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Abstract

Urbanization strongly affects biodiversity, altering natural communities and often leading to

a reduced species richness. Yet, despite its increasingly recognized importance, how urban-

ization impacts on the health of individual animals, wildlife populations and on disease ecol-

ogy remains poorly understood. To test whether, and how, urbanization-driven ecosystem

alterations influence pathogen dynamics and avian health, we use house sparrows (Passer

domesticus) and Yersinia spp. (pathogenic for passerines) as a case study. Sparrows are

granivorous urban exploiters, whose western European populations have declined over the

past decades, especially in highly urbanized areas. We sampled 329 house sparrows origi-

nating from 36 populations along an urbanization gradient across Flanders (Belgium), and

used isolation combined with ‘matrix-assisted laser desorption ionization- time of flight mass

spectrometry’ (MALDI-TOF MS) and PCR methods for detecting the presence of different

Yersinia species. Yersinia spp. were recovered from 57.43% of the sampled house spar-

rows, of which 4.06%, 53.30% and 69.54% were identified as Y. pseudotuberculosis, Y.

enterocolitica and other Yersinia species, respectively. Presence of Yersinia was related to

the degree of urbanization, average daily temperatures and the community of granivorous

birds present at sparrow capture locations. Body condition of suburban house sparrows

was found to be higher compared to urban and rural house sparrows, but no relationships

between sparrows’ body condition and presence of Yersinia spp. were found. We conclude

that two determinants of pathogen infection dynamics, body condition and pathogen occur-

rence, vary along an urbanization gradient, potentially mediating the impact of urbanization

on avian health.
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Introduction

With growing human populations, cities are expanding rapidly and urbanization represents

one of the most intense anthropogenic modifications of natural systems, strongly affecting spe-

cies, communities and ecosystems [1,2]. The direction and strength of responses of bird spe-

cies to urbanization is function of their life-history strategies [3]. This has led to the ‘biotic

homogenization’ of urban bird communities [4], i.e. whereby the latter become gradually

dominated by a limited number of ‘urban exploiter’ species, such as house sparrows (Passer
domesticus) [5]. Studies focussing on how avian communities respond to urbanization find

that bird species richness [4,6,7] and population densities [6] are often highest at intermediate

levels of urbanization. However, although several authors have addressed the effects of urbani-

zation on avian stress levels and body condition (e.g. [8–11]), how individuals of urban

exploiters successfully cope with urban environments, remains poorly understood.

How urbanization affects disease ecology, wildlife-pathogen interactions and animal health

remains particularly underexplored, despite its potential effect on ecological and evolutionary

mechanisms driving population dynamics [12–16]. In addition, wildlife is increasingly being

recognized as an important vector, or potentially even reservoir, for various human diseases

[17], such as yersiniosis, the third most commonly reported bacterial zoonotic disease in

Europe in 2013 [18]. In humans, yersiniosis is most frequently caused by Yersinia enterocolitica
biotype (BT) 1B and 2–5 and to a lesser extent by Y. pseudotuberculosis [18,19]. In passerines,

the facultative pathogen Y. pseudotuberculosis is the most probable etiologic agent of yersinio-

sis, which typically has an acute enteric disease progression [20–22], but has on several occa-

sions been isolated from apparently healthy birds [23,24]. Although it is possible that these

birds were in the incubation phase of the disease, it has been speculated that wild-ranging

birds maintain the bacteria at low level, developing acute disease when subjected to stressful

conditions [24]. Yet, the potential existence of subclinical effects on avian health and body con-

dition remains a gap in our knowledge.

So far only few studies have focused on the combination of differential pathogen exposure

along urbanization gradients and the effects on the body condition of their avian hosts (e.g.

[15,25,26]). With respect to Yersinia, their psychrotolerant nature [27] potentially renders

these bacteria susceptible to microclimate differences (e.g. heat island effect) between urban-

ized and rural areas [28]. In addition, the distinct metabolic flexibility of various Yersinia
species [29] may affect environmental survival and persistence, enhancing the survival of the

less pathogenic environmental strains with higher metabolic capacity compared to the more

pathogenic strains which are metabolically more constrained and are more dependent on the

presence of suitable hosts. Depending on the pathogen-suitability of the hosts, higher host

diversity or density may both reduce or amplify the bacterium-load in the environment [12],

and hence, the faeco-oral transmission of pathogenic Yersinia species. Not only can Yersinia
affect birds’ health, but vice versa, avian health, related to stress and estimated by body condi-

tion [30], could affect the excretion of pathogens in the environment [31,32].

In order to gain more insights into urban wildlife-disease ecology, we assessed the preva-

lence of an important zoonotic and avian pathogen (i.e. Yersinia spp.) in house sparrows along

an urbanization gradient. House sparrows constitute an adequate study species as they inhabit

rural, suburban and urban areas, they are considered to be very sedentary, and they have expe-

rienced severe population declines over the last decades, especially in urban centres [33–36].

We evaluated how urbanization and the local community of granivorous birds impact on

house sparrows’ body condition and on the presence of Yersinia spp. in their faeces, in combi-

nation with the two-way host-pathogen interaction, taking into account temperature and time

of sparrow capture during sampling.

Urbanization and host-pathogen interactions: Yersinia in house sparrows
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Material and methods

House sparrow sampling and environmental data

Since disease outbreaks most often occur during winter [21,23,37], faecal samples from 329

house sparrows were collected during two consecutive sampling periods, i.e. 3 October till

20 December 2013 (‘autumn’) and 10 January until 28 March 2014 (‘winter-early spring’),

respectively. Sampled house sparrows originated from 36 populations located in 11 ‘urban’, 7

‘suburban’ and 18 ‘rural’ regions (details on urbanization levels are given in the supporting

information: S1 Table) clustered pairwise around the Flemish cities of Ghent, Antwerp and

Leuven (Fig 1), every population being sampled at least once per sampling period.

The sampling protocol is as described in [38]. Upon capture, each individual was ringed,

sexed, weighed (±0.01g: digital balance) and their tarsus length was measured (±0.01mm: digi-

tal calliper). To quantify sparrows’ body condition, we applied the scaled-mass index (SMI),

which adjusts the mass of all individuals to that which they would have obtained if they all had

the same body size, using the equation of the linear regression of ln-body mass on ln-tarsus

length estimated by type-II (standardized major axis; SMA) regression [30]. Two outliers

were present in the data (i.e. |standardized residuals| > 3), these two observations were not

considered for deriving the SMI relationship. The regression slope was 1.50 and average tarsus

length was 18.8 mm. We thus calculated the SMI as body mass x (18.8/tarsus length)^1.50

[30]. House sparrows are considered species of Least Concern on the ‘IUCN Red List of

Threatened Species’ [39] and all people involved in the sampling were holders of a scientific

ringing certificate issued annually by the Agency for Nature and Forest. The sparrows were

captured on private land for which oral permission was granted by the respective land owners.

Fig 1. House sparrow populations clustered around the cities of Ghent, Antwerp and Leuven.

https://doi.org/10.1371/journal.pone.0189509.g001
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All trapping and sampling protocols were approved by the Ethical Committee VIB Ghent site

(EC2013-027).

As environmental predictors, we considered the degree of urbanization, the average air

temperatures at the day of sampling and the presence of other granivorous birds. In order to

quantify the degree of urbanization at sampling sites, the level of built-up area (BU) was calcu-

lated in circular plots around each trapping site based on the very high resolution (i.e. 0.15m

pixels) ‘Large-scale Reference Database’ (LRD) GIS layers [40,41], both at a local ‘home-range’

scale (using a 100 m radius around the capture site) and at a ‘landscape’ scale (using a 1600 m

radius around capture site, thereby excluding the 100 m radius of the home range scale)

[35,42]. The extent of the home-range scale was based on radio-telemetric observations of hab-

itat use by Flemish house sparrows [8] and represents the extent of daily foraging movements.

The landscape scale was based on population genetic estimates [35] and reflects the average

distance at which sparrow populations can genetically be considered independent from each

other. To ensure a more natural environment for the lowest urbanization class, we only

selected plots comprising >20% of ecologically valuable areas, as described by the Flemish

Governments’ Biological Valuation Map [43]. Urbanization at the home-range scale was mod-

elled as a continuous variable (range 1.72–55.04% BU area), while at the landscape scale, it

was modeled as class variable, i.e. ‘rural’ (<5% built-up area), ‘suburban’ (5–10%) or ‘urban’

(>10%) [44]. Average daily temperatures were derived from the nearest located weather sta-

tion and were provided by the Belgian Royal Meteorological Institute (RMI). For every house

sparrow population under study, a granivore-index was calculated, i.e. indicating the degree

to which a local bird assemblage is dominated by granivorous species which could, through

similar foraging strategies, have a higher potential of exchanging enteropathogenic bacteria

through the faeco-oral transmission route [45–48]. Since conducting bird surveys during sam-

pling was not feasible because of logistic reasons, we relied on data collected during the most

recent Flemish breeding bird atlas [49] whereby the Flemish region was divided in a grid of

5km x 5km. Within each of these squares, bird surveyors were instructed to carry out two one-

hour long visits to sets of eight fixed 1km x 1km squares in order to arrive at a list of breeding

bird species (see [50] for details). For each sparrow sampling site, we determined the closest

(5x5 km) grid cell sampled by the breeding bird atlas (using Euclidean distance) and extracted

the species list for that grid cell. Each bird species present was assigned a ‘granivore score’,

varying from 0 to 1, based on bird diets as mentioned in [51]. Following [3], scoring was as fol-

lows: 0 = no grains, 0.1 = occasionally grains, 0.5 = frequently grains, 1 = almost exclusively

grains. In order to obtain an overall ‘granivore-index’ for each sparrow sampling site, we

summed the granivore-scores of all birds present in a grid cell and divided this sum by the

total number of bird species present.

Yersinia isolation and identification

Faecal samples were subjected to a cold enrichment procedure in combination with an alkali

(KOH) treatment as described in [52]. This isolation method has previously been demon-

strated to be the most successful method for the isolation of Y. pseudotuberculosis and Y. enter-
ocolitica, even when only small numbers of bacteria are present in a sample [24,53]. All the

colonies suspicious for Yersinia were biochemically tested at 30˚C using Kligler (Oxoid, Ltd),

Aesculine (Oxoid, Ltd.) and Urea (Oxoid, Ltd), before performing MALDI-TOF MS (Matrix-

Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry) at the Department of

Clinical Microbiology, Laboratory Medicine, AZ Sint-Lucas in Ghent. Every MALDI-TOF

assigned-Y. enterocolitica and Y. pseudotuberculosis was subjected to virulence PCR on chro-

mosomal- (ail, ystA, ystB, inv) and plasmid-borne- (virF) virulence genes, according to the

Urbanization and host-pathogen interactions: Yersinia in house sparrows
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PCR-protocol and primers used by [19]. Yersinia pseudotuberculosis (22.36a), human patho-

genic Y. enterocolitica 4/O:3 (75.55b) and Y. enterocolitica BT1A (FAVV208) were used as posi-

tive controls. If virulence genes were detected, Y. pseudotuberculosis isolates were serotyped at

the National Reference Center Yersinia (IREC).

Although PCR on the combination of chromosomal- and plasmid-borne virulence genes

and MALDI-TOF MS has previously been used for the identification of (enteropathogenic) Y.

enterocolitica and Y. pseudotuberculosis [19,52,54–57], the accurate species identification of the

latter technique is highly dependent on the validation of the reference library used to identify

the bacterial isolates, resulting in high sensitivity and specificity for the validated species

[55,56,58]. This validation was performed for Y. pseudotuberculosis and Y. enterocolitica on the

Bruker Daltonik MALDI Biotyper at the Department of Clinical Microbiology [59], but not

for other Yersinia species. As such, the Yersinia species other than Y. enterocolitica and Y.

pseudotuberculosis were not identified up to species level and are included in the statistics as

“Yersinia species”.

Statistical analyses

First, in order to test whether Yersinia spp. prevalence was related to the degree of urbanization

and presence of possible host species (expressed by the granivore-index), we applied General-

ized Linear Mixed Models (GLMM) [60,61] with a binomial error distribution, using the R

‘lme4’, ‘lmerTest’, ‘Hmisc’, ‘plyr’ and ‘effects’ packages [62–66]. Degree of urbanization at

home-range and landscape scales (and the two-factor interaction), granivore-index, daily aver-

age temperature, sex and host SMI were modelled as fixed effects, while sampling period was

modeled as a random effect using the glmer command (S1 Protocol; S1 and S2 Datasets). To

account for possible spatial autocorrelation in Yersinia prevalence, latitude and longitude of

sampling locations were included as fixed effects [67]. Separate models were run to identify

factors influencing the distribution of “Y. enterocolitica”, “Y. pseudotuberculosis”, “Yersinia spp.

other than Y. enterocolitica and Y. pseudotuberculosis”. We applied a model selection procedure

based on Akaike’s Information Criterium AIC [68] and calculated AICc values for all possible

models, using the R MuMIn package [69]. Models were ranked based on their AICc values,

and the relative importance of variables was assessed by summing the AICc weights of all mod-

els in which the variable under consideration was included. Important variables are character-

ized by a high AICc weight (i.e. >0.5) and model-averaged estimates that are higher than their

standard errors [70].

Second, to test whether host SMI was impacted by Yersinia spp. along the urbanization

level, we applied a linear mixed model (LMM) using a Gaussian error distribution, including

presence/absence of Y. enterocolitica, Y. pseudotuberculosis or other Yersinia spp., degree of

urbanization at home-range and landscape scales (and two-factor interaction), sex, granivore-

index, daily average temperature and time (hour) of capture as fixed effects, and sampling

period as random effect, using the same packages as for the GLMM, and the lmer-function

(S1 Protocol; S1 and S2 Datasets). Model residuals were normally distributed (Shapiro-Wilk

W> 0.95). Since the AIC-weight of the two-way interaction (see higher) was low (<0.5) for all

the GLMM and LMM analyses, models were rerun without interaction to obtain final AIC-

weights. All analyses were conducted in R [71].

Results

In total, 329 house sparrows (143 females, 186 males) were captured from rural (51%), subur-

ban (14%) and urban habitats (35%) (S1 Table). All individuals, with the exception of one

bird which was diagnosed with pox-virus [38], were apparently healthy. Yersinia species were

Urbanization and host-pathogen interactions: Yersinia in house sparrows
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isolated from 59% (193/329) of the examined hosts with Y. enterocolitica being the most com-

monly isolated Yersinia species, isolated from 31% (103/329) of the individuals (S1 Table).

Except for the ystB-gene, identified in 92 (89%) of the Y. enterocolitica isolates, none of the iso-

lates harbored the examined virulence genes. Y. pseudotuberculosis was recovered from 2% (8/

329) of the hosts (S1 Table). With four isolates, serotype I was the most encountered serotype.

Two isolates were identified as serotype II and two as serotype III and V respectively. All the

isolates, apart from both serotype II isolates, originated from different house sparrow popula-

tions. Except for serotype III and V, which did not possess the virF plasmid-borne virulence

gene, both the inv- and virF-gene were detected in the different serotypes. Yersinia species,

other than Y. enterocolitica and Y. pseudotuberculosis were isolated from 41% (134/329) of the

house sparrows. In total 51 house sparrows harbored multiple Yersinia species in their faeces.

When testing for drivers of different Yersinia spp. presence in house sparrow’ faeces, AIC-

based model averaging appointed different variables as important explanatory variables,

depending on the Yersinia species tested (Table 1). Presence of Y. pseudotuberculosis was best

explained by the granivore-index, for which a positive relationship was observed (AIC-weight:

0.90, estimate ± standard error: 1.18±0.59; Tables 2 and 3). In addition, landscape-level urbani-

zation influences Y. pseudotuberculosis distribution: compared to rural habitats, this species

tends to be most prevalent in suburban habitats, and to a lesser extent in urban habitats (AIC-

weight: 0.61, estimate: 2.83±1.35 and 1.95±1.08 resp.; Tables 2 and 3). No strong evidence for

an effect of host SMI, sex, daily average temperature and home-range level factor on presence

of Y. pseudotuberculosis was evident (AIC-weights <0.5; Table 2). Variables best explaining the

presence of Y. enterocolitica were, in order of importance, daily average temperature, the grani-

vore-index, the percentage of built-up area at the home-range scale and, to a lesser extent, at

Table 1. Best models using AIC-based model selection for Y. pseudotuberculosis, Y. enterocolitica, other Yersinia species and Scaled Mass

Index as respective response variables.

Response variable: explanatory variables Log(L) AIC ΔAIC weight

Y. pseudotuberculosis: Granivore-index, Urbanization (landscape level) -32.21 78.76 0.00 0.64

Y. enterocolitica: Average temperature, Granivore-index, Urbanization (home range level), Urbanization (landscape

level)

-185.47 389.50 0.00 0.42

Other Yersinia species: Average temperature, Urbanization (home range level) -218.75 449.75 0.00 0.60

SMI: Time of capture, Urbanization (landscape level) -465.15 946.74 0.00 0.55

https://doi.org/10.1371/journal.pone.0189509.t001

Table 2. Variable importance after model-averaging in order to explain the presence of Y. pseudotuberculosis, Y. enterocolitica and other Yersinia

species and the SMI of the host.

Y. pseudotuberculosis Y. enterocolitica Other Yersinia species SMI

Granivore-index 0.90 0.92 0.32 0.49

Urbanization (landscape level) 0.61 0.59 0.16 0.64

Urbanization (home range level) 0.38 0.75 0.67 0.48

Average temperature 0.39 1.00 0.92 0.27

Scaled Mass Index 0.26 0.30 0.35 NA

Sex 0.44 0.26 0.44 0.38

Time of Capture NA NA NA 0.76

Y. pseudotuberculosis NA NA NA 0.26

Y. enterocolitica NA NA NA 0.39

Other Yersinia species NA NA NA 0.38

NA (not applicable)

https://doi.org/10.1371/journal.pone.0189509.t002
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the landscape scale. Yersinia enterocolitica was negatively correlated to daily average tempera-

tures (AIC-weight: 1.00, estimate: -0.68±0.17), to the granivore-index (AIC-weight: 0.92, esti-

mate: -0.39±0.15) and to the percentage of built-up area at home-range level (AIC-weight:

0.75, estimate: -0.32±0.16) (Tables 2 and 3). At the landscape level, the prevalence of Y. entero-
colitica tends to be lower in suburban house sparrows, compared to the urban and (to a lesser

degree) to the rural birds (AIC-weight: 0.59, estimate: 0.96±0.48 and 0.79±0.49 resp.; Table 3).

Nor the SMI, nor the sex influenced Y. enterocolitica prevalence (AIC-weight: <0.5; Table 2).

Presence of other Yersinia species was best explained by the average daily temperature (AIC-

weight: 0.92, estimate: -0.31±0.12), to which it was negatively related, and by the home-range

level (AIC-weight: 0.67, estimate: -0.21±0.12), as Yersinia species tended to be less prevalent in

more urbanized core habitats (Tables 2 and 3). After accounting for the effect of time of cap-

ture (AIC weight: 0.76, 0.06±0.0.3), we found that sparrow body condition (i.e. SMI) was cor-

related to landscape-level urbanization (AIC weight: 0.64) (Tables 1–3). The SMI was generally

higher for suburban house sparrows compared to either urban (estimate: -0.43±0.18) or rural

house sparrows (estimate: -0.27±0.17) (Table 3). Specifically, suburban sparrows were on aver-

age 3% heavier than urban birds and 2% than rural sparrows. Presence of Y. enterocolitica, Y.

pseudotuberculosis or other Yersinia species, average daily temperatures, sex, granivore-index

or home-range level urbanization did not affect hosts SMI (all variable AIC-weights <0.5;

Table 2).

Discussion

A high prevalence of Yersinia was demonstrated in the faeces of the examined house sparrows,

of which most isolates belonged to Y. enterocolitica and only a small percentage to Y. pseudotu-
berculosis. These results are in agreement with previous reports using cold enrichment

methods [24,31,37]. Apart from the ystB-gene, which was demonstrated in most of the Y.

Table 3. Parameter estimates and standard deviation for response variables: Y. pseudotuberculosis,

Y. enterocolitica, other Yersinia species and SMI (shown in Table 1).

Parameters for Y. pseudotuberculosis Estimate ± SE

Granivore-index 1.18±0.59

Urbanization landscape (Suburban)a 2.83±1.35

Urbanization landscape (Urban)a 1.95±1.08

Parameters for Y. enterocolitica

Average temperature -0.68±0.17

Granivore-index -0.39±0.15

Urbanization home range -0.32±0.16

Urbanization landscape (Urban)b 0.96±0.48

Urbanization landscape (Rural)b 0.79±0.49

Parameters for other Yersinia species

Average temperature -0.31±0.12

Urbanization home range -0.21±0.12

Parameters for SMI

Time of capture 0.06±0.0.3

Urbanization landscape (Urban)b -0.43±0.18

Urbanization landscape (Rural)b -0.27±0.17

a Urbanization within 1600m radius is compared to the Rural habitat
b Urbanization within 1600m radius is compared to the Suburban habitat

https://doi.org/10.1371/journal.pone.0189509.t003
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enterocolitica isolates and is associated with biotype 1A [19,54], no human-pathogenic Y. enter-
ocolitica biotype was recovered from our house sparrows. In humans, controversy exist regard-

ing the pathogenicity of Y. enterocolitica BT1A [57,72], in birds however no case-reports

related to disease caused by BT1A were found. This could either be an indication that Y. enter-
ocolitica BT1A does not tend to be pathogenic in birds, or that only limited research has been

conducted on the pathogenicity of Y. enterocolitica BT1A in birds.

On the contrary, all recovered serotypes of Y. pseudotuberculosis, with serotype I being the

most encountered serotype in Europe [24,73,74], have been implicated in yersiniosis cases and

outbreaks in birds and mammals, including humans [37,73–78], but have also been isolated

from apparently healthy birds and mammals [23,24,37,79,80]. The absence of the virF plas-

mid-borne virulence gene in serotype III and V is potentially an indication of a decrease in vir-

ulence [80,81], however, loss of the pYV virulence plasmid during the isolation/purification-

procedure cannot be ruled out [19,74]. Since none of the positive birds in our study were

recaptured, no inference can be made whether these house sparrows were temporary carriers

with the potential of eliminating the pathogen, whether the passerines were in the incubation

phase of the disease or actually presented a wildlife-reservoir of Y. pseudotuberculosis.
The dominant feeding strategy of the local bird assemblage affected the presence of Y.

pseudotuberculosis and Y. enterocolitica in opposite ways. As for the pathogenic Y. pseudotuber-
culosis, higher prevalence of these bacteria was detected when the local bird populations were

dominated by granivorous species, such as the highly susceptible Fringillidae [22,82], which,

by using similar foraging strategies could enhance faeco-oral transmission [45–48]. On the

other hand, Y. enterocolitica BT1A was negatively influenced by the degree of granivory of

local bird communities, which could be an indication that, at least for this Yersinia species,

granivourous birds are less suitable hosts/carriers than birds with other feeding patterns

[83,84]. With respect to the other Yersinia species, no relation with granivory was demon-

strated, suggesting that other, potentially more abiotic factors drive the distribution and preva-

lence of these Yersinia species [29]. However, since the group “Yersinia species” most likely

comprises various species, the effect of granivores on the species-group could be neutralized

due to counteracting effects on the separate Yersinia species. We should also keep in mind that

for all analyses, the density of the different bird species was not taken into account, nor were

other animals that could potentially act as a reservoir, which could likewise alter disease-ecol-

ogy [12].

The prevalence of Yersinia enterocolitica and other Yersinia species was highly affected by

the average daily temperature, being more prevalent when temperature was lower. As was pre-

viously observed when comparing Yersinia-survival in soil and water at different temperatures

[27], the increased survival at colder temperatures potentially increases the bacteria-load in the

environment and subsequently the prevalence in faeces. No such an effect was observed for Y.

pseudotuberculosis, however the low prevalence likely decreased the power of the statistical

analyses and potentially obscured potential relationships between temperature and prevalence.

The amount of built-up area had various effects on the presence of Yersinia. At the land-

scape scale, Y. pseudotuberculosis tended to be more prevalent in suburban hosts, and to a

lesser extent in urban ones, compared to rural individuals. Although not investigated in our

study, previous research has demonstrated higher densities of urban exploiters in suburban

and urban regions [2,6], which could enhance the pathogen transmission in these habitats. On

the contrary, Y. enterocolitica BT1A tends to be less prevalent in suburban house sparrows.

The higher prevalence observed in the more urban areas could, similarly as for Y. pseudotuber-
culosis, be related to the higher density of other urban exploiters [6,85]. In rural areas on the

other hand, other animals such as rodents, hares and livestock [52,86,87], possibly contribute

to an increased occurrence of Y. enterocolitica BT1A in the examined house sparrows.
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Nevertheless, further investigations are warranted, including different taxa, and taking densi-

ties of all potential host species into account.

At the scale of individual home ranges, Y. enterocolitica and other Yersinia species were

shown to be less prevalent in more urbanized habitats. This could be explained by the lower

permeability of the surfaces in the more urbanized habitats, from which water excess is lost

through run-off and as such dry-up relatively faster compared to actual soil substance [27,28].

Since Yersinia species are known to have a higher survival in wet to damp soil [27] the preva-

lence will likely be higher in less urbanized local habitats. The SMI did not have an influence

on the presence of Y. pseudotuberculosis, Y. enterocolitica or other Yersinia species, neither did

these Yersinia isolates affect the SMI of the house sparrows. With respect to Y. enterocolitica
BT1A and the environmental Yersinia spp. it has been suggested that these Yersinia species are

part of the normal avian microbiota [24,31], which could explain the lack of effect on house

sparrows SMI. Nevertheless, only limited research has been performed on the pathogenicity of

Y. enterocolitica BT1A and environmental Yersinia species in birds. Yersinia pseudotuberculosis
on the other hand is known to be pathogenic for Passerines, and as such, a bi-directional effect

of SMI and Y. pseudotuberculosis was expected. The lack of effect in either direction could be

due to the low prevalence of Y. pseudotuberculosis in our house sparrow populations. However,

as [24] previously suggested, wild birds potentially are able to sustain Y. pseudotuberculosis at

low levels, without clinical signs, developing acute disease when exposed to stressful conditions.

The SMI was observed to increase from the morning to the afternoon, probably related to

overnight fasting [26,88] although this observation is not always apparent [89]. Regarding the

effect of urbanization on house sparrow body condition, most studies have compared strongly

urbanized with rural habitats, disregarding the suburban areas (e.g.[9–11,89]). In this study,

no significant differences were observed between populations from rural and strongly urban-

ized habitats, however, individuals from suburban populations had a higher SMI compared to

urban populations (and to a lesser extent rural ones). Body condition has earlier been associ-

ated with stress response and overall health [9,30], though environmental factors such as habi-

tat coverage [8], predictability of food supply and quality [10], presence of predators [8] have

been hypothesized to influence the body condition of the birds. Suburban habitats in Flanders

are typically characterized by strongly connected hedges and bushes, which are generally con-

sidered good habitat for house sparrows, allowing for a higher foraging efficiency compared to

more fragmented highly urbanized or rural habitats. Indeed, [8] found that suitable foraging

and shelter sites are highly scattered in urban areas. In rural areas, shelter sites are more con-

nected than in highly urbanized areas, but the presence of intensive-agricultural fields forces

sparrows to occupy larger home-ranges, increasing the energy expenditure when patrolling

the entire home range, and thus potentially decreasing the body condition [8].

In conclusion, we here show that the urbanization gradient affects body condition and

pathogen occurrence, two determinants of pathogen infection dynamics, suggesting a poten-

tial impact of urbanization on avian health. When assessing the impact of urbanization on

animal health and pathogen dynamics, information regarding the presence/absence and pref-

erably also the density of other suitable hosts, the two-way interaction between pathogen and

host, and various levels of urbanization including the suburban habitat is required in order to

have a better understanding of how urbanization can have an impact on urban wildlife health

and diseases.
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