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a b s t r a c t

The structure and stability of the fluorescent protein monomeric Kusabira Orange (mKO), a GFP-like
protein, was studied under different pressure levels and in different chemical environments. At different
pH values (between pH 7.4 and pH 4.0) and under a pressure up to 600 MPa (at 25 °C), mKO did not show
significant fluorescence spectral changes, indicating a structural stability of the protein. In more extreme
chemical conditions (at pH 4.0 in the presence of 0.8 M guanidine hydrochloride), a marked reduction of
mKO fluorescence intensity emission was observed at pressures above 300 MPa. This fluorescence
emission quenching may be due to the loss of the intermolecular bonds and, consequently, to the de-
structuration of the mKO chromophore structure. Since the electrostatic and hydrophobic interactions as
well as the salt bridges present in proteins are usually perturbed under high pressure, the reduction of
mKO fluorescence intensity emission is associated to the perturbation of the protein salt bridges net-
work.
& 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Many cnidarians utilize fluorescent proteins as energy-transfer
acceptors in bioluminescence. These highly fluorescent proteins
are unique due to the chemical nature of their chromophore,
which is composed of modified amino acid residues within the
polypeptide. For example, by changing the amino acid residue 66
and/or the amino acid residues close to the chromophore, the
color and fluorescence intensity of GFP (Green Fluorescent Protein)
can be modified [1–3].

Many different biological and ecological functions have been
proposed for bioluminescence [4,5], but the most parsimonious
explanation is that bioluminescence is used as an anti-predator
defensive stratagem. Sudden flashes in dark surroundings have
been shown to startle, deter, and stun the prey. Bioluminescence
induced by multifarious stimuli has long been observed and re-
mains under investigation because of its great complexity. Many
cnidarians emit light when they are mechanically disturbed. Pro-
teins involved in the light emission process should resist to ex-
ternal perturbations, because the three-dimensional structure of
protein molecules can exert a strong influence over the protein
active site leading to inactivation of the light emission process [6].
B.V. This is an open access article u
The mKO is the monomeric version of Kusabira Orange, a GFP-
like protein, isolated from the stony coral Fungia concinna and
emitting bright orange fluorescence. The mKO structure is a typical
beta barrel architecture with a fully mature chromophore con-
taining a 3-thiazoline ring as a third ring that accounts for the
fluorescence properties of the protein [7]. Fig. 1a shows a sche-
matic representation of the secondary structure topology, con-
sisting of 15 secondary structure elements, mainly beta strands.
Fig. 1b shows the 3D structure in two orientations, with secondary
structures elements and the chromophore in evidence. The
structural stability of mKO appears enhanced, in comparison to
beta barrels structures of other proteins analyzed as counterparts,
by the presence of a higher number of salt bridges and H-bonds.
Table 1 shows the number of H-bonds and salt bridges observed
into the structure of mKO and of bovine and porcine Odorant
Binding Protein (bOBP and pOBP, respectively). In fact, OBPs be-
long to the lipocaline family. This class of proteins displays a beta
barrel tertiary structure organization, 70–80% of the total number
of amino acid residues [8], even if OBPs do not share a significant
primary structure similarity. From a general point of view, this
observation suggests that mKO may be more stable than bOBP and
pOBP despite that these proteins are very stable to the denaturing
action of GdnHCl [9] and reveal a particularly high thermostability
having a denaturation temperature of 90 °C [10]. A more detailed
analysis of the position of the salt bridges may offer additional
information. The interactions that constitute the network of salt
nder the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Fig. 1. (a) Secondary structure schematization of mKO. Each secondary structure element has a progressive number in the middle, and the first and last residue numbers at
extremities. Arrows indicate beta strands, cylinders indicate helices. Dashed lines indicated the network of predicted salt bridges. (b) 3D structure of mKO, with two different
orientations. Secondary structure is represented with beta strands (arrows colored in cyan) and helices (cylinders colored in red), while the chromophore in the middle of
the structure is represented as spacefill atoms with standard colors (C¼gray, N¼blue, O¼red, S¼yellow). 3D structure of mKO protein from VerrilloFungia concinna extracted
from the Protein Data Bank archive (PDB code: 3MGF). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)
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Table 1
Salt bridges and H-bond interactions in mKO, compared to bovine and porcine
Odorant Binding Protein (bOBP and pOBP, respectively).

mKO bOBP pOBP

Salt bridges 14 7 7
H-bonds (intra-protein total) 187 129 117
H-bonds (main-main) 134 87 82
H-bonds (side-side) 29 14 10
H-bonds (main-side) 24 28 25

Interactions per 100 amino acids
Salt bridges 6.5 4.4 4.7
H-bonds (intra-protein total) 86.6 81.6 78.5
H-bonds (main-main) 62.0 55.1 55.0
H-bonds (side-side) 13.4 8.9 6.7
H-bonds (main-side) 11.1 17.7 16.8

Fig. 2. Influence of high pressure on the fluorescence intensity of mKO (pH 7.4,
25 °C). (a) excitation spectra of mKO with an emission wavelength fixed at 570 nm;
(b) emission spectra of mKO with an excitation wavelength fixed at 548 nm.
Pressure levels: (◯) 10 MPa; ( ) 100 MPa; (●) 200 MPa ( ) 400 MPa and ( )
600 MPa. Spectra are the mean of three measurements.

Fig. 3. Influence of pH (a) or GdnHCl concentration (b) on the fluorescence in-
tensity of mKO under pressure. Excitation at 548 nm, emission at 570 nm. (a) mKO
suspended in Tris–HCl (10 mM, pH7.4) or acetate buffer (200 mM, pH 5.8, 5.0 or
4.0); (b) mKO suspended in acetate buffer (200 mM, pH 4.0). Pressure levels: ( )
100 MPa; (◆) 200 MPa; ( ) 400 MPa; (◇) 500 MPa and ( ) 600 MPa. Data are the
mean of at least three measurements.

Fig. 4. Influence of GdnHCl concentration on the center of spectral mass (CSM) of
mKO (pH 4.0) as a function of pressure. mKO suspended in acetate buffer (200 mM,
pH 4.0) Excitation at 548 nm, emission between 550 and 650 nm. GdnHCl con-
centrations: (◯) 0.2 M; ( ) 0.4 M; ( ) 0.6 M; (●) 0.8 M and ( ) 0.9 M. Data are
the mean of at least three measurements.
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bridges are evidenced in Fig. 1a. Six out of fourteen interactions
involve at least one amino acid located in a segment without
secondary structure. This means that regions commonly con-
sidered flexible, due to the lack of secondary structures, are sta-
bilized in this protein by salt bridges. Moreover, some of these
interactions occur between remote amino acids, in terms of se-
quence position, which means that they contribute to stabilize the
whole structure by preventing unfolding of the backbone
organization. Interestingly, these interactions create links between
the first three beta strands elements and the other part of the
protein. As reported for GFP [11], different folding pathways have



Fig. 5. Influence of high pressure on the fluorescence intensity of mKO in drastic
conditions (pH 4.0, 0.8 M GndHCl, 25 °C). Excitation wavelength fixed at 548 nm
and emission wavelength fixed at 570 nm. (●) fluorescence intensity for pressure
increase ( ) fluorescence intensity for pressure decrease. Data are the mean of
9 measurements from 3 independent experiments. The dotted line in the inset is a
fit of experimental data.
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been proposed. The unfolding of GFP may proceed with a primary
unfolding, starting from the C-terminal beta strand, and a sec-
ondary unfolding starting from the N-terminus beta strand.
Moreover, another possible pathway considers that the unfold
starts with the disruption of the first three beta strands. In both
cases, the salt bridge network in mKO blocks the C-terminus
strand as well as the three N-terminus ones, with a consequent
effect increasing the stability of the protein by opposing the pro-
posed unfolding mechanisms.

Pressure effects on biological systems are governed by Le
Chatelier's principle, which states that at equilibrium, a system
tends to minimize the effect of any external factor by which it is
perturbed. Pressure favors processes that are accompanied by
negative volume changes [12]. While the covalent bonds are
pressure insensitive (up to 1000–1500 MPa), the electrostatic and
hydrophobic interactions are destabilized under pressure. Fur-
thermore, pressure induces a volume reduction of proteins asso-
ciated to a collapse of voids and an increase in protein hydration
[13,14]. Atomic structure of proteins pressurized at pressures up to
a few hundred MPa [15,16] indicate that atoms in protein mole-
cules are typically displaced by E0.1–1 Å from their ambient
pressure positions. Pressure in the same range can also sig-
nificantly modify protein function [17]. For example, the flash
decay rate of firefly luciferase is reduced [18], the R to T transition
in human hemoglobin is biased [19] and the morphinone re-
ductase activity is substantially increased [20]. These observations
suggest that the exact positioning of atoms, especially in the active
sites of catalytic proteins, is an important feature of protein op-
eration and that this positioning is subject to environmental per-
turbation. The chemical diversity of chromophores makes these
proteins an interesting target for investigating their reactions to
physical stimuli.

The main goal of the present study was to investigate the
fluorescent mKO protein, as a model system, under high-pressure
perturbation. To study the effect of pressure on the mKO protein
structure and function, the in situ fluorescence spectroscopy in the
pressure range between 0.1 MPa and 600 MPa was used.
Table 2
Thermodynamic parameters of mKO unfolding.

GdnHCl (M) Iu If ΔG° (kJ/

0.8 24.5670.42 1.6271.45 16.977
2. Material and methods

2.1. Materials

Guanidine hydrochloride (GdnHCl) was purchased from Sigma-
Aldrich (MO, USA). All other reagents and solvents were A grade
commercial samples. All solutions were made with MilliQ water.
Monomeric Kusabira Orange was expressed and purified as pre-
viously described [21].

2.2. Fluorescence measurements under high pressure

Fluorescence measurements were carried out at 25 °C using an
SLM Series 2 spectrofluorometer (Aminco Bowman, Foster City,
CA), modified to accommodate a thermostated high pressure op-
tical cell [22]. The HP-cell was equipped with 8-mm-thick sap-
phire windows. mKO dispersion was prepared at 0.29 mg/mL in
different buffers: Tris–HCl buffer (10 mM, pH7.4) or acetate buffer
(200 mM, pH 5.8, 5.0 or 4.0). For some experiments, GdnHCl was
added to mKO dispersions at different final concentration (0.2–
1 M). The sample was placed in a 5 mm diameter quartz cuvette,
closed at the top with a flexible polyethylene film that was at-
tached by a rubber O-ring. The cuvette was placed into the ther-
mostated HP-cell filled with deionised water as pressure trans-
mitting medium. Pressure was then gradually increased from 10 to
600 MPa via a manual piston pump. Following each pressure in-
crement (steps of 100 MPa), the sample was equilibrated 3 min
before spectral recording. All spectra were recorded as a mean of
three repetitive scans. If not stated otherwise, mKO was excited at
548 nm and emission scans were collected between 555 and
650 nm. To record excitation spectra between 460 and 570 nm, the
emission wavelength was fixed to 570 nm.

2.3. Thermodynamic parameters

The pressure-induced fluorescence spectral changes were
quantified by determining the emission intensity, I, at a char-
acteristic maximum wavelength, and calculating the center of
spectral mass, CSM, using Eq. (1):

( )( ) ( )∑ ∑ν= × ( )I ICSM 1 1i i i

where Ii is the fluorescence intensity emitted at a wavenumber vi.
The CSM parameter reflects the mean exposure of tryptophan
residues to water [23].

The thermodynamic parameters were evaluated by fitting the
intensity pressure profiles according to Eq. (2):

⎡
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where If and Iu are the fluorescence intensities of the folded and
unfolded states, respectively, and I the observed fluorescence in-
tensity at pressure p; ΔGu

0 and ΔVu are the free energy and volume
changes of unfolding at 0.1 MPa, respectively [24]. Alternatively,
the thermodynamic parameters were evaluated from the
CSM pressure profiles in an analogous way, replacing I by CSM in
Eq. (2).
mol) ΔVu (mL/mol) P(1/2) (MPa) R2

2.21 �37.8475.51 448 0.9972
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3. Results and discussion

3.1. Influence of high pressure on the fluorescence of mKO

The influence of high pressure, up to 600 MPa, on the excitation
or on the emission spectra of mKO at pH 7.4 and 25 °C is presented
on Fig. 2a or b, respectively. No significant fluorescence spectral
changes were detected under pressure up to 600 MPa, neither in
the excitation, nor in the emission mode, suggesting that mKO
remains correctly folded in this range of pressure levels. It appears
therefore that the applied pressure did not destabilize the nu-
merous salt bridges responsible for maintaining the tertiary
structure of mKO. These results differ from those previously pub-
lished on the investigation of the influence of high pressure, up to
2 GPa, on the fluorescence intensity of mKO at pH 7.4 (50 mM tris,
50 mM NaCl) reporting a continuous decrease of the fluorescence
intensity of mKO upon pressure increase [25]. At atmospheric
pressure or under pressure, the excitation spectra of mKO (Fig. 2a)
with an emission wavelength fixed at 570 nm, present 2 peaks: a
small one around 513 nm and a higher one around 548 nm. The
evolution of the mKO fluorescence intensity at 570 nm, as a
function of pressure, was similar at these two emission wave-
lengths. In the rest of the paper (except where noted), an excita-
tion wavelength of 548 nm was chosen since it induced higher
emission intensities than an excitation at 513 nm.

3.2. Influence of pH and GdnHCl concentration on the high pressure
stability of mKO

Decrease the pH of the mKO dispersion from 7.5 to 5.0 had no
significant effect on the protein HP-stability up to 600 MPa at
25 °C, since no change in fluorescence spectra at 570 nm was ob-
served in this range of pressure (Fig. 3a). When the pH was fixed at
4.0, a slight decrease of the mKO fluorescence was only observed
at 600 MPa, indicating that mKO remained folded even in these
conditions (Fig. 3a). In order to induce the destabilization of the
protein structure, GdnHCl was added, at different concentrations,
to the mKO dispersion at pH 4.0 (Fig. 3b). In these conditions at
low pressure level, 100 or 200 MPa, the mKO fluorescence was not
affected by the presence of GdnHCl even at the highest con-
centrations of 0.9 or 1 M. At higher pressure levels, a progressive
decrease of the mKO fluorescence intensity was observed when
the concentration of GdnHCl increased from 0.2 to 1 M, indicating
a likely destabilization of the protein structure. At 1 M of GdnHCl,
the intrinsic fluorescence of mKO was completely and irreversibly
lost at pressure above 200 MPa, probably due to protein unfolding.
The influence of GdnHCl concentration on the center of spectral
mass (CSM) of mKO (pH 4.0) as a function of pressure is presented
on Fig. 4. CSM analysis indicates that the 0.8 or 0.9 M GdnHCl
concentrations were the most suitable conditions to study mKO
pressure-induced unfolding, these concentrations being pre-
viously reported to be sub-denaturing for this protein at atmo-
spheric pressure [26]. From here on, all experiments were there-
fore conducted in the presence of 0.8 M GdnHCl.

3.3. Pressure–induced unfolding of mKO

The evolution of the mKO fluorescence intensity at 570 nm as a
function of pressure, in drastic chemical conditions (pH4.0, 0.8 M
GdnHCl), is presented in Fig. 5. mKO exhibited a strong and sig-
moidal decrease in fluorescence intensity for a pressure level in-
crease from 300 to 600 MPa, that can be attributed to a loss of
intramolecular bond structure. At 600 MPa, the highest pressure,
mKO has lost more than 80% of its maximum fluorescence in-
tensity and after the pressure release to atmospheric pressure, the
protein did not recover its initial fluorescence intensity. These
results suggest that the reduction in mKO fluorescence intensity
under high pressure may be due to pressure-induced disruption of
the mKO chromophore salt bridges and the hydrogen-bonding
network. The protein can be expected to unfold or undergo at least
strong chromophore pocket deformation at high pressures [27,28].
These data also suggest a single essentially non-reversible (or a
very slowly reversible) unfolding step. High pressure changes the
H-bonded networks and pressure-induced denaturation is thought
to involve forcing water molecules into the hydrophobic regions of
the molecule, disrupting its structure [27]. In our study, it was
verified that the spectra as a function of pressure did not vary with
time up to 3 h after high pressure treatment. This suggests that an
equilibrium between the native and the pressure-unfolded protein
was attained at each pressure. The finding that the intensity and
CSM profiles as a function of pressure were not or only partly
reversible might be explained by a very slow refolding reaction.
However, we observed that 3 h after the pressure release, the
spectrum of the native protein was still not recovered. This could
indicate that the rate of structural changes is extremely slow at
atmospheric pressure. The pressure p1/2 at which fluorescence
intensity decreases to half of its maximum value can serve as a
stability measurement for the chromophore environment. As
shown in Table 2 presenting the thermodynamic parameters of
mKO unfolding, mKO seems to have a fragile pocket. Indeed, the
p1/2 is increased by 30 MPa when the GndHCl concentration is
decreased from 0.9 to 0.8 M. This rather strong variation indicates
that the pressure-induced protein unfolding is strongly dependent
on the GndHCl concentration. According to the above observa-
tions, a volume change was observed. The value of ΔVu is rea-
sonable for pressure-induced protein unfolding (Table 2). In con-
clusion, it can be clearly observed that, the presence of a higher
number of salt bridges and H-bonds in the chromophore pocket is
of high importance for the pressure behavior of mKO. Indeed, only
in drastic chemical conditions (at high-pressure levels and in the
presence of 0.9 M GdnHCl) the protein unfolds since mKO chro-
mophore pocket becomes distorted, leading to a decreased re-
sistance toward high pressure.
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