4 in SARS-CoV-2 cases, with highly discriminative cutoff values that could be
used in the differentiation between COVID-19 cases and healthy controls, and between
severe and mild COVID-19 cases (Figures 1–4). The second finding was the clear and
significant downregulation of the has-miR-4257 expression level in COVID-19 cases, and
vice versa in the healthy control group. A discriminative cutoff value was calculated for
differentiating between COVID-19 cases and healthy controls, and between severe and
mild cases of COVID-19 (Figures 1–4). The third finding was the upregulation and high
level of expression of IL11RA mRNA, along with the IL11RA protein, in SARS-CoV-2.
Discriminative cutoff values were identified for differentiating between COVID-19 cases
and healthy controls, and between severe and mild cases (Figures 1–4).

Thermodynamic assessment has been performed using the RNAup Web server (Vi-
enna RNA Web server) to confirm the interaction between the long non-coding RNA and
the miRNA retrieved in this study. It was found that, upon hybridization, the optimal
secondary structure, as shown in (Supplementary Figures S13–S14), ranges from positions
218 to 223 in LncRNA, and from 57 to 62 in the miRNA.

The opening energy of LncRNA RP11-773H22.4 was computed as 3.76 kcal/mol, and
that of has-miR-4257 was computed to be 2.21 kcal/mol. The total free energy for binding
was −6.83 kcal/mol, and that for duplex formation was −12.80 kcal/mol. This means
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that the energy required for duplex formation (interaction between the two RNAs) is high
(−12.80 kcal/mol), but their opening energy must be released in order to reach the total
binding energy, which is 6.83 kcal/mol. As such, the energy for binding between the
two RNAs is considered high. This can be explained mathematically by the addition of
the two RNAs’ open energy values, and the addition of the duplex formation energy to
the result: [LncRNA RP11-773H22.4 open energy] + [HSA-miR- 4257 open energy] 3.76 +
2.21 = +5.9 [Total open energy of the two RNAs] + [Energy from duplex formation] 5.9 +
(−12.80) = −6.83 kcal/mol. Thus, we can hypothesize that the SARS-CoV-2 virus induces
the expression of LncRNA RP11-773H22.4, which acts as a sponge for miR-4257, leading to
the upregulation of IL11RA mRNA expression, and then IL11 RA, followed by an increase
in the cytokine response.

Along with the novel network identification, confirmation tests have been performed,
and a significant relation has been found between our network and ferritin and pro-
calcitonin, which are considered potent markers for COVID-19 diagnosis and severity
determination. We also performed the other routine laboratory tests and chest CT scans
(Table 1).

The genetic network retrieved in this study is related specifically to COVID-19 in-
fection, and it has been utilized in the discrimination of infection severity. It could be
employed as a non-invasive biomarker(s) for COVID-19 prognosis and diagnosis.

To the best of our knowledge, this is the first study to report the significant associ-
ation between the differential expressions of the IL11RAprotein, IL11RA mRNA/miR-
4257/lncRNA RP11-773H22.4 molecular network and SARA-CoV-2, in addition to its
potential discriminative ability among healthy, mild and severe SARS-CoV-2 cases (disease
severity).

5. Conclusions

The early prediction of COVID-19 disease severity in symptomatic and asymptomatic
patients, using simple, specific and sensitive tools, will help in controlling the spread of the
disease, and enhance its management. This is essential, along with developing vaccines,
and genetic and serological diagnostic techniques. In this study, we have validated a
non-invasive tool for the prediction of disease severity, distinguished among mild, severe
and normal cases. We explored bioinformatics databases to retrieve a genetic network
(mRNA–miRNA–LncRNA), and clinically validated it in different target groups. We finally
concluded that the IL11RA molecular network could be used for predicting the severity of
COVID-19 alone or in combination with the existing biomarkers procalcitonin and ferritin.
This is also significant to viral pathogenesis exploration, as it helps identify more genetic
networks and biomarkers related to COVID-19 pathogenesis.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/cells10113098/s1, Figure S1: KEGG ontology pathway database revealed that IL11RA interacts
with IL6ST in cytokine signaling and cytokine-cytokine interaction pathway including IL11RA gene
interacting with IL6ST, Figure S2: Showing gene ontology of IL11RA mRNA which is involved
in cellular response to cytokine stimulus and involved in cytokine mediated signaling pathway
that was retrieved from Enrichr tool. Figure S3: Showing the interaction between IL11RA mRNA,
hsa-miR-4257 miRNA and lncRNA RP11-773H22.4 lncRNA that was retrieved from enricher tool,
Figure S4: Showing gene expression of IL11RA mRNA which is expressed in the whole blood that
was retrieved from Gene cards database, Figure S5: Showing gene expression of miR-4257 which
is expressed in the whole blood that was retrieved from gene card database, Figure S6: Showing
gene expression of lncRNA RP11-773H22.4 which is expressed in the whole blood that was retrieved
from gene cards database, Figure S7: Showing that IL11RA mRNA is a direct target of miR-4257
that was retrieved from miRDB database, Figure S8: Showing that IL11RA mRNA is a direct target
of miR-4257 that was retrieved from targetscan, Figure S9: Showing sequence alignment between
IL11RA mRNA and miR-4257 that was performed using European bioinformatics institute database,
Figure S10: Showing sequence alignment between miR-4257 miRNA and RP11-773H22.4 lncRNA
that was performed using LncTar tool (A), while Figure (B) predict the delata free energy for the
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binding which is −11.82 means that the interaction is thermodynamically favorably between the two
sequences, Figure S11: Showing sequence alignment between IL11RA mRNA and RP11-773H22.4
lncRNA that was performed using European bioinformatics institute database, Figure S12: Showing
sequence alignment between miR-4257 miRNA and RP11-773H22.4 lncRNA that was performed
using European bioinformatics institute database, Figure S13: Showing interaction between lncRNA
RP11-773H22.4 and hsa-miR-4257 is thermodynamically favorable that was performed by The Vienna
RNA Website. The plot below shows the interaction free energy (RED) Gi and the energy needed to
open existing structures in the longer sequence (BLACK) for the target region (top) and the whole
range (bottom), Figure S14: Showing interaction between lncRNA RP11-773H22.4 and hsa-miR-4257
is thermodynamically favorable that was performed by The Vienna RNA Website. Results have been
computed using RNAup 2.4.18, Table S1: correlation between IL11RA-molecular network, ferritin,
procalcitonin and IL-11RA protein.
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