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INTRODUCTION 
 
Myocardial infarction (MI) represents a serious 
cardiovascular event, and accounts for a leading cause 
of morbidity and mortality worldwide [1]. Great 
advancements in pharmacological and interventional 
therapies have been made to rescue the dying 
myocardium, but cardiac remodeling post-MI, 
especially ventricular fibrosis, remains still a major 
challenge in clinical practice [2, 3]. There is an unmet  

 

need to identify novel mechanisms and molecular 
entities underlying the fibrotic remodeling post-MI.  
 
Emerging evidences point to a potential link between 
immune and pathological cardiac remodeling [4, 5]. 
Sterile inflammation triggered by myocardial necrosis 
initiates cardiac repair post-MI [4, 6], whereas the 
sustained inflammation that is particularly mediated by 
cardiac infiltration of CD4+ T-cells has been implicated 
in the progression of cardiac fibrosis and dysfunction 
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ABSTRACT 
 
Cardiac fibrosis is a primary phenotype of cardiac remodeling that contributes to cardiac dysfunction and heart 
failure. The expansion and activation of CD4+ T cells in the heart has been identified to facilitate pathological 
cardiac remodeling and dysfunction; however, the underlying mechanisms remained not well clarified. Herein, 
we found that exosomes derived from activated CD4+ T cells (CD4-activated Exos) evoked pro-fibrotic effects of 
cardiac fibroblasts, and their delivery into the heart aggravated cardiac fibrosis and dysfunction post-infarction. 
Mechanistically, miR-142-3p that was enriched in CD4-activated Exos recapitulated the pro-fibrotic effects of 
CD4-activated Exos in cardiac fibroblasts, and vice versa. Furthermore, miR-142-3p directly targeted and 
inhibited the expression of Adenomatous Polyposis Coli (APC), a negative WNT signaling pathway regulator, 
contributing to the activation of WNT signaling pathway and cardiac fibroblast activation. Thus, CD4-activated 
Exos promote post-ischemic cardiac fibrosis through exosomal miR-142-3p-WNT signaling cascade-mediated 
activation of myofibroblasts. Targeting miR-142-3p in CD4-activated Exos may hold promise for treating cardiac 
remodeling post-MI. 
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[7]. Immune therapeutics targeting CD4+ T cells protect 
the ischemic heart against fibrotic pathology and 
dysfunction [8]. Indeed, the deleterious effects of 
cardiac infiltration of CD4+ T cells have also been 
witnessed in pressure overload-induced cardiac 
hypertrophy and fibrosis, which could be depressed by 
genetic inactivation of CD4+ T cells [9]. These findings 
highlight the contributions of cardiac activated CD4+ T 
cells to maladaptive cardiac remodeling, but the 
underlying mediators await further elucidation. 
 
Exosomes can be released by almost all types of cells, 
and modulate intercellular communication through 
transferring proteins, mRNA, and miRNA between cells 
[10]. They have the potential for cell-specific targeting 
[11], and usually hijack the trajectories of various 
pathological progressions [12–14], including cancer, viral 
infection, and amyloidopathies. In the cardiovascular 
field, exosomes are important regulators of various 
cardiovascular diseases [15], besides the roles as 
biomarkers [16]. For example, exosomes secreted by 
mesenchymal stem cell protect the heart against 
ischemia-reperfusion injury [17]. Cardiac fibroblast-
derived exosomes facilitate pathological cardiac 
hypertrophy via activating renin angiotensin system in 
cardiomyocytes [18], and exosomes-derived from 
cardiomyocytes contribute to cardiac fibrogenesis via 
myocyte-fibroblast cross-talk [19]. Obviously, the cell 
source of exosomes greatly determines the action 
modality and functional outcome of exosomes. 
 
Given that CD4+ T cell activation promotes pathological 
cardiac remodeling and that immune cells can release 
exosomes [20–22], we hypothesized that activated CD4+ 
cells-derived exosomes deteriorated cardiac fibrosis post-
MI. We identified that CD4+ T cell-derived exosomes 
could be uptaken by cardiac fibroblasts and whereby 
contributed to cardiac fibroblast transformation. 
Furthermore, miR-142-3p-enriched in the activated CD4+ 
cell exosomes targeted Adenomatous Polyposis Coli 
(APC) to activate the WNT signal pathway, perpetuating 
myofibroblast activation and fibrogenesis.  
 
RESULTS 
 
Exosomes derived from activated CD4+ T cells 
promote cardiac fibroblasts activation 
 
Consistent with previous studies [23], we found that 
CD4+ T cells remarkably infiltrated in the heart of 
myocardial infarction (Supplementary Figure 2). As 
CD4+ T cells infiltration and activation in the heart have 
been proven to worsen the development of non-infectious 
myocardial diseases [7, 8]. we wondered that whether 
exosomes derived from activated CD4+ cells (Exos-
activated) contribute to cardiac remodeling post-MI. For 

this end, we isolated CD4+ T cells from mouse spleen, 
and stimulated with CD3/CD28 antibodies for 2 days to 
induce the activation of CD4+ cells (Figure 1A). As 
CD4+ T cells were predominantly differentiated into T 
helper cell type 1 in the presence of CD3/CD28 
antibodies [24], we thus detected pro-inflammatory 
cytokines in culture media. The expression of TNF-α, 
IFN-γ, IL-10 and IL-2 were significantly upregulated, 
indicating the activation of CD4+ cells (Figure 1B–1E). 
 
We then isolated exosomes from the conditions medium 
of CD+4 cells. TEM revealed that the predominant 
vesicles were of typical exosomal size (30-150 nm in 
diameter) with the characteristic round or “cup-shaped” 
delineated by a lipid bilayer (Figure 1F), which is 
consistent with previous reports [25]. Western blot 
analysis demonstrated the expression of CD81, CD63 
and tumor susceptibility gene 101 (TSG101), which are 
all exosome markers and associated with exosome 
formation [26], in both exosomes and cells (Figure 1G). 
 
To explore the effects of Exos-activated on cardiac 
fibroblasts (CFs), we labeled exosomes with PKH-67 
green dye and incubated these PKH67-labeled exosomes 
(PKH-67 are lipophilic cell tracking dyes with long 
aliphatic tails into lipid regions of exactly lipophilic on 
exosomes) with CFs for 2 h. The fluorescent imaging 
showed that exosomes could be endocytosed by CFs 
(Figure 2A). Moreover, we found that the Exo-activated 
could remarkably induce CFs differentiation, proliferation 
and migration (Figure 2B–2I). These findings indicated 
that exosomes derived from activated CD4+ T cells 
evoked fibrogenic behaviors of CFs. 
 
Exosomes derived from activated CD4+ T cells 
aggravate cardiac dysfunction post-MI 
 
To further validate the pro-fibrotic effects of Exos-
activated in vivo, Exos-activated were intravenously 
injected in the mice subject to MI. The significant 
fluorescence in the heart at the fourth week post-MI 
(Figure 3A) indicated the delivery efficacy of 
exosomes. Echocardiographic analysis revealed that the 
Exos-activated induced deterioration of cardiac 
dysfunction post-MI, as indicated by the smaller 
fractional shortening (FS%) and ejection fraction 
(EF%), and the larger left ventricular end diastolic 
diameter (LVEDD) and left ventricular end systolic 
diameter (LVESD) (Figure 3B–3F). Masson's trichrome 
staining of heart sections showed the larger dimension 
of left ventricles and more serious intestinal fibrosis in 
MI-AC group than in MI-NC group (Figure 3G, 3H). 
Accordingly, we found that the protein and mRNA 
expression of α-SMA, Col1α1 and Col3α1 were 
significantly enhanced in MI-AC group (Figure 3I–3K). 
Besides, the expression of APC and β-catenin in the 
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four groups was checked, with the results that CD4-
activated Exos upregulated the expression of APC and 
decreased β-catenin (Figure 3L–3N). These results 
indicated that canonical WNT signaling pathway might 
involve Exos-activated mediating cardiac fibrosis and 
dysfunction post-MI.  
 
MiR-142-3p critically mediates pro-fibrotic effects 
by CD4+ T cell-derived exosomes 
 
To further dissect the molecular mediator in Exos-
activated for cardiac fibrosis post-MI, we focused on 
microRNAs that emerge as a novel functional carrier of 

exosomes [27]. MiR-142-3p is highly expressed in 
CD4+ T cells [28], and a recent study found that miR-
142-3p is enriched in the exosomes derived from 
activated CD4+ T cells [29]. Thus we went on to ask 
whether miR-142-3p mediated the effects of Exo-
activated on fibrogenic behaviors of CFs. qRT-PCR 
showed that miR-142-3p was downregulated in 
activated CD4+ T cells stimulated by anti-CD3/CD28 
antibodies (Figure 4A), but it was upregulated in Exo-
activated compared with exosomes derived from naive 
CD4+ T cells (Figure 4B). Strikingly, the level of miR-
142-3p within CFs was remarkably upregulated after 
incubated with Exo-activated for 24h (Figure 4C). Next,

 

 
 

Figure 1. Characterization of activated CD4+ T cells-derived exosomes. (A) Schematic diagram for the isolation procedure of 
activated CD4+ T cells-derived exosomes. (B–E) ELISA analysis of IFN-γ,TNF-α, IL-2 and IL-10 in CD4+ T cells in response to anti-CD3 and anti-
CD28 antibodies treatment for 48h (n = 5). *P < .05. (F) Transmission electron microscopic images of adult mouse CD4+ T cells-derived 
exosomes. Scale bar  = 100 nm. The image shown is representative of three independent experiments. (G) Western blotting examination of 
exosome biomarkers in CD4+ T cells exosomes. The blots shown are representative of three independent experiments. 
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Figure 2. Activated CD4+ T cells-derived exosomes promote cardiac fibroblasts activation in vitro. (A) Immunofluorescence 
imaging analysis PKH67-labeled exosomes were taken up by cardiac fibroblasts. Green: exosomes; Red: cardiac fibroblasts; Blue: DAPI. The 
images shown are representative of three independent experiments. Scale bar = 5 μm. (B) Immunofluorescent analysis of myofibroblast 
activation. Red signals indicated α-SMA protein expression, and blue signals for nuclei. The images shown are representative of three 
independent experiments. Scale bar  = 20 μm. Ctrl: control. Exos-naive: exosomes derived from naive CD4+ cells. Exos-activated: exosomes 
derived from activated CD4+ cells.  (C) qPCR analysis of α-SMA, Col1α1 and Col3α1 levels in cardiac fibroblasts incubated with activated CD4+ 
T cells-derived exosomes for 48h. n = 3 per group. The blots shown are representative of three independent experiments. *P < .05 vs  
Exos-naive. (D) Expression levels of α-SMA, Col1a1 and Col3a1 were detected by western blot analysis. (E) Quantitative analysis of proteins 
expression using Image J software. *P < .05 vs Exos-naive. (F) EdU incorporation detection of cardiac fibroblast proliferation. The images 
shown are representative of three independent experiments. Scale bar = 50 μm. (G) Quantification analysis of cell proliferation using EdU 
assay data. *P < .05 vs Exos-naive. (H) Transwell assay of cardiac fibroblast migration. The images shown are representative of three 
independent experiments. Scale bar  = 100 μm. (I) Quantification analysis of cell migration using transwell assay data. *P < .05 vs Exos-naive. 
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Figure 3. Activated CD4+ T cells-derived exosomes deteriorate cardiac function post-MI in mouse. (A) Ex vivo fluorescence 
imaging of major organs from mice. MI-NC: mice underwent myocardial infarction and injected with DiO-labeled naive CD4+- exosomes by by 
tail vein. MI-AC: mice underwent myocardial infarction and injected with DiO-labeled activated CD4+- exosomes by by tail vein. (B) 
Representative echocardiography at the fourth week post-MI. n = 5 per group. (C–F) Statistic summary from (B). EF: ejection fraction; FS: 
fractional shortening; LVESD: left ventricular end-systolic dimension; LVEDD: left ventricular end-diastolic dimension (n = 5). #P < .001 vs 
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Sham. *P < .05 vs MI-NC. (G, H) Masson's trichrome staining of the cross section of the heart and quantification of the total fibrotic area using 
Image J software. The images shown are representative of three independent experiments. n = 5 per group. Scale bar = 1mm. #P < .001 vs 
Sham; *P < .05 vs MI-NC. (I) Expression levels of α-SMA, Col1a1 and Col3a1 were detected by western blot analysis. The blots shown are 
representative of three independent experiments. (J) Quantitative analysis of proteins expression of -SMA, Col1a1 and Col3a1 using Image J 
software. #P < .001 vs Sham; *P < .05 vs MI-NC. (K) qPCR analysis of α-SMA, Col1a1 and Col3a1 levels in the myocardium. n=3 per group.  
#P < .001 vs. Sham; *P < .05 vs. MI-NC. (L) Western blotting examination of APC and β-catenin protein expression. The blots shown are 
representative of three independent experiments. (M) Quantitative analysis of proteins expression of APC and β-catenin using Image J 
software. #P < .001 vs Sham; *P < .05 vs MI-NC. (N) qPCR analysis of APC and β-catenin levels in the myocardium. n=3 per group. #P < .001 vs. 
Sham; *P < .05 vs. MI-NC. 
 

to test whether the pro-fibrotic effects could be induced 
by exosomal miR-142-3p, CFs were transfected with 
miR-142-3p mimics. We found that miR-142-3p 
recapitulated the effects induced by Exo-activated, 
showing the differentiation and enhanced proliferation 
and migration of CFs (Supplementary Figure 3A–3E).  
 
Then we validated the biological effects of miR-142-3p 
in CFs with its inhibitors. As opposite to miR-142-3p 
mimics, application of miR-142-3p inhibitors partially 
counteracted the pro-fibrotic effects of Exo-activated 
(Figure 4D–4K). Collectively, miR-142-3p is an 
important mediator for Exo-activated to evoked 
fibrogenic behaviors of CFs. 
 
MiR-142 directly targets the canonical WNT 
signaling pathway 
 
Finally, we proceeded to elucidate the mechanisms 
underlying the pro-fibrotic effects of miR-142-3p. 
Using bioinformatics-based prediction, we found that 
miR-142-3p potentially targets Adenomatous Polyposis 
Coli (APC) at its 3′-UTR (Figure 5A). Dual luciferase 
reporter assay results indicated that miR-142-3p and 
Exos-activated significantly suppressed the relative 
luciferase activity of pmirGLO-APC-3′UTR compared 
with the control (Figure 5B). Western blotting also 
revealed that miR-142-3p overexpression and Exos-
activated treatment decreased the expression of APC in 
CFs (Figure 5C, 5D). Given that APC protein acts as an 
important regulator for canonical WNT signaling 
pathway [30, 31], the expression of β-catenin, a core 
mediator of this signal cascade, was further tested in 
cardiac fibroblasts. We found that either miR-142-3p or 
Exos-activated remarkably enhanced the expression of 
β-catenin (Figure 5E, 5F), and conversely miR-142 
inhibitors reversed the effects of Exos-activated on the 
expression of APC and β-catenin in cardiac fibroblasts 
(Figure 5G, 5H). To further validate whether miR-142 
exerts a profibrotic effect by targeting APC, we co-
transfected CFs with APC overexpression plasmid (1 
ng) and miR-142 mimics (5nM). Overexpression of 
APC abolished the upregulation of β-catenin 
expression, and reversed the upregulation of alpha-
SMA, Col1a1 and Col3al expression induced by miR-
142-3p in CFs (Figure 5I, 5J). All these results indicated 

that activated CD4+ T cells promoted cardiac 
myofibroblast activation through exosome-enriched 
miR-142-3p-WNT signaling cascade. 
 
DISCUSSION 
 
The mechanisms by which activated CD4+ T cells 
contribute to heart failure progression remain 
unelucidated. Our findings revealed exosomes derived 
from activated CD4+ T cells as important carriers in 
myofibroblast activation, which is the core element for 
cardiac fibrotic remodeling. Importantly, we identified 
that the exosome-enriched miR-142-3p critically 
mediated fibroblast-to-myofibroblast transition through 
targeting APC to activate the WNT signaling cascade. 
 
CD4+ T cell activation not only plays an important  
role in cardiac remodeling [8, 9], but also facilitates  
the development of non-heart diseases, e.g., human 
immunodeficiency virus infection [32]. Although the 
monoclonal antibody targeting to CD4+ cells has been 
available [33], its application needs to take caution due 
to the physiological necessity of CD4+ cells in response 
to inflammatory stress. In this case, it seems necessary 
to identify the critical downstream mediator of CD4+ 
cell activation-triggered cardiac fibrogenesis. Our 
present study met the needs to reveal exosome-enriched 
miR-142-3p as an important mediator for CD4+ cell 
activation-related cardiac fibrosis. Targeting miR-142-
3p should be a good alternative for treating cardiac 
remodeling post-MI. 
 
Exosomes are important carriers for intercellular 
communication [10]. Besides the miRNAs, other RNAs, 
DNAs, proteins and small bioactive materials also act as 
signal mediators in exosome-targeted cells and tissues 
[11]. In the present study, we cannot preclude the 
potential contribution of the exosomal materials other 
than miRNAs. However, consistent with present 
findings, several lines of evidences have confirmed the 
negative correlation of miR-142-3p with pathological 
cardiac remodeling and cardiac dysfunction [34]. 
 
Of note, herein we observed that miR-142-3p was 
downregulated in ventricular tissues post-MI. Under 
such scenario, several potential explanations might
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Figure 4. MiR-142 partially mediated the pro-fibrotic effects of activated CD4+ T cells-derived exosomes on cardiac fibroblasts. 
(A) MiR-142-3p expression was detected in naive CD4+ T cells and activated CD4+ T cells by qRT-PCR. n=3 per group. *P < .05. (B) MiR-142-3p 
expression was detected in exosome derived from naive and activated CD4+ T cells by qRT-PCR. n=3 per group. *P < .05. (C) MiR-142-3p 
expression was detected in CFs before and after incubated with exosomes derived from activated CD4+ T cells for 24h by qRT-PCR. n=3 per 
group. *P < .05. (D–F) Western blotting and qPCR analysis of α-SMA, Col1a1 and Col3a1 levels in cardiac fibroblasts. The blots shown are 
representative of three independent experiments. *P < .05 vs. Exos-naive. #p < .05 vs Exos-activated + miR-NC. (G) Immunofluorescent analysis of 
myofibroblast activation. The images shown are representative of three independent experiments. Red signals indicated α-SMA protein 
expression, and blue signals for nuclei. Scale bar = 20 μm. (H) Cardiac fibroblasts proliferation was detected using the EdU incorporation assay. 
The images shown are representative of three independent experiments. Scale bar = 50 μm. (I) Cardiac fibroblasts migration was detected using 
the transwell assay. The images shown are representative of three independent experiments. Scale bar =  100 μm. (J) Quantification analysis of 
cardiac fibroblasts proliferation using EdU assay data. *P < .05 vs. Exos-naive; #p < .05 vs. Exos-activated + miR-NC. (K) Quantification analysis of 
cardiac fibroblasts migration using Transwell assay data. *P < .05 vs. Exos-naive. #p < .05 vs. Exos-activated + miR-NC. 
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Figure 5. MiR-142 targets APC, resulting in the activation of WNT pathway. (A) Diagram of miR-142-3p binding site in APC 3′UTR. 
(B) Luciferase reporter assay of the interaction between miR-142-3p and APC. miR-142-3p overexpression and CD4-activated Exos treatment 
decreased the reporter activity in 293 T cells expressing the APC-Wt rather than APC-Mut vectors. n = 3 per group. *P < .05. (C–H) Western 
blot analysis of APC and β-catenin proteins. miR-142-3p overexpression and CD4-activated Exos treatment decreased the expression of APC 
and upregulated the expression of β-catenin in cardiac fibroblasts. miR-142-3p inhibitors reversed the effects of CD4-activated Exos on the 
expression of APC and β-catenin in cardiac fibroblasts. The blots shown are representative of three independent experiments. *P < .05. (I, J) 
Western blot analysis of α-SMA, Col1a1, Col3a1, APC and β-catenin proteins.  APC overexpression reversed the upregulation of β-catenin 
expression, and the profibrotic effects of miR-142-3p in CFs. *P < .05 vs. miR-NC. #p < .05 vs miR-142-3P+ vector. vector: pcDNA3.1-NC, OE-
APC:pcDNA3.1-APC. 
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account for how CD4+ cell exosome-enriched miR-142-
3p exerted pro-fibrotic effects. First, the exosomes were 
accumulated at peri-infarct region, where exosomal 
miR-142-3p, without global increase of miR-142-3p in 
the heart, might suffice to induce fibrogenic behaviors 
of local fibroblasts. This case may also explain the 
obvious appearance of fibrosis at the border region  
of infarcted myocardium. Second, the myofibroblast 
activation by local exosomal miR-142-3p may release 
bioactive molecules, such as TGF [35, 36], to trigger 
hypertrophic response of cardiomyocytes, leading to 
pathological cardiac remodeling.  
 
Our study indicated that exosomal miR-142-3p directly 
targeted to and negatively modulated the expression of

APC, which has been proven to promote β-catenin 
degradation in the cytoplasm, resulting in the inhibition 
of the canonical WNT signaling [37]. Additionally, 
APC protein is also a positive regulator for GSK-β [38], 
an important protein involved with cardiac remodeling. 
Thus, the activated CD4+ cell-derived exosomal miR-
142-3p conferred the pro-fibrotic effects by modulating 
APC-GSK-β-β-catenin signal cascade. 
 
In sum, the exosome derived from CD4+ T cells is an 
important signal carrier in cardiac fibrosis post-MI, and 
exosomal miR-142-3p serves as the signal conductor 
(Figure 6). These findings provide new insights into the 
pathogenesis of MI-related cardiac fibrosis and 
ischemia-associated heart failure. 

 

 
 

Figure 6. Activated CD4+ T cells promoted cardiac remodeling via exosomal miR-142-3p-APC-WNT signal axis. The work model 
illustrated the action modality of CD4+ cells-derived exosomes in myofibroblast activation post-MI. Myocardial infarction induced the 
accumulation of CD4+ T cells into myocardial tissue. Consequently, activated CD4+ cells-derived exosomes facilitated CFs transformation 
through exosomal miR-142-3p-APC-WNT signal axis. 
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MATERIALS AND METHODS 
 
All experimental procedures on animals were approved 
by Shanghai General Hospital Institutional Animal Care 
and Use Committee.  
 
Animal experiments 
 
A total of 20 healthy male mice (six weeks old, ~ 24 g) 
were kept under standard housing conditions 
(temperature, 21 ± 1°C; humidity, 55-60), and 
provided food and water ad libitum. Either permanent 
ligation of left anterior descending coronary artery or 
sham operation was performed as described previously 
[39]. Mice were randomly assigned into 4 groups 
including control group (n = 5), sham group (n = 5, 
mice without ligation of the left anterior descending 
branch), MI-NC group (n = 5, mice underwent MI and 
injected with exosomes derived from naive CD4+ T 
cells on the first day post-MI, 40 µg/day by tail vein), 
and MI-AC group (n = 5, mice suffered MI and 
injected with exosomes derived from activated CD4+ T 
cells on the first day post-MI, 40 µg/day by tail vein). 
After injection with Dio-labeled exosomes for 4 
weeks, mice were euthanized and the distribution of 
exosomes in major organs was assessed with IVIS 
Lumina III In Vivo imaging system (Perkin Elmer, 
USA). 
 
Transthoracic echocardiography 
 
Cardiac dimension and function parameters were 
measured by M-mode echocardiography (Hewlett 
Packard Sonos 5500, USA). The parameters including 
left ventricular shortening fraction (LVFS), left 
ventricular ejection fraction (LVEF), left ventricular 
end-systolic diameter (LVESD), and left ventricular 
end-diastolic dimension (LVEDD) were calculated 
based on the sampled images according to the standard 
formula [40].  
 
Histology 
 
Mice were euthanized at the fourth week after MI, and 
subsequently the hearts were extracted for Masson's 
trichrome staining. Briefly, hearts were fixed with 4% 
paraformaldehyde and sliced into 4 μm thickness. 
Next, the sections at the site of tissue necrosis were 
stained with Masson’s trichrome. The areas of cardiac 
fibrosis were quantified by Image J software. 
 
Isolation and culture of primary CD4+ T cells and 
cardiac fibroblasts 
 
Naive CD4+ T cells in spleen were purified using a 
mouse naïve CD4+ T cell isolation kit (Invitrogen 

8804-6824-74). The purity of the enriched subset was 
validated by flow cytometry. CD4+ T cells were 
stimulated with plate-bound anti-CD3 (5 µg/ml,  
BD Pharmingen™, catalog 553057) and anti-CD28  
(2 µg/ml, BD Pharmingen™, catalog 553294) for  
2 days. 
 
Neonatal mouse cardiac fibroblasts were enzymatically 
isolated. Briefly, ventricles of neonatal pups (1-2 days 
old) were minced into 1 mm3 pieces, and then were 
digested with the solution containing 0.1% trypsin and 
0.1% collagenase II. The dissociated cells were plated at 
37°C for 1.5h, and then the medium was changed to 
separate the cardiomyocytes from fibroblasts via 
differential adhesion.  
 
Flow cytometry 
 
Cells were incubated with APC anti-mouse CD4 
(eBioscience, catalog 4329627) on ice for 30 minutes 
in the dark, and surface staining was performed in 
FACS buffer (PBS with 2% fetal bovine serum and 2 
mM EDTA). All data were acquired on a Fortessa X-
20 (BD Biosciences), and live cells were gated for 
analysis with FlowJo software (Supplementary  
Figure 1). 
 
Isolation and characterization of exosomes 
 
Exosomes were isolated by differential centrifugation 
in conditioned media. Briefly, the conditioned 
medium was initially cleared of cellular debris, and 
the dead cells were removed with two sequential 
centrifugation steps at 2500 g for 10 min at 4°C The 
cell supernatants were then centrifuged at 110,000 × g 
for 70 min at 4°C. The pellets were washed with PBS 
and the ultracentrifugation protocol was repeated. The 
final exosome pellet was resuspended in PBS. The 
morphology of exosomes was defined by the 
transmission electron microscopy (TEM) [41]. The 
expression levels of exosomal markers TSG101, 
CD63 and CD81 were assessed by western blotting. 
Protein amounts in exosomes were quantified using 
Nanodrop. 
 
Plasmids and siRNA transfection 
 
Overexpression plasmids with pcDNA3.1-APC were 
generated by Vigene (Shandong, China). miR-142-3p 
mimics, miR-142-3p inhibitors and scrambled miRs 
(miR-NC) were synthesized by Ribobio (Guangzhou, 
China). For cellular transfection, the isolated cardiac 
fibroblasts were pre-cultured overnight and then 
transfected with plasmids or miRNAs using Lipofectamine 
3000 (Invitrogen, Cat. No. 11668019) following  
the manufacturer's recommendations. After 48 h, the 
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cells were subjected to RNA or protein isolation, or 
immunofluorescence analysis. 
 
Immunofluorescence assay 
 
After fixation with 4% paraformaldehyde, the cells were 
permeabilized with 0.5% Triton X-100. Then, the cells 
were blocked with primary antibody dilution buffer for 1 
h at room temperature and incubated with anti-α-SMA 
primary antibody overnight at 4°C. Primary antibody was 
removed and the cells were washed twice with PBS, then 
incubated with Cy3-secondary antibody (1:800, A0516, 
Beyotime, China) for 2 h at room temperature. The 
nucleus were stained with DAPI (C1005, Beyotime, 
China). Fluorescent images were taken on a microscope 
(Leica Microsystems, Mannheim, Germany). 
 
Cell proliferation and migration assay 
 
EdU (5-ethynyl-2’-deoxyuridine) staining was used to 
determine cell proliferation as described previously. As 
for cells migration assay, transwell chambers with 8-μm 
pores (Costar) were used following manufacturer’s 
instructions. Images were taken using a microscope 
(Leica Microsystems, Mannheim, Germany) at ×200 
magnification. 
 
Dual luciferase activity assay 
 
To identify the target gene of miR-142-3p, the 3' UTR-
APC luciferase reporter plasmids containing the wild-
type or mutant binding sites of miR-142-3p were 
constructed. Then, 500 ng of plasmid and 50 nM of miR-
142-3p mimic or scrambled control were co-transfected 
into 293T cells using lipofectamine 3000 (Invitrogen, 
USA). After transfection for 36 h, the luciferase activity 
was measured using a Dual Luciferase Report Assay Kit 
(Promega, USA) according to the manufacturer’s 
instructions. All assays were done in triplicate and 
repeated in, at least, two independent experiments.  
 
Quantitative real-time PCR 
 
Total RNAs were extracted with TRIZOL reagent 
following the manufacturer's instructions (Takara, 
Dalian, China). The PrimeScriptTM RT reagent Kit 
(Takara Bio, Shiga, Japan), miRNA reverse 
transcription kit and miR-142-specific stem-loop 
primers (Sangon Biotech, shanghai, China) were used to 
perform the reverse transcription in order to synthesize 
single-stranded cDNA. qRT-PCR was performed with 
the SYBR Green PCR Master Mix (TaKaRa, China) 
using ABI-7300 Real-Time PCR Detection System 
(Applied Biosystems, USA). U6 and GAPDH were 
used as internal controls. Primers used for qRT-PCR 
analysis were listed in Supplementary Table 1. 

Western blot analysis 
 
Total proteins were separated on 7.5% SDS-PAGE at 
60-100 V for 2 h, and then transferred to PVDF 
membrane (Millipore, USA) at 300 mA for 1.5 h. The 
membranes were blocked with 5% non-fat dry milk for 
1.5 h at room temperature. Next, membranes were 
incubated with primary antibodies at 4°C overnight and 
secondary antibodies at room temperature for 2 h. The 
primary antibodies included: rabbit anti-α-SMA 
(1:1000, ab32575, Abcam), rabbit anti-Col1a1 (1:1000, 
A16891, ABclonal), rabbit anti-Col3α1 (1:1000, A3795, 
ABclonal), rabbit anti-β-tubulin (1:1000, #2128, CST), 
rabbit anti-CD63 (1:1000, ab217345, Abcam), rabbit 
anti-CD81 (1:1000, ab109201, Abcam), anti-TSG101 
(1:1000, ab125011, Abcam), rabbit anti-β-catenin 
(1:1000, #8480, CST), and rabbit anti-APC (1:1000, 
ab40778, Abcam). All blots were visualized using the 
ECL reagent Kit (Millipore Corp, USA). The blot 
intensities were quantified with Image J software. 
 
Enzyme-linked immunosorbent assay (ELISA) 
 
The naive CD4+ T cells in 96-well plates (1 × 104 
cells/well) were treated by anti-CD3/CD28 bodies. After 
36 hours, the culture supernatant was collected and 
concentrations of IL-2, IL-10, IFN-γ and TNF-α were 
analyzed using ELISA kits (Cusabio, Wuhan, China). 
 
Statistical analysis 
 
The data were expressed as the mean ± SD and analyzed 
using SPSS 19.0. Statistical comparisons between 2 
groups were performed by a t-test. The difference among 
multiple groups was evaluated using a one-way ANOVA 
followed by Bonferroni post-tests, and P < 0.05 was 
regarded as statistically significant. 
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SUPPLEMENTARY MATERIALS 
 
Supplementary Figures 

 
 

 

 
 

Supplementary Figure 1. The purity of CD4+ T cells. CD4+ T cells in spleen were purified using a mouse naïve CD4+ T cell isolation kit, 
and the purity of the naive CD4+ T was validated by flow cytometry. The image shown is representative of three independent experiments. 

 

 
 

Supplementary Figure 2. CD4+ T cells infiltrated in the heart of myocardial infarction. (A) Electrocardiograms showing significant 
ST-segment elevation by MI. The images shown are representative of three independent experiments. The electrocardiograms  shown are 
representative of three independent experiments. (B) Representative echocardiograms and picture of sham-operated and MI mice at four 
weeks after surgery. n=5 per group. (C) Immunofluorescent labeling of CD4+ cells in mice heart at the 4th week post-MI. The images shown 
are representative of three independent experiments. Ctrl: control. MI: myocardial infarction. Scale bar  = 50 μm.  
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Supplementary Figure 3. MiR-142-3p promoted cardiac fibroblasts differentiation, proliferation and migration. (A) Western 
blotting analysis of α-SMA, Col1a1 and Col3a1 levels in cardiac fibroblasts after transfected with miR-142-3p mimics or miR-NC for 48h. The 
blots shown are representative of three independent experiments. (B) Quantitative analysis of proteins expression. n=3 per group. *P < .05. 
(C) Immunofluorescent analysis of myofibroblast activation. The images shown are representative of three independent experiments. Scale 
bar = 20 μm. (D) qRT-PCR detection of α-SMA, Col1a1 and Col3a1 in cardiac fibroblasts after transfected with miR142-3p mimics for 48h. n=3 
per group. *P < .05. (E) EdU incorporation detection of cardiac fibroblast proliferation. The images shown are representative of three 
independent experiments. Scale bar = 50 μm. (F) Quantification analysis of cell proliferation using EdU assay data. *P < .05. (G) Transwell 
assay of cardiac fibroblast migration. The images shown are representative of three independent experiments. Scale bar  = 100 μm.  
(H) Quantification analysis of cell migration using transwell assay data. *P < .05. 
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Supplementary Table 
 
Supplementary Table 1. Primers used in this study. 

Name Sequence (5’- 3’) 
α-SMA 
 

Forward: ATCAGGGAGTAATGGTTGGAATG 
Reverse: GGTCTCAAACATAATCTGGGTCAT 

Col1a1 Forward: AGCTTTGTGGACCTCCGGCT 
Reverse: ACACAGCCGTGCCATTGTGG 

Col3a1 Forward: TGAATGGTGGTTTTCAGTTCAG 
Reverse: GATCCCATCAGCTTCAGAGACT 

APC Forward: GCCTCAGCACTTACCATTCA 
Reverse: TCCTCTCCTCCGCCACA 

β-catenin Forward: CTTCCAGACACGCCATCATG 
Reverse: TGGTGATGGCGTAGAACAGT 

rno-mir-142-3p RT UAGCAGCACAUCAUGGUUUACA 
mir-142-3p 
 

Forward: CGCGTAGCAGCACATCATGG 
Reverse: AGTGCAGGGTCCGAGGTATT 

miR-142-3p mimics UAGCAGCACAUCAUGGUUUACA 
miR-142-3p inhibitors  UGUAAACCAUGAUGUGCUGCUA 
U6 Forward: AGAGAAGATTAGCATGGCCCCTG 

Reverse: AGTGCAGGGTCCGAGGTATT 
β-actin Forward: TGGCACCACACCTTCTACAAT 

Reverse: GACCAGAGGCATACAGGGAC 
 
 
 
 


