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Surveillance of avian influenza 
viruses from 2009 to 2013 in South 
Korea
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Avian influenza viruses (AIVs) are carried by wild migratory waterfowl across migratory flyways. 
To determine the strains of circulating AIVs that may pose a risk to poultry and humans, regular 
surveillance studies must be performed. Here, we report the surveillance of circulating AIVs in 
South Korea during the winter seasons of 2009–2013. A total of 126 AIVs were isolated from 7942 
fecal samples from wild migratory birds, with a total isolation rate of 1.59%. H1‒H7 and H9‒H11 
hemagglutinin (HA) subtypes, and N1‒N3, N5, and N7‒N9 neuraminidase (NA) subtypes were 
successfully isolated, with H6 and N2 as the most predominant HA and NA subtypes, respectively. 
Sequence identity search showed that the HA and NA genes of the isolates were highly similar to 
those of low-pathogenicity influenza strains from the East Asian-Australasian flyway. No match 
was found for the HA genes of high-pathogenicity influenza strains. Thus, the AIV strains circulating 
in wild migratory birds from 2009 to 2013 in South Korea likely had low pathogenicity. Continuous 
surveillance studies such as this one must be performed to identify potential precursors of influenza 
viruses that may threaten animal and human health.

Avian influenza viruses (AIVs) are perpetuated in populations of wild aquatic birds, which are thought to be 
the primary reservoir or natural hosts of AIVs1,2. In wild bird species, AIVs are divided into 16 hemagglutinin 
(HA) and 9 neuraminidase (NA) subtypes based on serogrouping, and generally cause asymptomatic or mild 
disease3. Although wild aquatic birds typically carry low pathogenic avian influenza (LPAI), transmission and 
adaptation of these viruses to other bird species (e.g., domestic fowl) and to non-avian species (i.e., mammals) 
may result in respiratory disease4. Transmission of AIVs from wild waterfowl to poultry may arise from direct 
contact between the animals or their contaminated environments5. Poultry in farms infected with highly patho-
genic avian influenza (HPAI) viruses are typically culled to prevent further spread of the virus, resulting in large 
agricultural and economic losses to affected locations6.

Among the HA subtypes that have the ability to cross the mammalian species barrier, two HA subtypes, H5 
and H7, are associated with high pathogenicity7. Notably, HPAI H5N1 and H7N9 viruses are genetic reassortants 
of LPAI segments8,9. Thus, LPAI viruses are potential precursors of novel HPAI viruses. However, since it is vir-
tually impossible to prevent the transmission of influenza A virus from wildfowl to domestic and wild animals, 
continuous surveillance of wild birds must be conducted to monitor and detect strains that have the potential 
to cause disease in both animals and humans.

In this study, we report the surveillance of AIVs in wild birds in South Korea during the winter seasons of 
2009 to 2013. We isolated fecal samples from migratory bird stopover sites in South Korea, which is part of the 
East Asian-Australasian flyway (EAAF), and performed nucleotide sequence analysis to determine the distribu-
tion of AIVs among migratory wildfowl in South Korea.

Results
Prevalence of avian influenza viruses.  During the winter seasons of 2009‒2013, a total of 7942 wild 
bird fecal samples were collected from wild migratory bird habitats in South Korea (Fig. 1a). HPAI isolates have 
been obtained from wildfowl in these sites, and these locations are adjacent to sites of known HPAI outbreaks 
among poultry in South Korea, making these sites ideal for surveillance10. From the 7942 fecal samples, 126 
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Figure 1.   Sampling sites and hemagglutinin (HA) and neuraminidase (NA) subtypes of isolated avian influenza 
viruses from the fecal matter of wild migratory birds from 2009–2013. (a) Sampling sites (triangles) from 
2009–2013, and representative clusters of highly pathogenic avian influenza outbreaks in poultry in South Korea 
from 2008–2014 (circles). Frequencies of isolates (out of 126 total isolates) per sampling site are shown in the pie 
chart. All (b) HA and (c) NA subtypes were identified through reverse transcription polymerase chain reaction 
using universal primers.
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AIVs were isolated through the standard chicken egg isolation method11,12 (Table  1). Eighteen viruses were 
isolated in 2009, 4 in 2010, 18 in 2011, 1 in 2012, and 85 in 2013 (Table 1). The annual AIV isolation rate ranged 
from 0.42 to 5.14%, and the total virus isolation rate was 1.59% (Table 1). The location with the highest number 
of isolates was Cheonsuman Bay in Chungnam, South Korea (Fig. 1a).

HA and NA subtype combinations.  Reverse transcription polymerase chain reaction (RT-PCR) using 
full-length influenza A virus universal primers was performed to determine the HA and NA subtypes of the 
isolates13. In the course of the 5-year study, we were able to identify the HA and NA subtypes of 118 out of 126 
isolates (Table 2). In particular, we were able to isolate the H1‒H7 and H9‒H11 HA subtypes, and the N1‒N3, 
N5, and N7‒N9 NA subtypes of influenza virus from the fecal matter of wild migratory birds. The distributions 
of the HA and NA subtypes isolated per year are shown in Fig. 1b,c.

Over the 5-year sampling period, H6 (38.1%), H5 (22.2%), and H1 (11.9%) were the most frequently isolated 
HA subtypes, followed by H11 (8.7%), H2 (7.1%), H10 (5.6%), H9 (2.4%), H3 (1.6%), H4 (1.6%), and H7 (0.8%) 
(Table 2; Fig. 2a). Viruses belonging to the H8 and H12‒H16 subtypes were not detected. The most frequently 
detected NA subtypes were N2 (33.3%), N1 (27%), and N3 (16.7%), followed by N8 (7.1%), N7 (5.6%), N9 (2.4%), 
and N5 (1.6%) (Table 2; Fig. 2b). Viruses belonging to the N4 and N6 subtypes were not detected. However, the 
NA subtypes of 8 samples were not identified (NX: 6.3%) possibly due to mutations on the sites targeted by our 
NA primer sets. In total, 28 combinations of HA and NA subtypes were isolated (Table 2; Fig. 2c), and the most 
frequently isolated subtype was H6N2 which accounted for 19.8% (n = 25) of all isolates, followed by H6N1 
(13.5%, n = 17), H1N1 and H5N2 (at 8.7% each with n = 11 per subtype), and H5N3 (7.1%, n = 9). Certain HA 
subtypes were found in combination with only one NA subtype: H3 combined with only N8; H4 with N2; H7 
with N7; and H9 with N2. Based on the HA and NA sequencing data, no co-infection with two or more AIV 
subtypes was found in any sample. There was also high variability among the isolated AIV subtypes and the 
isolation rates per year.

HA and NA sequence comparison of avian influenza isolates.  To determine the genetic relation-
ship of the isolates with HPAI HA, we compared the HA and NA genes of representative avian influenza isolates 
with known sequences. BLAST analysis of the HA and NA gene segments of avian influenza isolates revealed 
that most of them were similar to Eastern Asia genetic strains circulating in China, Korea, Japan, and Mongolia 
(Supplementary Table S1). All the H6- and H11-type isolates were found to have HA genes closely related to 
strains from the Republic of Georgia and the Netherlands (Supplementary Table S1). In our analysis, the HA 
gene nucleotide sequences of avian influenza isolates were similar to those of low-pathogenicity influenza strains 
and did not match any high-pathogenicity influenza strains.

Table 1.   Isolation rates of AIVs from wild migratory bird fecal samples in South Korea, winter 2009‒2013. 
Percentages are relative to the total per year.

Year No. tested No. of RT-PCR positive (%) No. of virus isolates (%)

2009 350 18 (5.14) 18 (5.14)

2010 950 4 (0.42) 4 (0.42)

2011 1784 18 (1.01) 18 (1.01)

2012 1353 1 (0.07) 1 (0.07)

2013 3505 85 (2.43) 85 (2.43)

Total 7942 126 (1.59) 126 (1.59)

Table 2.   Distribution of influenza A virus HA and NA subtypes among 126 avian influenza virus isolates.

Subtype N1 N2 N3 N4 N5 N6 N7 N8 N9 NX Total

H1 11 – 2 – – – – 2 – – 15

H2 – 2 4 – – – – – 2 1 9

H3 – – – – – – – 2 – – 2

H4 – 1 – – – – – – – 1 2

H5 1 11 9 – – – 5 2 – – 28

H6 17 25 1 – 2 – – 3 – – 48

H7 – – – – – – 1 – – – 1

H8 – – – – – – – – – – 0

H9 – 3 – – – – – – – – 3

H10 5 – – – – – 1 – – 1 7

H11 – – 5 – – – – – 1 5 11

Total 34 42 21 0 2 0 7 9 3 8 126



4

Vol:.(1234567890)

Scientific Reports |        (2021) 11:23991  | https://doi.org/10.1038/s41598-021-03353-1

www.nature.com/scientificreports/

Phylogenetic analyses of H6‑ and N2‑subtype isolates.  Given the frequency of H6-subtypes among 
our isolates and, we next compared representative H6 isolates from our study with previously reported H6 iso-
lates from different locations via phylogenetic analysis. In general, our isolates clustered with those obtained 
from wild birds in different locations along the EAAF, particularly from China and Japan (Fig. 3a). Notably, 
some of our samples clustered with a 2016 isolate from the Pacific flyway, and some samples clustered with iso-
lates from the East Atlantic flyway obtained from earlier years (2007 and 2010). These findings indicate that the 
genetic variants of H6-subtype AIVs that circulate in South Korea is generally confined to the EAAF. However, 
some of the H6 genetic variants in 2009–2013 may have been carried to different flyways. Genetic variants from 
other flyways have also contributed to the diversity of H6-subtype AIVs in South Korea in 2009–2013.

We also compared representative N2 isolates with previously reported isolates from various locations through 
phylogenetic analysis. In general, most of our isolates clustered with those of the Eurasian lineage (Fig. 3b). 
However, one isolate, A/AB/Korea/JB10/11(H9N2), along with other samples from China, clustered with isolates 
from the North American flyways obtained at an earlier year (2006). This indicates an event between 2006 and 
2011 that carried the North American N2 genetic variant(s) to Eurasian flyways.

Discussion
Since the zoonotic emergence that caused lethal outbreaks in poultry and humans in 1997, HPAI H5N1 virus 
strains have been established in domestic and wild bird populations14–16. HPAI outbreaks in domestic birds have 
taken place in all regions of the world between January 2013 and May 2021, and the most affected regions were 
Asia, Africa, and Europe17. Since 2003, South Korea has reported several HPAI outbreaks, mainly caused by 
H5N1, H5N8, and H5N6 viruses, and migratory birds are proposed to be the sources of these HPAI strains18,19. 
Previously, only the H5 subtypes were associated with serious infectious disease; however, strains of other HA 
subtypes (e.g., H6, H7, H9, and H10) have recently infected humans and have shown pandemic potential20–22.

In this surveillance study, we collected a total of 7942 fecal samples from stopover sites of wild migratory 
birds in South Korea. While we did not find the HPAI H5 subtypes (H5N1 and H5N8) that broke out in South 
Korea, we were able to isolate 126 samples of LPAI viruses, including those belonging to the H5, H6, H7, and H9 
subtypes. There was high variability in isolation rates and subtype frequencies across the years. In particular, we 
had a very low isolation rate in 2012 despite collecting more samples that year than in 2009 and 2010. Isolation 
rates and AIV variability ultimately depend on the migration patterns of the birds that carry the AIVs. This may, 

Figure 2.   Overall frequency of hemagglutinin (HA) and neuraminidase (NA) subtypes of avian influenza 
viruses (AIVs) isolated from the fecal matter of wild migratory birds in Korea (2009–2013). The frequencies of 
(a) HA subtypes, (b) NA subtypes, and (c) HA and NA combinations of AIV isolates were calculated relative to 
the total number of isolates (n = 126). NX: unknown NA subtypes.



5

Vol.:(0123456789)

Scientific Reports |        (2021) 11:23991  | https://doi.org/10.1038/s41598-021-03353-1

www.nature.com/scientificreports/

in turn, be affected by shifts in seasonal patterns and other environmental factors23. The timing of sampling may 
also affect isolation rate, as this will be affected by the bird species present in the stopover sites, with certain 
species (e.g. Anseriformes and Charadriiformes) more likely to carry AIVs across flyways than others24. Com-
positions of the population (e.g., frequency of juveniles), which is also influenced by timing and environmental 
factors, may also affect AIV diversity25,26. However, for this study, we did not identify the species sources of the 
fecal samples, so we could not know for certain whether the bird population at the time of sampling affected our 
AIV isolation rates. These factors should be considered in future long-term surveillance studies, so that we may 
further understand the dynamics of AIVs among migratory waterfowl.

The most frequently isolated HA subtype was H6, which accounted for 38.1% (n = 48) of the isolates, with 
H6N2 and H6N1 being the most prevalent. Our results are in line with a study that reported that H6N2 and 
H6N1 were the most commonly isolated H6-subtype IAVs isolated from migratory and domestic birds in a 
surveillance study in South Korea in 2008 to 200927. Likewise, a number of studies in other locations, including 
China, North America, and Europe, have reported that H6-subtype AIVs are the most commonly detected AIV 
subtypes among wild and domestic fowl28–31. Given that H6-subtype AIVs are classified as LPAI, the implications 
of the prevalence of this subtype to animal and human health are still unclear. However, AIVs of the H6 subtype 
may reassort with AIVs of other subtypes and act as precursors to HPAIs8, thereby emphasizing the need for 
continuous surveillance and characterization of LPAIs in the wild.

As expected, most of our H6- and N2-subtype isolates clustered with samples from the EAAF, especially 
with isolates obtained in China and Japan. In a previous study, five H6 subtypes (H6N1, H6N2, H6N5, H6N6, 
and H6N8) were found to have circulated in Eastern and Southern China from 2002 to 2010 and 2009 to 2011, 
with H6N2 and H6N6 being predominant28,32. Four H6 subtypes (H6N1, H6N2, H6N5, and H6N8) circulated 
in South Korea between 2009 and 2013. South Korea is one of the migratory stopover sites on the EAAF, and 
our results imply that migratory birds passing through Korea along the EAAF do not carry all the AIV subtypes 
circulating in China. A few of our H6 samples also clustered with samples from the Pacific and the East Atlantic 
flyways obtained from different years, and one of the representative N2 samples clustered with isolates from the 
North American flyways. These findings indicate that intermingling among migratory birds occasionally occurs 
in breeding and wintering sites where flyways intersect and facilitates the movement of genetic variants from 
the EAAF to other flyways and vice versa.

Here, we report the distribution of circulating AIVs in migratory water birds in South Korea during 
2009‒2013. The most prevalent AIVs were of the H6 subtype, and the circulating AIVs in this period were 
similar to low-pathogenicity strains along the EAAF. Because wild birds are able to transmit pathogenic influenza 

Figure 3.   Phylogenetic analyses of representative H6- and N2-subtype avian influenza fecal isolates in South 
Korea in 2009–2013. The assembled (a) H6-subtype hemagglutinin and (b) N2-subtype neuraminidase 
coding sequences of representative isolates (blue, underlined) were compared to different isolates from various 
locations. Wildfowl migratory flyways that cover these locations are indicated. Bootstrap values ≥ 600 are shown. 
BSMF Black Sea-Mediterranean flyway, EAAF East Asian-Australasian flyway. Red diamond: the Republic of 
Georgia is at the intersection of the BSMF, Central Asian, and East Africa-West Asian flyways.
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viruses to local fowl, surveillance studies such as this are important so that we may be able to predict and mitigate 
the effects of AIVs on animal and human health.

Methods
Sample collection and virus isolation.  Through surveillance studies from winter of 2009 to 2013, a total 
of 7942 fecal samples were collected from stopover sites of wild migratory birds in South Korea (Table 1, Fig. 1a). 
Fecal samples were stored in transport medium composed of phosphate buffered saline (PBS) and glycerol (50%) 
with antibiotics (1000 U/ml of penicillin G and polymyxin B, 500 U/ml of nystatin, 250 µg/ml of gentamicin, 
60 µg/ml of ofloxacin, and 200 µg/ml of sulfamethoxazole). The collected samples were stored at − 80 °C until 
analysis.

Samples were suspended in antibiotic-supplemented PBS and inoculated into the allantoic cavity of 10-day-
old embryonated chicken eggs12. The allantoic fluid was collected. Turbid fluid was assumed to be contaminated 
with bacteria or fungi and was discarded. All viral isolates were collected from the first egg passage. Viral presence 
was identified through hemagglutination assay using 0.5% chicken red blood cells11.

RT‑PCR and sequence analysis.  Viral gene amplification was performed as previously described25. 
Briefly, viral RNA was extracted from the allantoic fluid of embryonated chicken eggs infected with the super-
natant of fecal samples using the RNeasy Mini Kit (Qiagen, Valencia, CA). For HA and NA gene subtyping, 
one-step RT-PCR was carried out using the One Step RT-PCR Kit (Qiagen, Valencia, CA) with HA- or NA-
specific universal primer sets designed and described in a previous study13. The RT-PCR reactions were prepared 
according to manufacturer instructions. Each 50-μL reaction contained 1.5 μL of each primer (20 pmol/μL) and 
2 μL of viral RNA (1 pg–2 µg). Reverse transcription was performed at 50 °C for 30 min, and standard PCR was 
performed with an initial denaturation at 94 °C for 10 min, followed by 35 cycles of 94 °C for 30 s, 56 °C for 30 s, 
and 72 °C for 2 min, and a final extension at 72 °C for 10 min. After purification with the QIAquick Gel Extrac-
tion Kit (Qiagen, Valencia, CA), the amplified gene segments were commercially sequenced at Cosmogenetech 
Co. (Seoul, South Korea) using the high-throughput DNA Analyzer (Applied Biosystems 3730xl DNA Analyzer, 
Thermo-Fisher Scientific, Waltham, MA), which is based on the Sanger sequencing technology. Full-length 
sequences (HA: 1710 bp; NA: 1410 bp) were assembled using the Lasergene sequence analysis software package 
(DNASTAR, Madison, WI). A BLASTn query was performed to identify the HA and NA subtypes of the isolates 
based on the obtained sequences.

Phylogenetic analyses of H6 and N2 coding sequences.  The assembled complete coding sequences 
of representative H6- and N2-subtype isolates were aligned using CLUSTAL V33. Rooted phylogenetic trees were 
prepared using the neighbor-joining method (1000 bootstrap replicates) and then visualized with the NJ Plot 
software34. Accession numbers of HA and NA sequences of isolates included in the phylogenetic analyses are 
listed in Supplementary Table S2.

Data availability
All data generated or analysed during this study are included in this published article.
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