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Abstract
Precise regulation of gene expression is especially important for circadian timekeeping

which is maintained by the proper oscillation of the mRNA and protein of clock genes and

clock-controlled genes. As a main component of the core negative arm feedback loops in

the circadian clock, the Cry1 gene contributes to the maintenance of behavioral and molec-

ular rhythmicity. Despite the central role of Cry1, the molecular mechanisms regulating

expression levels of Cry1 mRNA and protein are not well defined. In particular, the post-

transcriptional regulation of Cry1 mRNA fate decisions is unclear. Here, we demonstrate

that hnRNP Q binds to mCry1 mRNA via the 50UTR. Furthermore, hnRNP Q inhibits the

translation of mCry1 mRNA, leading to altered rhythmicity in the mCRY1 protein profile.

Introduction
Most living creatures from cyanobacteria to humans have daily physiological and behavioral
rhythms. The formation of these 24-hour rhythms, called "circadian rhythms", is based on the
rotation of the earth over a nearly 24-hour period. Although the light-dark cycle resulting from
the earth's spin is definitely responsible for synchronizing and entraining the circadian physiol-
ogies of living organisms, this circadian rhythm can be maintained in constant darkness for a
while, due to the endogenous circadian clock system [1]. In other words, living organisms
already have self-sustained, entrainable circadian rhythms, which can be adjusted in response
to light stimulation.

The endogenous oscillators are composed of an autoregulatory transcription–translation
feedback loop (TTFL) of clock genes [2]. This molecular network of the core clock genes is
clearly defined. BMAL1 and CLOCK proteins form a heterodimer which activates the tran-
scription of three Period (Per) genes, two Cryptochrome (Cry) genes, Rev-erb α, and Ror α.
This network forms a positive regulatory loop of the circadian clock system [3]. A negative reg-
ulatory loop is induced by the formation of the PER:CRY heterodimer [4]. This complex inhib-
its the action of the BMAL1:CLOCK heterodimer, resulting in interlocked molecular
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oscillations of core clock genes and clock controlled genes [5–7]. The transcription of Bmal1
can be positively and negatively regulated by ROR α and REV-ERB α, respectively.

Among the core clock genes, Cry genes have been highly focused due to their important role
in various organisms. In plants, Cry genes are involved in light-dependent signaling for flower-
ing time [8] and period length control [9]. In drosophila, CRY protein levels are dramatically
regulated by light exposure [10]. Since Cry genes are involved in the resetting of circadian
rhythms, Cry mutants showed poor synchronization to light-dark cycles or hypersensitive cir-
cadian responses to light [11]. Also in mammals, Cry genes had been reported as circadian
photoreceptors. Cry1 and Cry2 are expressed in the retina [12], and targeted disruption of
either of the two mouse Cryptochrome (mCry) genes results in abnormal light responses [13].

However, the light-independent roles of Cry genes have been focused in the circadian clock
in mammals. CRY proteins inhibit the transactivation activity of CLOCK-BMAL1 through
direct interaction with CLOCK and BMAL1 [14]. In cultured SCN derived from mCry-null
mice, circadian rhythms are dampened in a few cycles [15]. Cry1−/− mice display approxi-
mately 1-hour shorter circadian rhythms and Cry double knockout mice (Cry1−/−;Cry2−/−)
show arrhythmic phenotypes. In addition, circadian expression of the clock genes including
Per1 and Per2 is also abolished when Cry genes are deficient [16]. Cry genes also have critical
roles in several other physiological processes, such as endocrine system, metabolism, and
immune responses. For example, mCry-deficient mice showed salt-sensitive hypertension
caused by abnormal synthesis of the mineralocorticoid aldosterone [17]. CRY proteins sup-
press the expression of proinflammatory cytokines through regulating NF-κB and protein
kinase A (PKA) signaling [18]. The absence of Cry genes increases the number of activated T
cells and the production of TNF-α, IL-1β and IL-6, leading to induction of arthritis [19]. In
addition, CRYs modulate Creb activity and hepatic gluconeogenesis [20].

Given the importance of Cry genes in mammalian circadian timekeeping and other physio-
logical processes, the spatio/temporal expression of Crys should be tightly regulated. It has been
well described that the CLOCK:BMAL1 complex rhythmically activates the transcription of Cry
genes by binding to E-box motifs [21]. In line with this, H3 histone acetylation and the RNA
polymerase II binding pattern exhibit circadian rhythmicity in the promoter region of Cry genes
[22]. The mechanisms of post-translational activation or degradation of CRY proteins have also
been extensively studied. Ubiquitin ligases, including FBXL3 [23, 24] and FBXL21 [25, 26], and
the AMPK signaling cascade [27] target CRY proteins for degradation to maintain robust oscilla-
tion of CRYs. For development of clock-based therapeutics against several diseases, identification
of small molecules that can modulate the activities of CRY proteins is actively under investigation
[28]. On the other hand, however, the posttranscriptional regulation of Cry mRNAs has been
rarely studied. Recently, it was reported that only 22% of mRNA cycling genes are controlled by
circadian de novo transcription [29], suggesting that circadian regulation of gene expression at
the post-transcriptional level is much more important than previously thought.

Among several RNA-binding proteins, heterogeneous nuclear ribonucleoproteins
(hnRNPs) play fundamental cellular roles such as DNA transcription, mRNA splicing, export,
degradation, and translation. There are approximately 20 proteins named hnRNPs A-U in
hnRNP family, and we previously reported that some of hnRNPs are involved in mammalian
circadian clock system. For example, by binding rhythmically to the Rev-erb α 50UTR, hnRNP
Q enhances the translation of Rev-erb αmRNA in a phase-dependent manner and contributes
to Rev-erb α protein oscillation [30]. However, until now, suppressive function of hnRNP Q in
the translation of clock genes has not been reported. Furthermore, the role of hnRNP Q in
mCry1 protein expression was not studied yet. Here, we demonstrate that hnRNP Q specifi-
cally interacts with 50UTR of mCry mRNA and acts as a suppressor in the translation of mCry
mRNA.

Post-Transcriptional Regulation of mCry1 mRNA by hnRNP Q
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Results

hnRNP Q inhibits the translation of mCry1 mRNA
Given the central position of Cry genes in the mammalian circadian clock, the robust rhyth-
micity of CRY proteins should be maintained and the oscillation phase of CRYs should be pre-
cisely controlled throughout life. Previously, we already showed that transcriptional regulation
alone was not sufficient to generate the protein oscillation of clock genes [30]. Fine-tune regu-
lation at post-transcriptional steps is indispensable to maintain circadian rhythm.

RNA-binding proteins are critical factors in determining the fate of mRNAs. RNA-binding
proteins are involved in every step of mRNA processing, including RNA splicing, mRNA
export, translation, degradation, editing, and polyadenylation. The exact number of RNA-
binding proteins is still unknown. Recently, Castello et al. identified 860 proteins within the
mRNA interactome [31]. Gerstberger and colleagues reported that over 1,500 proteins can
bind to RNAs [32]. Among them, however, hnRNP D is the only factor demonstrated to have
post-transcriptional roles on Cry mRNA [33,34].

Although both CRY1 and CRY2 function as negative transcriptional regulators and slow the
clock, CRY1 is more preeminent than CRY2 [35]. In addition, the 50-untranslated region
(UTR) of mCry2 mRNA is not clearly defined. For these reasons, in this study, we focused on
the post-transcriptional control of mCry1 mRNA. To identify a new protein that regulates the
fate of Cry1 mRNA, we performed RNAi screening with five different siRNAs. Five hnRNPs
were downregulated, and the amount of CRY1 protein was analyzed. Among them, silencing
hnRNP Q enhanced the CRY1 protein level, compared to the control. The upregulation of the
CRY1 protein level was more dramatic when cells were synchronized with dexamethasone (Fig
1A). Although CRY1 protein expression was also affected by knockdown of other hnRNPs
(labeled as 1–4 in Fig 1A) and several hnRNPs were predicted to interact with mCry1 UTRs
through computational algorithm named RBPmap [36] (S1 Fig), we focused on the role of
hnRNP Q which seemed to be the most potent regulator among those tested. To determine
whether the upregulated CRY1 protein level was driven by mCry1 mRNA stabilization, we ana-
lyzed the mCry1 mRNA decay kinetics under hnRNP Q silencing. Interestingly, hnRNP Q
downregulation was rather to promote the degradation of mCry1 mRNA (Fig 1B), suggesting
that the increase in mCRY1 protein under hnRNP Q silencing was not due to altered mRNA
stability. Since the translational control of mRNAs is usually mediated by the 50UTR, we evalu-
ated the association between hnRNP Q and the mCry1 50UTR. Although hnRNP Q showed
affinity to the beads to some degree, this protein strongly bound to the mCry1 50UTR as
expected (Fig 1C). To confirm whether hnRNP Q inhibits the translation of mCry1 via the
50UTR, we utilized a luciferase reporter system. The 50UTR of mCry1was inserted at the
upstream of firefly luciferase (Fluc) coding sequences, and we conducted luciferase assays 24
hours after transfection into control or hnRNP Q-reduced NIH3T3 cells. Consistent with the
result in Fig 1A, the downregulation of hnRNP Q augmented the Fluc level ~40%, compared to
control (Fig 1D). Transfection efficiency was normalized with β-gal. Knockdown of hnRNP Q
was also confirmed by immunoblotting (Fig 1E). Taken together, these results suggest that
hnRNP Q reduced the mCRY1 protein level by suppressing mCry1 translation via the 50UTR.

hnRNP Qmainly binds to the forepart of the mCry1 50UTR
Although both DNA and RNA consist of nucleotides, RNA is much more structured than
DNA. This secondary structure is often highly important to the functionality and regulation of
RNA. The interaction between RNA-binding protein and mRNA can be dependent on the sec-
ondary structure of mRNA or nucleotide sequence, or both. To determine the cis-acting region

Post-Transcriptional Regulation of mCry1 mRNA by hnRNP Q
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Fig 1. hnRNPQ binds to the 50UTR of mCry1 and suppresses its translation. (A) RNAi screening in NIH3T3 cells. Five different siRNAs
targeting different hnRNPs, including hnRNP Q, were transfected into cells. Control siRNA was used as a negative control. The level of mCRY1
protein was analyzed byWestern blotting. On the right side, the circadian phases of cell populations were synchronized by temporal treatment
with 100nM dexamethasone, to clearly check the collective effect of hnRNP downregulation on each cell. At 12 hours after synchronization,
samples were analyzed. GAPDH and 14-3-3ζwere used as a loading control. The arrow indicates weakly detected mCRY1 protein. (B) mRNA
stability of endogenous mCry1 under hnRNPQ downregulation. mRNA degradation kinetics of mTBP was also evaluated as a control. Error
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of hnRNP Q-mediated translational regulation, serial deletion constructs were generated (Fig
2A). Based on the importance of RNA secondary structure, we also analyzed the secondary
structures of full-length (mCry1 1–583) or partially deleted mCry1 50UTRs (S3 Fig). The mfold
Web Server (http://unafold.rna.albany.edu/?q=mfold) was utilized to predict the folded mRNA
structures. This software calculates structures by optimizing the thermodynamic free energy.
Compared to the other constructs, the mCry1 480–583 construct, which had the shortest
sequence length, showed the simplest RNA structure.

Next, we analyzed the binding pattern of hnRNP Q to the full-length or partially deleted
mCry1 50UTR. To this end, we conducted in vitro binding followed by UV crosslinking. With
other proteins, 68-kDa hnRNP Q showed strong binding affinity to the full-length 50UTR of
the mCry1 mRNA. Once we checked the availability of hnRNP Q antibody for immunoprecipi-
tation experiment (S2A Fig), we confirmed that this 68-kDa protein is undoubtedly hnRNP Q
through UV crosslinking followed by immunoprecipitation (S2B Fig). When the first 99 nucle-
otides were deleted (mCry1 100–583), hnRNP Q still interacted with the deletion transcript,
although to a lesser extent. While the association between hnRNP Q and mCry1 50UTR was
observed when the first 367 nucleotides were deleted (mCry1 368–583), an additional 112
nucleotides deletion resulted in the complete loss of hnRNP Q binding (mCry1 480–583) (Fig
2B). Although we couldn’t exactly determine whether the interaction between hnRNP Q and
the mCry1 50UTR is sequence-specific or structure-based, or both, these data suggest that
hnRNP Q mainly binds to the forepart of the mCry1 50UTR. Consistent with this result, trans-
lation efficiency was upregulated when hnRNP Q-bindable sequences were removed (Fig 2C).
To confirm whether hnRNP Q inhibits the translation of mCry1 via the forepart of 50UTR, we
again utilized a luciferase reporter system (Fig 2D). The augment of Fluc level under hnRNP Q
silencing was clearly observed in the full-length construct which highly interacted with hnRNP
Q. Fluc expression was still enhanced by hnRNP Q reduction in the mCry1 100–583 construct
which showed slightly weaker association with hnRNP Q. Interestingly, however, the upregula-
tion of Fluc expression was not observed by hnRNP Q downregulation in the mCry1 480–583
construct which did not interact with hnRNP Q. Knockdowns of hnRNP Q in each experimen-
tal condition were also confirmed by immunoblotting (Fig 2E). These results suggest that
hnRNP Q inhibits the translation of mCry1 mRNA through interacting with the forepart of
the 50UTR.

Downregulation of hnRNP Q alters the oscillation profile of mCRY1
protein
Although Cry genes have important roles in several physiological processes, such as endocrine
system functioning, gluconeogenesis, and inflammation, the most well characterized function
of the CRY1 protein is circadian timekeeping. To test whether a deficiency in hnRNP Q affects
the mRNA and protein oscillation of mCry1, we analyzed the rhythmic profiles of mCry1
mRNA and protein after knockdown of hnRNP Q in cells synchronized by dexamethasone
treatment. After temporary treatment with dexamethasone, we harvested NIH3T3 fibroblasts
every 6 hours. Using real-time quantitative RT–PCR, we identified that the endogenous mCry1
mRNA profile showed a clear cell-autonomous rhythmicity. This mRNA oscillation seemed

bars represent the SEM of three independent experiments. *P<0.05. (C) Identification of the interaction between the mCry1 50UTR and hnRNP
Q by RNA affinity purification followed by immunoblotting. (D) The translation enhancement mediated by the 50UTR of mCry1 after reduction of
hnRNPQ is shown. The 50UTR of mCry1 was inserted at the upstream of the Fluc coding sequence. Fluc activity was normalized with β-Gal
activity. Error bars represent the SEM of seven independent experiments. *P<0.05. (E) Knockdown of hnRNPQ was confirmed by
immunoblotting.

doi:10.1371/journal.pone.0159018.g001

Post-Transcriptional Regulation of mCry1 mRNA by hnRNP Q

PLOSONE | DOI:10.1371/journal.pone.0159018 July 8, 2016 5 / 13

http://unafold.rna.albany.edu/?q�=�mfold


Fig 2. The cis-acting region for hnRNPQ resides in the forepart of the mCry1 50UTR. (A) Schematic description of serially
deleted mCry1 50UTRs. (B) Cellular proteins that bound to the full-length or truncated forms of the mCry1 50UTR were analyzed by in
vitro binding followed by UV-crosslinking assays. The arrow indicates the bands corresponding to hnRNPQ. (C) The translation
efficiency of the full-length or deleted forms of the mCry1 50UTR was determined. Transfection consistency was compensated with β-
Gal activity, and translation efficiency was further calculated with mRNA amount derived from each construct. Error bars represent the
SEM of four independent experiments. P-value of mCry1 1–583 vs mCry1 480–583 = 0.032. P-value of mCry1 100–583 vs mCry1
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almost unchanged under hnRNP Q downregulation (Fig 3A). Interestingly, however, hnRNP
Q deficiency resulted in an altered oscillation profile of mCRY1 protein (Fig 3B). The relative
band intensities of mCRY1 proteins were analyzed, confirming that the amplitude of the
mCRY1 protein oscillation was significantly reduced under hnRNP Q silencing (Fig 3C).
Knockdown of hnRNP Q was confirmed by immunoblotting (Fig 3D).

Discussion
Previously, we already presented the central role of hnRNP Q in molecular circadian rhythm
maintenance. In cooperation with hnRNP R and hnRNP L, hnRNP Q destabilizes arylalkyla-
mine N-acetyltransferase (AANAT) mRNA. As a result, the AANAT mRNA oscillating profile
showed an increase in peak amplitude and a delay in peak time when three hnRNPs were
downregulated [37]. In addition, hnRNP Q rhythmically controls the translation of AANAT
mRNA through interacting with IRES (internal ribosome entry site) element within the
AANAT 50UTR. Downregulation of hnRNP Q reduced the peak amplitude of the AANAT
protein profile, leading to a deficiency in melatonin production [38]. Furthermore, hnRNP Q
has critical roles in the post-transcriptional regulation of core clock genes, including Rev-erb α
[30], Per1 [39], and Per3 [40]. In this study, we provide evidences that hnRNP Q controls the
translation of mCry1 mRNA and further the oscillation profiles of mCRY1 protein.

In contrast to DNA regulatory sequences, mRNA regulation depends on a combination of
the primary (nucleotide sequences) and secondary (stem-loop elements) structures. Although,
unfortunately, we could not determine whether the interaction between hnRNP Q and the
mCry1 50UTR is sequence-specific or structure-based, or both, this interaction is critical for
translational regulation of mCry1. One important thing is that the translation kinetics of
mCry1 mRNA should be controlled in a phase-dependent manner. mCry1 mRNA needs to be
efficiently translated into proteins when mCRY1 protein is approaching its peak level. When
the mCRY1 protein level is decreasing, the translation of mCry1 mRNA should be less active.
This dynamic regulation is possible only if the level or binding affinity of a trans-acting factor
is precisely controlled. We already confirmed that the total level of hnRNP Q remains
unchanged during circadian oscillation. However, we previously showed that the binding affin-
ity of hnRNP Q to target mRNA is dynamically regulated, raising a possibility that the transla-
tion of mCry1 mRNA can be dynamically regulated by hnRNP Q.

It is commonly considered that the nucleotide sequence of UTR regions is less conservative
across species than that of protein-coding regions. Interestingly, however, the nucleotide
sequence of the Cry1 50UTR is highly conserved among species (S4 Fig), suggesting that 50UTR-
mediated regulation is critical for Cry1mRNA fate decision. It remains to be determined whether
hnRNP Q-mediated translational regulation of Cry1 mRNA also exists in other species including
human. Although we provided some evidence that hnRNP Q is important for mCRY1 protein
expression, we cannot exclude the possibility that other RNA-binding proteins are also involved
in the translation of mCry1 mRNA. Indeed, as shown in Fig 2B, several unidentified proteins
interact with the mCry1 50UTR, and the binding pattern of those proteins to the mCry1 50UTR
resemble that of hnRNP Q.We further analyzed the binding patterns of other hnRNPs and
found that binding pattern of hnRNP I is similar to that of hnRNP Q (S5A Fig). However, reduc-
tion of hnRNP I did not affect endogenous level of mCRY1 protein (S5B Fig) and translational
efficiency (S5C Fig). Although this result additionally highlights that the interaction between

480–583 = 0.048. P-value of mCry1 202–583 vs mCry1 480–583 = 0.026. P-value of mCry1 283–583 vs mCry1 480–583 = 0.036. (D)
The enhancement of translation mediated by the full-length or deleted forms of the mCry1 50UTR under hnRNPQ silencing is shown.
Error bars represent the SEM of three independent experiments. (E) Downregulation of hnRNPQ was confirmed by immunoblotting.

doi:10.1371/journal.pone.0159018.g002
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Fig 3. mCry1 protein oscillation is less evident under hnRNPQ silencing. (A) qRT-PCR analysis for
endogenous mCry1 mRNA levels after circadian phase synchronization. Error bars represent the SEM of five
independent experiments. The initial amount of mCry1 mRNA with siCon was arbitrarily set as 1. *P<0.05.
(B) Western blot analysis of mCRY1 in control and hnRNP Q-downregulated cells. (C) The normalized
relative expression profile of mCRY1 protein in (B) was plotted. The intensities at 0 hour of siCon group were
arbitrarily set as 1. (D) Downregulation of hnRNP Qwas confirmed by immunoblotting.

doi:10.1371/journal.pone.0159018.g003
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hnRNP Q and mCry1 mRNA is important for translational regulation of mCry1, it would be still
necessary to identify other mRNA regulators of core clock genes including Cry1.

Since mCry1 is a main component of the mammalian circadian clock system consisting of
the auto-regulatory transcription-translation feedback loop, alteration of the mCRY1 protein
oscillation may affect the entire circadian oscillation. Indeed, hnRNP Q deficiency influenced
the mRNA profile of mPer3 mRNA and caused the protein fluctuation of mPER1 and mRE-
V-ERB α. It would be of interest to test whether hnRNP Q-mediated regulation is also critical
in vivo by using transgenic or knockout mice in future studies.

Methods

Cell Culture and Dexamethasone Shock
NIH 3T3 cells were obtained from Korean Cell Line Bank (KCLB No. 21658). NIH3T3 fibro-
blasts were maintained in DMEM (Hyclone) supplemented with 10% fetal bovine serum
(Hyclone) and 1% penicillin-streptomycin (Hyclone) in a humidified atmosphere containing
5% CO2 at 37°C. To synchronize the circadian rhythms of individual fibroblasts, approximately
2 × 105 cells were seeded in each well of a 12-well plate. When the cells reached semi-conflu-
ence, the medium was replaced with medium containing 100nM dexamethasone. After 2hours,
this medium was replaced with dexamethasone-free, complete medium (t = 0). Cells were har-
vested at the indicated times and kept at –70°C for further experiments.

Plasmid constructions
Standard PCR technique was used to amplify the desired sequences. Amplification of cDNA
was performed with Pfu polymerase (Solgent) and confirmed by sequencing. To construct chi-
meric reporter plasmids, full length and partially-deleted mCry1 50UTRs were amplified from
full-length mouse Cry1 cDNA (accession number NM_007771) by using specific primers. The
PCR products were digested with EcoRI and XbaI and then subcloned into the pSK0 vector for
in vitro binding assays. For luciferase assay, these PCR products were inserted upstream of Fluc
coding sequences.

RNA extraction and cDNA synthesis
Cell pellets were completely dissociated in 500μL of TRI Reagent (Molecular Research Center).
Following the addition of 100μL of chloroform, samples were mixed vigorously. Phase separa-
tion was conducted by centrifugation. After the aqueous phase was transferred to a new tube,
isopropanol-mediated RNA precipitation was performed. Before RNA was dissolved in DEPC-
treated water, the RNA pellet was washed with 75% ethanol. RNase-free DNase I (Sigma) was
used to remove the contaminating DNA from RNA samples. After inactivation of DNase activ-
ity by chelating calcium and magnesium ions with EDTA and by heating, RNA was reverse
transcribed using the ImProm-II™ Reverse Transcription System (Promega) according to the
manufacturer's instructions.

Quantitative Real-time PCR
Detection and quantification of mRNA was conducted by quantitative RT-PCR (Applied Bio-
systems). For analysis, cDNA samples were mixed with the FastStart Universal SYBR Green
Master Mix (Roche Diagnostics) and primer sets. The relative mRNA level was calculated as
values of 2^[CT(Rpl32)− CT(gene of interest)]. The sequences of the forward and reverse prim-
ers are as follows: mouse ribosomal protein L32 (mRpl32), 50-AACCCAGAGGCATTGACAAC-
30 and 50-CACCTCCAGCTCCTTGACAT-30; mouse TATA-binding protein (mTBP), 50-
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CAGCCTTCCACCTTATGCTC-30 and 50-TTGCTGCTGCTGTCTTTGTT-30; and mCry1, 50-
CCTTGAAAAGCCTGGGAAAT-30 and 50- TCCGCTGCGTCTATATCCTC-30;

Protein preparation and immunoblot analysis
For immunoblotting, cells were disrupted with complete protein solubilizing buffer containing
1% SDS and 2M urea in PBS, followed by sonication. Immunoblot analyses were performed
with polyclonal anti-CRY1, monoclonal anti-GAPDH (Millipore), polyclonal anti-14-3-3z
(Santa Cruz Biotechnology), and polyclonal anti-hnRNP Q (Sigma-Aldrich) antibodies. Horse-
radish peroxidase-conjugated mouse (Thermo Scientific) and rabbit (Jackson ImmunoRe-
search Laboratories) secondary antibodies were visualized with SUPEX ECL reagent
(Neuronex) and a LAS-4000 system (FUJI FILM), according to the manufacturer’s instruc-
tions. Acquired images were further analyzed with the Image Gauge program (FUJIFILM).

RNA interference
The sequences of synthesized siRNAs were as follows. siCon: 5'-UUCUCCGAACGUGUCAC
GUTT-3' (Samchully Pharm.), and sihnRNP Q: 5'-AGACAGUGAUCUCUCUCAUTT-3'
(Dharmacon Research). For siRNA transfection into NIH3T3 cells, the Neon1 Transfection
System (Invitrogen) was used, according to the manufacturer's instructions.

In vitro binding assay (UV crosslinking, RNA affinity purification)
In vitro binding assays through UV crosslinking were performed as described previously [41].
In brief, XbaI-linearized pSK'-mCry1 50UTR constructs were transcribed using T7 RNA poly-
merase (Promega) in the presence of [α-32P] UTP. 20 μg of whole cell extracts or 40 μg of cyto-
solic extracts were incubated with labeled RNAs at 30°C. After 30 min of incubation, the
mixtures were UV-irradiated on ice for 15 min with a CL-1000 UV-crosslinker (UVP). The
samples were detected with autoradiography after SDS-PAGE.

For Streptavidin-biotin RNA-affinity purification of mCry1 50UTR-binding proteins, XbaI-
linearized pSK'-mCry1 50UTR constructs were transcribed using T7 RNA polymerase (Pro-
mega) in the presence of biotin-UTP. Cytoplasmic extracts prepared from NIH3T3 cells were
incubated with or without biotinylated RNAs and subjected to streptavidin resin adsorption.
For the competition assay, 2-fold molar excess of non-biotinylated competitor RNAs were
additionally incubated. Resin-bound proteins were analyzed by sodium dodecyl sulfate-poly-
acrylamide gel electrophoresis (SDS-PAGE) followed by immunoblotting.

Transient transfection
For plasmid transfection, NIH3T3 cells were seeded in 24-well plates at a density of 1 × 105

cells per well 12 hours before transfection. Transfections of NIH3T3 fibroblasts with 0.5 μg of
luciferase-expressing reporters and 0.2 μg of pCMV�SPORT-β-gal plasmids (Invitrogen) were
carried out using Metafectene (Biontex) according to the manufacturer's instructions. After
incubation for 48 hours, cells were harvested for further experiments.

Luciferase assay and β-Gal assay
For the reporter assay, NIH3T3 cells transfected with reporter and control plasmids were lysed
in passive lysis buffer (Promega) at 48 hour posttransfection. Fluc activities were determined
using the Luciferase Reporter Assay System (Promega) according to the manufacturer’s instruc-
tions. β-galactosidase activity was determined from the same lysate with the β-galactosidase
Enzyme Assay System (Promega). The transfection efficiency was determined by normalization
of Fluc activities with control β-galactosidase activity.

Post-Transcriptional Regulation of mCry1 mRNA by hnRNP Q
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Immunoprecipitation
For immunoprecipitation, 3 μg of a polyclonal antibody against hnRNP Q or control IgG was
added to whole cell lysates (for regular immunoprecipitation) or UV cross-linked and RNase-
digested lysates (for UV cross-linking followed by immunoprecipitation) diluted in 700 μl of
immunoprecipitation buffer (20 mMHEPES [pH 7.4], 125 mM KCl, 0.05% NP-40, 0.5 mM
DTT, 0.5 mM PMSF, and 0.5 mM EDTA). After 16 hours, Protein G agarose beads (Amersham
bioscience) were added. After a further incubation for 3 hours, precipitates were detected with
immunoblotting or autoradiography after SDS–PAGE.

Statistical analysis
Unpaired two-tailed Student’s t-test was used for experiments comparing two sets of data
unless otherwise noted.

Supporting Information
S1 Fig. The list of hnRNPs that were predicted to interact with mCry1 mRNA. RBPmap
program (http://rbpmap.technion.ac.il/index.html) was utilized for computational prediction.
Colored letters indicate the expected binding sequences of each hnRNPs.
(TIF)

S2 Fig. Confirmation of the interaction between mCry1 mRNA and hnRNP Q. (A) Immu-
noprecipitation was performed with polyclonal anti-hnRNP Q antibody to check its availabil-
ity. (B) Identification of the interaction between the mCry1 50UTR and hnRNP Q by UV
crosslinking followed by immunoprecipitation.
(TIF)

S3 Fig. RNA secondary structures of full-length or partially-deleted mCry1 50UTRs.mfold
Web Server (http://unafold.rna.albany.edu/?q=mfold) was utilized to predict the folded mRNA
structures.
(TIF)

S4 Fig. Cry1 50UTR sequence comparison among species. The nucleotide sequence of the
Cry1 50UTR is well conserved among species. Multiple sequence alignment was performed
with Multalin web server (http://multalin.toulouse.inra.fr/multalin/).
(TIF)

S5 Fig. hnRNP I does not contribute to expression of mCry1 protein. (A) Cellular proteins
that bound to the mCry1 50UTR were analyzed by Streptavidin-biotin-utilized in vitro binding
assay followed by immunoblotting. (B) Downregulation of hnRNP I was checked by immuno-
blotting and endogenous mCry1 protein level was analyzed. (C) The effect of hnRNP I reduc-
tion on translation efficiency of 50UTR of mCry1 was analyzed. The 50UTR of mCry1 was
inserted at the upstream of the Fluc coding sequence. Fluc activity was normalized with β-Gal
activity. Error bars represent the SEM of four independent experiments.
(TIF)
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