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Abstract

The use of sequence alignments to understand protein families is ubiquitous in molecular biology. High quality alignments
are difficult to build and protein alignment remains one of the largest open problems in computational biology.
Misalignments can lead to inferential errors about protein structure, folding, function, phylogeny, and residue importance.
Identifying alignment errors is difficult because alignments are built and validated on the same primary criteria: sequence
conservation. Local covariation identifies systematic misalignments and is independent of conservation. We demonstrate an
alignment curation tool, LoCo, that integrates local covariation scores with the Jalview alignment editor. Using LoCo, we
illustrate how local covariation is capable of identifying alignment errors due to the reduction of positional independence in
the region of misalignment. We highlight three alignments from the benchmark database, BAliBASE 3, that contain regions
of high local covariation, and investigate the causes to illustrate these types of scenarios. Two alignments contain sequential
and structural shifts that cause elevated local covariation. Realignment of these misaligned segments reduces local
covariation; these alternative alignments are supported with structural evidence. We also show that local covariation
identifies active site residues in a validated alignment of paralogous structures. Loco is available at https://sourceforge.net/
projects/locoprotein/files/
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Introduction

Multiple sequence alignments are critical for generating and

testing hypotheses based on protein structure, function, and

phylogeny. Protein alignments are built based on the assumption

that each position (column) in the alignment is homologous [1].

With structural information, homology is typically validated by

demonstrating that two residues occupy the same location in 3D

space since structural homology implies sequential homology [2].

If only sequence information is available, positions are assigned

based on the conservation of residue identity or properties, which

is inherently less reliable than structural inference. The logic of

interpreting sequence alignments is, therefore, circular: alignments

are built, validated, and used based on a single criterion,

conservation. A conservation-independent property of sequence

alignments is a valuable adjunct to validate a sequence alignment.

Structure alignments are used to validate sequence alignments

because they provide evidence independent of sequence; thus,

benchmark datasets like BAliBASE include structural support

[3,4]. Unfortunately, structures are comparatively rare and cannot

be used to validate all sequence alignments. In BAliBASE 3, there

are many alignments that contain few structural seeds compared

to the number of sequences. Furthermore, Kuziemko et al. noted

that structurally supported alignments often do not score as highly

as alignments that optimize the dynamic programming scoring

function of sequence alignment algorithms, suggesting sequence

alignment algorithms frequently reject the structurally valid

alignment when such an alignment exists [2]. As sequence and

structure grow more distant it becomes increasingly difficult to

produce an alignment.

Multiple sequence alignment methods are typically bench-

marked against high-quality datasets such as BAliBASE [3,4]. In

principle, BAliBASE alignments should represent the upper limit

of quality that can be achieved using existing methods as they are

both structure-aided and manually curated. Authors of sequence

alignment algorithms strive to create alignments that are the most

similar to the benchmark dataset. Benchmark datasets must be of

the utmost quality to be reliable for assessing competing methods.

However, Edgar demonstrated that inconsistencies and potential

errors exist even in benchmark datasets like BAliBASE [5].

Another resource for hand-curated structure-based sequence

alignments is the Conserved Domain Database (CDD) [6]. While

CDD, was not originally designed to be a benchmark dataset like

BAliBASE 3, its hand-curated structure alignments of are sufficient

quality to be used as the benchmark dataset when analyzing

structure alignment algorithms [7].

Alignments are also susceptible to errors for reasons indepen-

dent of the circular logic of sequence alignment. Without careful

manual curation, structure alignment algorithms are susceptible to

shift error [7]. Shift errors are misalignments where the sequence
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has been shifted by 1 or more positions, though major secondary

structural elements are still aligned. Since structure-based align-

ments are built by progressively aligning sequences to the seed

structure alignment, shift errors can propagate systematically.

Progressive multiple sequence alignment strategies can also be

prone to systematic propagation of errors as sequences are

progressively added to a growing alignment. Iterative sequence

alignment methods attempt to resolve this issue by employing a

refinement step after the initial alignment is built. However, at

present there is no method that reliably identifies shift errors. A

disagreement between two theoretically valid alignment predic-

tions is therefore very difficult to resolve; the current solution is to

trust a benchmark dataset if available.

Covariation analysis is a statistical method used to understand

coevolution in proteins [8]. Covariation can be understood

intuitively as a measure of the reduction in uncertainty about

one position given information about another. Covariation scores

have minima when either both positions are absolutely conserved

or when both positions are randomly assorting. A high covariation

score implies that knowledge of one position provides information

about the identity of the other.

Covariation statistics are used to indicate whether two residues

are potentially coevolving [9–16]. Coevolving residues are thought

to arise by a mechanism of constrained amino acid change

[9,17,18]. Many covariation statistics predict contacting pairs with

high accuracy [13–15,19]. If this dependency between positions is

due to some evolutionary process, like structural or functional

constraints, then it is often defined as coevolution [20]. For clarity,

coevolution is an evolutionary process, and covariation is the

statistical non-independence used to identify it. When using

covariation statistics to find coevolving pairs of positions a number

of assumptions about the nature of the alignment are made; this

includes the assumption that the protein family is properly aligned

and all members are orthologous [15].

We previously demonstrated that with systematic sequence

shifts (ie. synthetic misalignments), alignments show patterns of

increased sequence-local covariation in the shifted segment [15].

We have extended the observations from [15] into an alignment

curation tool called LoCo. LoCo is based on Jalview [21,22] and

provides a local covariation measure in real-time while curating an

alignment. We use case studies to show how to apply LoCo to both

the Conserved Domain Database [7] and BAliBASE 3 database

[4] to identify sequence alignments that have regions of high local

covariation. We provide examples of structurally validated

realignments of the BAliBASE 3 benchmark dataset with both

covariation and structural justification. Increased local covariation

also identifies important functional residues in a structurally valid

alignment from the BAliBASE 3 database. Finally, we demonstrate

the method of investigating local covariation to determine if

adjustments of the alignment is warranted.

Results

Illustrating How Covariation Identifies Sequence Shifts
The covariation statistic Zp (calculated as in Materials and

Methods) is exquisitely sensitive to identifying residue non-

independence in pairs of columns [15,23]. To illustrate this effect,

we created a 7-position synthetic alignment prepended to a 200

residue alignment of methionine aminopeptidase (Materials and

Methods). Each column in the alignment is composed of a random

assortment of 3 residues. Then, a small fraction of positions two

through six were shifted 1 position to the right (Figure 1A).

Positions 1 and 7 were not shifted and so were always randomly

assorting relative to the other positions.

This alignment was loaded into the LoCo alignment viewer,

which uses the existing Jalview codebase but replaces the Quality

score with Local Covariation (Materials and Methods). Figure 1B

(top) shows a heatmap of covariation scores when the statistic Zp

[13] is applied to the synthetic block when no sequences are shifted

(Materials and Methods). Darker shading represents higher

conservation or covariation scores. Since all positions are

randomly assorting and thus independent of one another, this

heatmap represents the background covariation. The starting

conservation scores, as calculated by Jalview, for the initial aligned

positions are shown below. Figure 1B establishes a baseline for

comparison; light grey implies a negligible covariation score.

The heatmap shown in Figure 1C shows all pairwise covariation

scores when positions 2 through 6 contain 3% (6 of 200) shifted

sequences. It is apparent that all pairwise covariation scores in the

shifted region have increased compared to the baseline. Further-

more, the unshifted flanking positions, 1 and 7 (and all other

unshifted positions in the MAP1 alignment), remain unchanged

compared to the baseline shown in Figure 1B and have negligible

covariation scores. Finally, Figure 1D shows that when 5% (10 of

200) of sequences are shifted, there is a marked increase in

covariation scores in the misaligned region; also, there is no

noticeable change in the amount of covariation between any

unshifted positions. Finally, notice that conservation, which is the

primary criterion on which alignments are built and evaluated,

remains visibly unchanged in Figures 1B, 1C, and 1D.

The reason for increased local covariation in the shifted regions

is the reduction of uncertainty between shifted positions [13,15].

When two positions assort independently, as seen in Figure 1B, the

knowledge of the residue present at a given position provides no

information about any other position. However, when a block of

sequence is shifted, positions are no longer independent, and

positions in the same shifted block share predictive power. This

illustration explains the observation in [15] that local covariation

strongly correlates with systematic misalignments.

This simple illustration shows that local covariation easily

identifies segments of alignments with these types of sequence

shifts as described previously [15]. Previously [24], we used local

covariation to identify a region that could assume either be alpha

helical or beta stranded conformation within the orthologous

phosphoglycerate kinase gene family. The remainder of this paper

shows how local covariation can be used to identify other possible

sources of high local covariation. As shown here, these can include

putative systematic sequence misalignments and paralogous

contamination of gene families.

Identifying Alignments with High Local Covariation
Local covariation is calculated as the mean covariation score

over a window 6. If this mean score is greater than or equal to 2.0

then it is considered a high local covariation peak. Of the 6874

conserved domains (cd) analyzed in the CDD database (REF),

2189 had at least one peak at or above 2.0 (Figure 2A). We also

analyzed the BAliBASE 3 benchmark database. Figure 2B shows

that the majority of BAliBASE alignments do not have regions of

increased local covariation. However, we found that 60 of the 217

alignments in BAliBASE 3 had at least one peak at or above the

2.0 local covariation threshold. Regions of high local covariation

appear to be common in these alignment databases. We show

below that these should be investigated manually to determine the

root cause.

Realigning a BAliBASE Multiple Sequence Alignment
In the BAliBASE 3 dataset, there were 37 alignments that

contain contiguous blocks of high local covariation (filled dots). Of

Sequence Alignment Analysis by Local Covariation
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these, 30 had three or more contiguous high local covariation

peaks, representing an extended range of high local covariation.

We have chosen 3 alignments BB11003, BB30002, and BB40047

from 3 different categories of BAliBASE that demonstrate the

characteristics of alignments with high local covariation. We

illustrate how LoCo can be used to characterize the source of the

high local covariation.

We identified a contiguous segment of high local covariation in

the BB40047 alignment of BAliBASE 3. BB40047 is built upon the

alignment of two structures containing a disulphide bond shown in

Figure 3C. Figure 3A, a screenshot from the LoCo tool, shows the

sequence alignment corresponding to the coloured region of the

structure in Figure 3C. The region highlighted is the only block

showing increased local covariation in this alignment. The

BAliBASE alignment does not show conservation of the disulphide

bonded cysteine; the presence of a cysteine is necessary to

maintain the disulphide bond.

Although there is no structural information for the highlighted

sequences, we can infer that the adjacent cysteine should be

aligned to the disulphide bonded position because the existing

alignment would place the cysteine in a conformation unable to

form a disulphide bond. Figure 3D shows that the highlighted

sequences group together when the region of high local

covariation is clustered using the built-in Jalview function for

neighbour joining tree by percent identity. Using the procedure

outlined in the Methods section, the region can be adjusted as

shown in Figure 3B. The adjusted alignment shows perfect

conservation of the cysteine that is absolutely necessary for

maintaining the disulphide bond shown structurally in Figure 3C.

The adjusted alignment also shows a marked decrease in local

covariation. After the sequences have been adjusted, they no

Figure 1. Local covariation identifies alignment shift errors. (A) A synthetic alignment was created for covariation analysis. Each of the 7
positions (columns) in the alignment contained a random assortment of 3 residues. A subset of the sequences (rows) in the alignment were then
shifted for positions 2, 3, 4, 5, and 6 one position to the right. Position 1 and position 7 were not shifted. (B) A matrix of all pairwise covariation scores
for the unshifted synthetic alignment where darker grey represents higher covariation calculated as in Materials and Methods. All positions randomly
assort compared to one another; thus, panel B represents the background covariation for the synthetic block. Jalview conservation scores are also
shown for each position. (C) Matrix of covariation scores where 3% of sequences (6 of 200) are shifted for positions 2–6. Covariation increases
between all shifted positions, but does not increase between unshifted positions 1 and 7 and any of the unshifted positions. Conservation scores
remain unchanged. (D) Matrix of covariation scores like panel C, except 5% of sequences are shifted. Covariation scores increase further between
shifted positions, but unshifted positions show scores comparable to background as in panel A. Conservation scores remain unchanged.
doi:10.1371/journal.pone.0037645.g001

Figure 2. Alignments with high local covariation found in alignment databases. Each alignment in the Conserved Domain Database [6]
and BAliBASE 3 [4] is represented by a single circle. Alignments are partitioned by the number of sequences and the number of regions of high local
covariation. A region of high local covariation is defined as a local covariation peak greater than or equal to 2.0. Alignments with two adjacent regions
of high local covariation are coloured blue. Regions that contain three or more contiguous regions of high local covariation are coloured red. (A)
Analysis of all conserved domains (cd) in the Conserved Domain Database (CDD). (B) Analysis of all alignments in BAliBASE 3.
doi:10.1371/journal.pone.0037645.g002
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longer cluster together (Figure 3E). Instead, clustering is more

similar to that expected by the organism relationships.

Thangudu et al. noted that imperfect conservation of disulphide

bonds in alignments is frequently caused by structure or sequence

alignment errors [25]. The decrease in local covariation compar-

ing the original BAliBASE (Figure 3A) with the realigned

(Figure 3B) and the absolute conservation of the disulphide bond

illustrates how LoCo can be used for identifying potentially

troublesome sites.

Realigning a BAliBASE Structure Alignment
Some structure alignments generated by unsupervised algo-

rithms suffer from shift error [7] where the location of secondary

structures are aligned correctly, but pairwise alignment of residues

is offset relative to the periodicity of the secondary structural

element. Such alignments can be difficult to identify visually or by

root-mean-square deviation (RMSD) because the unshifted

alignment preceding and following the misalignment can create

the appearance of correct alignment; as well, the misalignment can

be obscured by other structures. We demonstrate this type of an

erroneous structure alignment in Figure 4.

Local covariation analysis of BAliBASE 3 identified a region of

interest in the alignment BB30002 (Figure 2). BB30002 is

particularly difficult to analyze because it is an alignment of

several paralogous tRNA synthetases. In intra-molecular coevolu-

tion analyses, paralogous sequences are seen as contamination and

can lead to false-positve conclusions since their presence violates

the implicit assumptions of coevolutionary analyses [26]. The

BAliBASE alignment of structures representing prolyl- and

threonyl-tRNA synthetases are shown in Figure 4A. Visual

inspection of the structure alignment suggests the region is well-

aligned. However, Figure 4B shows an alternative alignment with

lower local covariation. The structure alignments shown in

Figure 4A and Figure 4B appear to be of equivalent quality when

visually inspected. However, the realigned structures in Figure 4B

show an improvement to the RMSD scores. The RMSD of the

orthologous structures, 1H4Q and 1NJ8, improves from 2.44 Å to

0.73 Å. The RMSD of the paralogous structures, 1H4Q and

1EVK, improves from 2.85 Å to 1.67 Å. Thus when aligning

divergent structures, misalignments may be undetectable by visual

inspection.

In Figure 4C and D, we analyze only the orthologous sub-family

to clarify the structure misalignment visually. Figure 4C shows the

alignment of the high local covariation region of only the prolyl-

tRNA synthetase subfamily of BB40002. This region shows poor

structural conservation and residue identity. When the shift error

is resolved using LoCo as a guide, the quality of the alignment is

markedly improved (Figure 4D). The alignment shows improved

Figure 3. Realigning serine protease using LoCo. (A) Region of high local covariation and good conservation from alignment BB40047 from the
BAliBASE 3 benchmarking dataset [4]. Five highlighted sequences do not show conservation of the disulphide bonded cysteine shown structurally in
panel C. (B) Realignment of region from panel A using local covariation as a guide. (C) Structural validation of the alignment from panel B built in
Cn3D [39]. Positions homologous to those shown in panels A and B are coloured by identity; the conserved disulphide bond is highlighted in orange.
(D) Neighbour joining tree of high local covariation segment shown in panel A. Potentially misaligned sequences (indicated by arrows) cluster in a
clade joined to the remainder by a long branch. (E) Neighbour joining tree based on realigned segment in B shows realigned sequences no longer
cluster together as expected by the phylogenetic relationship of the organisms.
doi:10.1371/journal.pone.0037645.g003
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sequence conservation and a much lower RMSD, from 3.28 Å to

0.63 Å. The local covariation present in Figure 4C is no longer

present in Figure 4D.

The BB30 category of alignments are designed to test the ability

to properly align multiple subfamilies into a single subalignment.

Aligning paralogous sequences is particularly challenging because

of increased sequence divergence and different functional

constraints. Functional divergence can result in increased substi-

tution rates (type I divergence) [27]. Divergence can also occur

without a change in substitution rate in the form of differing

residue properties allowed at a given position (type II divergence)

[28,29]. These types of divergence can make it difficult to

determine the alignment between paralogous proteins from

sequence alone. However, the misalignment presented in

BB30002 is within a subfamily and is between two structures.

The discovery of a structural misalignment between two similar

sequences from the same subfamily in a hand-curated alignment

demonstrates the importance of independent validation of

sequence and structure alignments.

Local Covariation Identifies Active Site Residues
Not all regions of high local covariation in BAliBASE are

explained by potential misalignments; in fact, some segments with

high local covariation are structurally valid. It is thus crucial to

examine regions of high local covariation to determine the root

cause. As outlined in this section, local covariation can identify

segments of interest that covary because of another mechanism. In

our analysis of BAliBASE 3, we identified BB11003 as an

Figure 4. Local covariation identifies structural alignment error in BAliBASE 3 alignment of tRNA Synthetases (BB30002). Each panel
shows a structure alignment built with Cn3D [39] with the corresponding local covariation histogram from LoCo below. (A) Structure alignment of
the tRNA synthetase subfamilies from BAliBASE 3. Structures are coloured by fit and the maximum local covariation value (2.8) implies a misalignment
exists. (B) Realignment of misaligned structure from panel A reduces local covariation (maximum peak 1.8). Both panels A and B look very similar
which explains why misalignment was missed during BAliBASE manual curation process. (C) Structure alignment of only the misaligned region of
Prolyl tRNA Synthetase subfamily from panel A. Structures are coloured by identity such that conserved residues are red. Local covariation maximum
is 3.0. (D) Realignment of panel C to minimize local covariation. Minimizing local covariation produces marked improvement in both the structure
alignment quality and sequence conservation.
doi:10.1371/journal.pone.0037645.g004
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alignment with a region of high local covariation(Figure 5). Two

structures, 1AD3 and 1EYY, are of aldehyde dehydrogenase; the

other structures are of carboxylate dehydrogenase (1UZB), and c-

glutamyl phosphate reductase (1O20). We investigated this

alignment for an explanation of the high local covariation. The

sequence alignment in the region of high local covariation

(Figure 5A) is supported by the structure alignment in the same

region (Figure 5B). Thus, we concluded that shift error did not

explain the high local covariation.

As noted in the previous section, protein families undergo

functional divergence after gene duplication leading to paralogous

alignments have specific characteristics. Functional divergence

that occurs at a only a clustered subset of positions will cause an

increase in local covariation. Thus, the presence of paralogues that

have undergone type II divergence [28,29] may create a false-

positive detection of misalignment. However, we show that the

detection of type II divergence in important functional regions

may prove useful for identifying binding sites or understanding

divergence in paralogous families.

Structure 1AD3 included the coenzyme NAD, which is critical

for enzyme function. Figure 4B shows that the region of high local

covariation (blue) is oriented towards NAD (red). The region of

high local covariation spans four residues: E333, I334, F335, and

G336. E333 is absolutely conserved and therefore cannot

contribute to any covariation score. The other three residues,

I334, F335, and G336, vary in the sequence of 1O20 but not in

the backbone structure. Because NAD is critical for catalysis [30],

we hypothesized that the contacts made by E333 and F335 could

be important for function [31].

The human homologues for positions E333 and F335, E399

and F401 respectively, have been found to be important for

function. The human E399 binds the NAD ribose; mutations to

the position significantly affect the catalytic rate [32]. F335 orients

NAD through an aromatic stacking interaction Figure [31]. Thus,

local covariation identified important functional residues from a

paralogous protein family. This example illustrates that not all

regions of high local covariation are caused by misalignments.

Thus, it is important to visually inspect regions of high local

covariation to elucidate the cause.

Discussion

Protein family misalignments can cause errors in downstream

analyses — unimportant positions may be falsely identified as

conserved or coevolving and critical conserved positions can be

overlooked. Systematic misalignments can reduce the bootstrap

values of phylogenetic trees or reinforce incorrect trees [33]. Thus,

it is critical that alignments be validated by a criterion independent

of the assumptions used to build them.

Selecting which alignment is most likely correct can be a source

of debate because there is no high-throughput biochemical

method to prove the validity of an alignment. Some investigators

prefer to believe the internally consistent output of an established

alignment algorithm over an alternative alignment with some

biological justification. Here we provide a tool to identify regions

in an alignment that should be investigated. Automating alignment

using local covariation as a parameter is difficult because increased

local covariation is not tautologically equivalent to misalignment,

as shown by the example of correctly aligned paralogs in Figure 5.

However, as a guide for curation of protein alignments, the tool is

extremely effective at identifying regions of potential misalignment

[15,24,26,34].

We provide strong structural evidence of the validity of our

alternative alignments over the BAliBASE alignments in the form

of cysteine conservation at a disulphide bond (Figure 3) and

significantly improved RMSD of a structure alignment (Figure 4).

As noted by Kuziemko et al., the alignment supported by

structural evidence may receive a lower score than an alignment

which simply optimizes the sequence alignment algorithm’s

scoring function [2]. This observation suggests that we should be

skeptical of alignments that are validated only by an alignment

scoring function. Furthermore, the existence of potential misalign-

ments in the most widely used, hand-curated benchmark dataset

implies that such misalignments may be common in high-

throughput datasets of lower quality.

Large datasets are known to have many systematic misalign-

ments caused by incorrect sequential or structural inference

because of the limitations of current alignment methods [5,7].

Many alternative alignments may seem equally valid because there

are no methods to prove the correct alignment aside from solving

the structures for all proteins in the alignment. Thus, identification

of serious errors with significant contradictory structural evidence

is a method for demonstrating an alignment is incorrect. Such

structurally corroborated misalignments are rare, especially in

curated datasets. Nevertheless, the misalignments we identified in

Figure 3 and Figure 4 provide such structural evidence.

It is interesting to contrast this assessment of BAliBASE 3 with a

previous analysis of BAliBASE by Edgar [5]. Both studies

investigate the quality of alignment benchmarks using criteria

independent of sequence conservation. The different criteria for

evaluating BAliBASE highlighted different sets of BAliBASE

alignments for discussion. Edgar used domain homology and

secondary structure annotations to assess alignment quality; he

argues correctly that alignments of sequences with conflicting

annotations are less reliable for benchmarking. In this manuscript,

we identify structurally supported shift errors in the same dataset

Figure 5. Local covariation identifies active site residues. (A)
Screenshot from the LoCo tool showing the region of high local
covariation from BAliBASE 3 alignment BB11003. BB11003 is an
alignment of four paralogous oxireductases with similar structure. The
local covariation peaks highlight four positions in the sequence
alignment which are coloured in blue in panel B. Two active site
residues from structure 1AD3, E333 and F335, are emphasized in the
sequence alignment. (B) Structure alignment of residues shown in
panel A made in PyMOL [40]. The region of high local covariation is
highlighted in blue; structure 1AD3 is emphasized with dark blue. The
NAD cofactor from structure 1AD3 is drawn in red. Important binding
residues E333 and F335 from 1AD3 are rendered in sticks representa-
tion.
doi:10.1371/journal.pone.0037645.g005
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and, by extension, other similar datasets. These two studies form

complementary assessments of the BAliBASE benchmark set.

The exploration of the BAliBASE BB30 subfamilies dataset, as

in Figure 4, draws attention to the concept of homology and

sequence alignment. Alignments designed to search for coevolving

positions in a protein should ideally be orthologous, comprising

sequences related by linear descent. However, sequences can also

be homologous (similar by common evolutionary history) because

of paralogy (related through a gene duplication event). Paralogous

positions may be under different functional constraints [27–29]; an

example would be the tRNA synthetases shown in Figure 4A and

B. While both subfamilies are tRNA synthetases, they catalyze a

reaction with different tRNAs and different amino acids. Although

more exploration is needed, the inclusion of paralogous sequences

could potentially increase local covariation to a lesser extent than

misalignments. The presence of paralogous sequences may explain

the occurrence of covariation within binding sites.

Identifying functional residues is an important open problem.

The degree of conservation of a position is typically used to

indicate its potential importance in such analyses. However, when

paralogous families are included and conservation is lost, local

covariation could also be used to search for non-conserved,

functionally important residues. We provide an example of local

covariation in a functional region in our analysis of the alignment

BB11003. Investigating the region of local covariation revealed

two important functional residues in an alignment of 4 sequences.

Residues E333 and F335 both make important contacts to NAD in

the coenzyme binding site (Figure 5).

Local covariation previously identified an interesting structural

region in phosphoglycerate kinase [24]. In this example, a linker

region contained either a sheet or a helix to serve the same

structural purpose. Technically, the region was not shifted because

there was no alternative alignment; there was simply no

structurally meaningful alignment between the two sequence

subsets. These examples illustrate that it is critical that alignments

be visually inspected regardless of the method used to generate

them.

An interesting illustration of the importance of manual

alignment curation is provided by Kawrykow et al. through their

work on the sequence alignment game Phylo [35]. Phylo uses the

concept of crowdsourcing to improve sequence alignments by

having human players inspect and correct them. It is important to

note that Kawrykow et al. found that untrained game players were

able to outperform the top performing automated solutions. This

observation reinforces the importance of visually inspecting

alignments after they are built by an automated solution; LoCo

provides an interface to guide and expedite the investigation.

Increased local covariation should not be confused with patch

covariation, where two short contiguous segments of sequence

coevolve with one another [19]. Increased local covariation is only

concerned with covariation that occurs within a short segment of

an alignment, not between segments. As we noted previously, it is

possible to use covariation statistics like Zpx and DZp to find true

coevolving pairs that are distant in sequence even in regions of

misalignment [15].

We have made the tool used in this manuscript, LoCo, available

online. LoCo can be used effectively on large datasets. Perfor-

mance can become a concern when analyzing alignments with

many ungapped positions because of the covariation calculations.

However, because the covariation algorithms are implemented in

C and optimized, we have successfully analyzed very large

concatenated protein datasets with thousands of sequences. We

have run LoCo successfully on concatenated alignments over 2500

ungapped positions long, though at this size the covariation

module requires approximately 1 gigabyte of memory and

1 minute of CPU time to update the local covariation score.

Alignments this size can be analyzed because of the extensive

optimizations made to the covariation calculation software. LoCo

and its antecedents have been an important part of building high

quality protein alignments for several recent manuscripts

[15,24,26,34]. Using LoCo, we have seen marked improvement

in our sequence alignment quality, confidence, and downstream

analyses.

Analyses of alignments which contain errors are inherently

unreliable. LoCo provides an intuitive and rapid platform to

identify and correct alignment errors. We recommend that new

alignments be analyzed with local covariation and visually

inspected before any conclusions are drawn from them.

Materials and Methods

Demonstrating Local Covariation Rationale
We created a 7-position synthetic alignment to demonstrate the

effectiveness of local covariation for finding misalignments

(Figure 1). Each column in the misalignment contained a

randomly assorted subset of 3 residues that was mutually exclusive

with adjacent columns; this alignment was called ‘No Shift’. The

‘3% Alignment Shift’ and ‘5% Alignment Shift’ aligments were

created by randomly shifting a subset of sequences one position to

the right, 6 of 200 and 10 of 200, respectively. Figure 1A shows the

shift of positions 2–6 diagrammatically. Positions and 1 and 7,

which flank the misaligned region, remain unshifted.

The synthetic alignments were inserted at the N-terminus of a

structure-guided and manually-curated alignment of methionine

aminopeptidase. We subsequently analyzed the synthetic align-

ment using the covariation statistic Zp [13,15] Conservation scores

were calculated using Jalview [22].

Algorithm Overview
LoCo calculates the average covariation between positions in a

protein alignment using the Zp/MIp statistic [13] using a compiled

program written in C. The algorithm for calculating Zp is

optimized for memory use and speed. Zp is based on mutual

information, a statistic that is calculated based on the relative

counts and pairwise counts of each individual alignment position.

MIp is defined as:

MIpi,j~MIi,j{(MIi,x|MIj,x)=MI ð1Þ

where MIi,x is the mean Mutual Information of position i with all

other positions and MI is the overall mean Mutual Information.

MIp is normalized and referred to as Zp:

Zpi,j~(MIpi,j{MIp)=s(MIp) ð2Þ

where again MIp is the mean MIp and s(MIp) is its standard

deviation. The convention of referring to normalized MIp as Zp

was introduced in [15].

Because there are 20 amino acids, there are 20 potential entries

in the count matrix; each pairwise count represents two positions

so there are 400 potential entries for each pairwise count.

However, because the majority of positions demonstrate some

degree of conservation, most entries in the count and pairwise

count matrices will be zero. This fact is exploited by the LoCo

algorithm — a reusable linear array is used to initialize a

dynamically allocated linked list which stores the pairwise count

for each pair of positions for significant memory savings.
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Local covariation is calculated by taking the average Zp score

between all pairs of positions over a window of six; this is done in a

Perl script upon completion of the C program.

The programs used to calculate covariation statistics can be

used independently of the Jalview GUI. These programs are

accessed using the Perl script MIp.pl; they take a fasta-formatted

alignment and, optionally, a pdb-formatted structure as input and

return a summary file of covariation statistics (and inter-residue

distances if the pdb file is provided). The MIp software can be

automated to screen large alignment datasets.

The LoCo Alignment Curation Tool
The alignment editing software is a modified version of Jalview

[22]. Because covariation statistics can be time-consuming to

calculate, the major calculations are computed using an optimized

algorithm implemented in the C programming language. The

default Jalview sequence alignment window displays protein

sequences above three indicators of alignment quality —

Conservation, Quality score and Consensus. Because quality

scores are based on conservation, in LoCo we have replaced

Quality with Local Covariation. High local covariation indicates a

high likelihood of systematic misalignment in that region,

regardless of conservation score.

The LoCo Alignment Curation Procedure
We have developed a simple procedure to correct potential

systematic misalignments using LoCo: 1) Identify potential

misalignments (Figure 3A), 2) cluster using neighbour joining by

percent identity (Figure 3D), 3) test alternate alignments

(Figure 3B).

Potentially misaligned regions can be identified by examining

the ‘‘Local Covariation’’ bar at the bottom of the alignment

window. In [15], we noted that a local covariation score above 2.5

was worth investigating; however, we have found that cutoff to be

conservative. Covariation scores are affected by the number of

sequences in the alignment and by their similarity, so it is possible

to find misalignments in small alignments (approximately 10

sequences) with much lower local covariation scores. Alignments

with fewer sequences have narrower distributions of covariation.

We recommend investigating any position where the local

covariation score 1) appears to be above the ‘background’ for

the alignment, 2) is increased for several adjacent positions, or 3) is

above 2.0 (coloured yellow in the histogram).

Clustering is done by highlighting the potentially misaligned

positions and selecting ‘‘Neighbour Joining Using % Identity’’

from the Calculate menu. Regions of systematic misalignment will

cluster separately from correctly aligned sequences. Sequences can

be placed in the same order as the tree by using the Sort command

in the Calculate menu.

Finally, alternate alignments can be tested by highlighting the

region of misalignment and dragging the misaligned sequence into

position by holding control while left-clicking and dragging the

mouse. The local covariation score will change as you edit the

alignment.

Automated Search of CDD and BAliBASE
We collected alignments from the Conserved Domain Database

[6] from

ftp://ftp.ncbi.nih.gov/pub/mmdb/cdd/

We collected all sequences from the ftp distribution of

BAliBASE 3 [4] from

ftp://ftp-igbmc.u-strasbg.fr/pub/BAliBASE3/

The BAliBASE alignments were converted to fasta format by

readseq [36]. A simple Perl-based pipeline was used to automate

the use of the MIp.c and MIp.pl programs used to calculate

covariation in the LoCo alignment curation tool. We counted the

number of local covariation peaks at or above the 2.0 threshold

considered worth investigating. The number of peaks above 2.0

were plotted in R [37]; contiguous blocks were coloured as they

represented an extended region of high local covariation.

Structure Validation
Structures were collected from the RCSB Protein Data Bank

[38]. Structure alignments for Figure 3 and Figure 4 were made

using Cn3D [39]. The Cn3D alignments are coloured by identity

such that conserved positions are coloured red and non-conserved

positions are coloured blue. RMSD for structure alignments was

calculated using PyMOL [40]. The structure alignment for

Figure 5 was created using PyMOL [40]. The entire structure

alignment was rendered using the ‘cartoon’ renderer. Important

residues and the NAD cofactor are emphasized through stick

rendering on top of the original alignment. NAD is coloured red.

The region of high local covariation is coloured blue.
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