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Abstract

Background: The hypersensitive response (HR) system of Chenopodium spp. confers broad-spectrum virus resistance.
However, little knowledge exists at the genomic level for Chenopodium, thus impeding the advanced molecular research of
this attractive feature. Hence, we took advantage of RNA-seq to survey the foliar transcriptome of C. amaranticolor, a
Chenopodium species widely used as laboratory indicator for pathogenic viruses, in order to facilitate the characterization of
the HR-type of virus resistance.

Methodology and Principal Findings: Using Illumina HiSeqTM 2000 platform, we obtained 39,868,984 reads with
3,588,208,560 bp, which were assembled into 112,452 unigenes (3,847 clusters and 108,605 singletons). BlastX search
against the NCBI NR database identified 61,698 sequences with a cut-off E-value above 1025. Assembled sequences were
annotated with gene descriptions, GO, COG and KEGG terms, respectively. A total number of 738 resistance gene analogs
(RGAs) and homology sequences of 6 key signaling proteins within the R proteins-directed signaling pathway were
identified. Based on this transcriptome data, we investigated the gene expression profiles over the stage of HR induced by
Tobacco mosaic virus and Cucumber mosaic virus by using digital gene expression analysis. Numerous candidate genes
specifically or commonly regulated by these two distinct viruses at early and late stages of the HR were identified, and the
dynamic changes of the differently expressed genes enriched in the pathway of plant-pathogen interaction were
particularly emphasized.

Conclusions: To our knowledge, this study is the first description of the genetic makeup of C. amaranticolor, providing deep
insight into the comprehensive gene expression information at transcriptional level in this species. The 738 RGAs as well as
the differentially regulated genes, particularly the common genes regulated by both TMV and CMV, are suitable candidates
which merit further functional characterization to dissect the molecular mechanisms and regulatory pathways of the HR-
type of virus resistance in Chenopodium.
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Introduction

During the entire lifetime, plants are attacked by a broad range

of pathogens, being the targets of bacteria, fungi, viruses, protozoa

as well as nematodes. To combat the ever-changing landscape of

biotic interactions, plants have evolved sophisticated and effective

defense mechanisms. The hypersensitive response (HR) represents

one of the most active resistance responses. This type resistance

often occurs following the incompatible interactions between

plants and pathogens, and is characterized by rapid necrosis of

infected and neighboring host cells [1,2]. Regarding to the well

known ‘Gene-for-Gene’ hypothesis [3], the HR depends on a

genetic interaction, either directly or indirectly, between the

product of a dominant or semidominant resistance (R) gene and a

corresponding pathogen avirulence (Avr) gene product,thereby

preventing pathogen growth and spread in plants [1,4,5].

The R gene-mediated HR usually is associated with rapid

initiation of signal transduction pathways leading to expression of

disease resistance responses, such as the oxidative burst, alteration

of membrane potentials, increases in lipoxygenase activity,

production of antimicrobial compounds, and the expression of

defense-related genes [6]. Plants undergoing HR also induce a

state of pathogen-nonspecific resistance throughout the plant, a

phenomenon termed systemic acquired resistance [7]. This local

response is therefore attractable in plant breeding programs, and

characterization of host genetic elements involved in HR is

assumed to have great potential for developing new strategies to

reduce losses from plant disease. Over the past decades, the

detailed analysis of many hypersensitive disease resistance systems

PLOS ONE | www.plosone.org 1 September 2012 | Volume 7 | Issue 9 | e45953



has substantially advanced the basic research on HR-type of

resistance mechanisms. Progress has been made in characterizing

R genes as well as the signal-transduction events that coordinate

the R protein-directed HR-type plant defense [4,5,8].

The HR system in Chenopodium spp. is one of the most notable

disease resistance mechanisms. Many plant viruses in over a dozen

of genera, including bromo-, como-, cucumo-, clostero-, potex-,

poty- and tobamovirus have been documented to elicit local lesion

HR on Chenopodium [9,10]. The broad-spectrum virus resistance

suggests Chenopodium are rich in genes that act in restricting viral

spread as well as that confer multi-virus resistance to a plant.

However, understanding of the HR-type of resistance in Chenopo-

dium is surprisingly incomplete. Due to lack of developed genetic

tools such as tissue culture and transformation, only few studies

were performed to define the genetic mechanisms of HR in

Chenopodium [10–13]. Genomic information on Chenopodium spp. is

rather limited, only 1,249 expressed sequence tags (EST) and 358

proteins have been deposited in Genbank as of May 2012.

The next-generation sequencing, referred to as RNA sequenc-

ing (RNA-Seq), provides a unique opportunity for genomic

exploration in non-model plant species that do not have a

reference genome sequence data [14,15]. So far, RNA-Seq has

been successfully used for annotation, transcript profiling and

single nucleotide polymorphism (SNP) discovery in a number of

non-model plant species, such as alfalfa [16], Artemisia annua [17],

buckwheat [18], California poppy [19], Eucalyptus grandis [20],

grape [21], magnoliid avocado [19], orchid [22] and Pachycladon

enysii [23].

In order to facilitate the investigation of the HR-type of virus

resistance in Chenopodium, herein we took advantage of RNA-seq to

survey the foliar transcriptome of C. amaranticolor, one Chenopodium

species being most widely used as laboratory indicator for

pathogenic viruses (Figure 1A). Over 3.5 gigabase pairs of high-

quality DNA sequence were generated with Illumina technology.

After de novo assembly and annotation, a sufficiently large

transcriptome database containing 112,452 distinct sequences

was built. By using Illumina’s digital gene expression (DGE)

platform, this database was immediately applied to analyze the

gene expression profiles over the stage of HR induced by Tobacco

mosaic virus (TMV) and Cucumber mosaic virus (CMV) (Figure 1B and

1C), two agronomically important but taxonomically distinct

viruses [24]. The foliar transcriptome of C. amaranticolor combined

with the DGE profiles lays the foundation for future functional

genomics studies on Chenopodium, in particular for identification of

genes involved in the complex signaling and regulation pathways

that mediate the HR-type of virus resistance.

Results and Discussion

Illumina sequencing and reads assembly
To obtain an overview of the C. amaranticolor gene expression

profile at leaves, a cDNA sample generated from the mixed

materials, which contain equal amount of healthy leaves, TMV-

inoculated leaves at 6 hours post inoculation (hpi) (TMV-6h) and

28 hpi (TMV-28h), and CMV-inoculated leaves at 6 hpi (CMV-

6h) and 20 hpi (CMV-20h), were subjected to sequence by using

the Illumina sequencing platform HiSeqTM 2000. Notably, under

the greenhouse conditions in this study, the leaves inoculated with

TMV at 28 hpi or with CMV at 20 hpi appeared just visible local

lesions. After filtering for adaptors and low-quality sequences,

39,868,984 clean reads, each of which has the length of 90 bp,

were generated (Table 1).

To facilitate sequence assembly, the raw reads were first

randomly clipped into 21-mers using SOAPdenovo software [25].

These short 21-mers were then assembled into 326,027 contigs

(Table 1) with average lengths of 163 bp, and their size

distribution is shown in Figure S1A. Using paired-end joining

and gap-filling, the contigs were assembled into 172,748 scaffolds

with a mean size of 253 bp including 6,034 scaffolds larger than

800 bp (Table 1). These scaffolds were further analyzed by using

TGICL software [26], resulting in 112,452 unigenes with 3,847

clusters (mean size: 575 bp) and 108,605 singletons (mean size:

307 bp) (Table 1). In this study, the singleton means a scaffold that

failed to match other scaffolds and the unigenes include all the

clusters and singletons generated from scaffolds. The size

distribution of these distinct sequences is shown in Figure S1B.

All files of assembled contigs and unigenes are available by

request.

Figure 1. Virus induced local lesions on leaves of C. amaranti-
color. (A) The 6-week old plant of C. amaranticolor. (B) Leaves
inoculated with Tobacco mosaic virus at 40 hours p.i.. (C) Leaves
inoculated with Cucumber mosaic virus at 40 hours p.i.. Scale
bar = 1.0 cm.
doi:10.1371/journal.pone.0045953.g001

Table 1. General features of the foliar transcriptome of C.
amaranticolor.

Total number of readsa 39,868,984

Total base pairs (bp) 3,588,208,560

Average read length (bp) 90

Total number of contigs 326,027

Mean length of contigs (bp) 163

Total number of scaffolds 172, 748

Mean length of scaffolds (bp) 253

Distinct clusters 3,848

Distinct singletons 108, 605

Total distinct sequences 112, 452

Sequences with E-value,1025 62,482

aAdaptors and low-quality reads were excluded.
doi:10.1371/journal.pone.0045953.t001

Foliar Transcriptomic Analysis of C. amaranticolor
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To verify the quality of sequencing data, 12 unigenes were

randomly selected and pairs of primers were designed accordingly

for RT-PCR amplification. Consequently, each of primer pairs

generated a band with the expected size and the identity of all 12

PCR products were confirmed by Sanger sequencing (data not

shown).

Annotation of predicted proteins
For annotation, distinct gene sequences were first searched

against the NCBI NR database using a cut-off E-value of 1025.

Although lack of genomic information in Chenopodium species,

totally 61,698 genes (54.9% of all distinct sequences) including

3,272 clusters and 58,426 singletons showed significant matches

(Table S1). As shown in Figure 2, the fraction of singletons that

had BLAST matches was lower than for the clusters given their

shorter length (mean size of 307 bp). For instance, a 100% of

singletions longer than 2,000 bp achieved significant BLAST

scores, and the proportion decreased sharply to 50.4% for

sequences ranging from 100 to 500 bp (Figure 2A). However,

clusters longer than only 1,000 bp totally achieved significant

BLAST scores, and the proportion remained about 79.6% for

sequences ranged in size from 100 bp to 500 bp (Figure 2B).

Notably, a total of 49,970 genes (45.1%) were found no

homologues in the current NCBI NR database, similar with the

observations which have been previously made for several other

transcriptomic studies [27–30]. These orphan sequences may

represent novel genes in C. amaranticolor or are possibly derived

from chimerical sequences (assemblage errors), the cDNA of

untranslated regions or non-conserved regions of proteins.

The E-value distribution of the top hits in the NR database

showed that 15.3% of the mapped sequences have strong

homology (,1.0E250), whereas 84.7% of the homolog sequences

ranged between 1.0E25 to 1.0E250 (Figure 3A). The similarity

distribution showed that 20.6% of the query sequences have a

similarity higher than 80%, while 79.4% of the hits have a

similarity ranging from 18% to 80% (Figure 3B). For species

distribution, 27.9% of the distinct sequences have top matches

(first hit) with sequences from the Arabidopsis thaliana, the genome of

which has been sequenced in 2000 [31]. The next closest species

were the Oryza sativa Japonica Group (11.6%), A. lyrata subsp.

Lyrata (10.6%), Populus trichocarpa (7.1%), Vitis vinifera (6.6%) and

Zea mays (3.2%) (Figure 3C). In addition, there were 772 and 152

distinct sequences with the highest homology to genes from

Spinacia oleracea and Chenopodium spp., respectively. A total of 9,119

distinct sequences (14.8%) had the strongest similarity to genes of

O. sativa Japonica Group and Zea mays, two types of monocot

species, suggesting the interesting phylogenetic status of C.

amaranticolor.

GO, COG and KEGG classification
Gene Ontology (GO) assignments were used to classify the

functions of the predicted C. amaranticolor genes. Based on sequence

homology, 35,162 sequences can be categorized into 43 functional

groups (Figure 4). In each of the three main categories (biological

process, cellular component and molecular function) of the GO

classification, ‘Metabolic process’, ‘‘Cell’’ and ‘‘Catalytic activity’’

terms are dominant respectively. In agreement with GO

assignments of other higher plant, such as Taxus mairei [32],

Camellia sinensis [33], Brassica juncea [34] and Siraitia grosvenorii [35],

we noticed a high-percentage of genes from categories of ‘Cellular

process’, ‘Cell part’, ‘Organelle’ and ‘Binding’ (Figure 4), indicat-

ing that these GO terms are significant among all plant species and

the mechanism of ‘Cellular process’ in different plants may be

similar.

To further evaluate the completeness of our transcriptome

library and the effectiveness of our annotation process, we

searched the annotated sequences for the genes involved in the

clusters of orthologous group (COG) classifications. In total, out of

61,698 NR hits, 24,147 sequences have a COG classification

(Figure 5). Among the 24 COG categories, the cluster for ‘General

function prediction’ represents the largest group (3,714, 15.4%)

followed by ‘Transcription’ (1,968, 8.2%) and ‘Replication,

recombination and repair’ (1,855, 7.7%), while the category of

nuclear structure (5, 0.02%) represents the smallest group

(Figure 5). It is noteworthy that 453 unigenes were assigned to

the term of ‘Defense mechanism’.

To identify the biological pathways that are active in C.

amaranticolor, we mapped the 61,698 annotated sequences to the

reference canonical pathways in Kyoto Encyclopedia of Genes

and Genomes (KEGG) [36]. In total, 27,042 sequences were

assigned to 119 KEGG pathways. The pathways with most

representation by the unique sequences were ‘Metabolic path-

ways’ (6,477, 23.95%), ‘Biosynthesis of secondary metabolites’

(3,795, 14.03%), and ‘Plant-pathogen interaction’ (2,346, 8.68%),

Figure 2. Effect of query length on the percentage of
significant matches. (A) Singleton sequences. (B) Cluster sequences.
The proportion of sequences with matches (with a cut-off E-value of
1.0E25) in NR databases is greater among the longer assembled
sequences.
doi:10.1371/journal.pone.0045953.g002

Foliar Transcriptomic Analysis of C. amaranticolor
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providing a valuable genetic resource for the investigation of

specific biological processes, functions and pathways in C.

amaranticolor.

Detection of resistance gene analogs and disease
resistance signaling genes

To date, the majority of cloned and functional R genes

described within the plant kingdom contain a conserved nucleo-

Figure 3. Characteristics of homology search of unigenes against the NR database. (A) E-value distribution of the top BLAST hits for each
unigene with a cut-off E-value of 1.0E25. (B) Similarity distribution of the best BLAST hits for each unigene. (C) Species distribution is shown as the
percentage of the total homologous sequences with an E-value of at least 1.0E25. We used all plant proteins in the NCBI NR database for homology
search and extracted the first hit of each sequence for analysis.
doi:10.1371/journal.pone.0045953.g003

Figure 4. GO categories of biological process, cellular component and molecular function for the foliar transcriptome of C.
amaranticolor. The right y-axis shows the number of genes in a category, while the left y-axis indicates the percentage of a specific category of genes
in that main category.
doi:10.1371/journal.pone.0045953.g004

Foliar Transcriptomic Analysis of C. amaranticolor
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tide binding site (NBS) and a C-terminal leucine-rich repeat (LRR)

domain, known as NBS-LRRs [37,38]. NBS-LRR-encoding genes

represent one of the largest and most variable gene families in

plants [39], with 149 members in genome of A. thaliana [40], 92 in

Brassica rapa [41], 400–500 in Medicago [42], 464 and 483 in two

genomes of O. sativa [43], 438 in potato [44], 416, 535 and 54 in

three woody species poplar, grapevine and papaya, respectively

[45,46] (Yang et al., 2008; Porter et al., 2009). Herein, we

compared the current transcriptome data with sequences from

NCBI nucleotides and EST database to extract the unigenes

represent candidate NBS-LRR R genes, and in total 738 unigenes

were identified as resistance gene analogs (RGAs) (Table S2). In

addition, a number of disease resistance signaling proteins,

including NDR1, Rar1, Sgt1, EDS1, PAD4 and NPR1, which

play key roles in the R proteins-directed signaling pathways

[47,48], were also identified from C. amaranticolor for the first time

(Table S3). These overall findings establish a solid genetic basis for

characterization of the R genes as well as the disease resistance

signaling proteins in C. amaranticolor, and will certainly facilitate the

future research of Chenopodium in R gene-mediated disease

resistance.

DGE library sequencing
An immediate application of our transcriptome sequence data

includes analysis of gene expression variation over the stage of

virus-induced HR in C. amaranticolor leaves. Five cDNA libraries

derived from healthy leaves, TMV-6h, TMV-28h, CMV-6h, and

CMV-20h were constructed and sequenced by using Illumina

HiSeqTM 2000, respectively. After filtering the low quality reads,

12.5, 11.7, 12.2, 12.5, and 12.4 million clean reads were generated

from the five samples, respectively (Table 2). To reveal the

molecular events behind DGE profiles, these reads were mapped

to the C. amaranticolor foliar transcriptome containing 112,453

unigenes. In total of 6,189,719, 5,826,515, 6,121,996, 6,339,408

and 5,948,757 reads derived from healthy leaves, TMV-6h, TMV-

28h, CMV-6h and CMV-20h uniquely match with the unigenes in

the reference database, respectively (Table 2). Reads mapped to a

unique sequence are the most critical subset of the DGE libraries

as they can explicitly identify a transcript. In this study, at least

93.93% of sequences in our transcriptome database could be

unequivocally identified by the unique match reads (Table 2). To

confirm if the number of detected genes increases proportionally

to sequencing amount (total tag number), a saturation analysis was

performed. As summarized in Figure S2, the results revealed a

trend of saturation, in which the number of detected genes almost

ceases to increase when the number of reads reaches ,12 million.

Next, the locations of DGE reads on reference genes were also

evaluated [14], and the evenly distribution showed in Figure S3

indicated good randomness of these reads.

Genes responding to virus inoculation in C. amaranticolor
To identify genes showing a significant expression change in C.

amaranticolor upon virus infection, the differentially expressed tags

between virus-inoculated leaves (TMV-6h, CMV-6h, TMV-28h

or CMV-20h) and healthy leaves were identified by an algorithm

[49] based on the criteria of significance [False Discovery Rate

(FDR)#0.001 and |log2Ratio|$1]. Accordingly, a total of

1,022,284 significantly changed tag entities were detected between

healthy leaves and TMV-6h. Those tags were mapped to 3,297

genes with 1,636 genes up-regulated and 1,661 genes down-

regulated, respectively, termed early-TMV-inducible genes

(Figure 6 and Table S4). Between healthy leaves and TMV-28h,

a total of 23,247 differentially expressed genes were detected with

roughly the same amount of up-regulated genes (11,923) and

down-regulated genes (11,324), and were named as late-TMV-

inducible genes (Figure 6 and Table S5). Similarly, between

healthy leaves and CMV-6h, 1,383 genes up-regulated and 1,961

genes down-regulated were defined as early-CMV-inducible genes

(Figure 6 and Table S6), while between healthy and CMV-20h, a

total of 17,458 differentially expressed genes, termed late-CMV-

Figure 5. COG function classification of the foliar transcriptome of C. amaranticolor. Out of 62,482 nr hits, 24,147 sequences have a COG
classification among the 24 categories.
doi:10.1371/journal.pone.0045953.g005
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inducible genes, were identified with roughly the same amount of

up-regulated genes (9,862) and down-regulated genes (7,596)

(Figure 6 and Table S7). Collectively, these four datasets showed

that numbers of both up-regulated (.2-fold) and down-regulated

(,2-fold) genes increased following either TMV- or CMV-

inoculation.

Based on the four datasets, multiple comparisons were made to

capture genes commonly regulated in C. amaranticolor upon

different virus infection. As shown in the Venn diagrams

(Figure 7A and 7B), a total of 1,238 unigenes including 319 up-

regulated unigenes and 919 down-regulated unigenes were

common between the early- and late-TMV-inducible genes (Table

S8), while 286 up-regulated unigenes and 652 down-regulated

unigenes overlapped between the early- and late-CMV-inducible

genes (Table S9). Moreover, a total of 927 up-regulated unigenes

and 1,058 down-regulated genes were common between the early-

TMV- and early-CMV-inducible genes (Table S10), while

between the late-TMV- and late-CMV-inducible genes, 6,181

up-regulated unigenes and 5,430 down-regulated genes, a total of

11,611 unigenes overlapped (Table S11). Further comparative

analysis of the four datasets defined a core set of 461 unigenes

comprising 93 up-regulated unigenes and 368 down-regulated

unigenes which were commonly regulated by both TMV and

CMV at all aforementioned post-inoculation times (Figure 7A and

7B and Table S12).

Efforts were also made to collect the alternatively regulated

genes during the stage of HR induced by TMV or CMV. To this

end, we identified that 275 unigenes were down-regulated in

CMV-6h but up-regulated in CMV-20h, showing ‘down-up’

expression profiles, whereas 405 unigenes were regulated in the

opposite direction (Table S13). For TMV infection, a total of 330

unigenes displayed ‘down-up’ expression profiles in TMV-6h/

TMV-28h, while 194 unigenes showed ‘up-down’ expression

profiles (Table S14). Further comparisons of these alternatively

regulated genes identified 102 commonly ‘down-up’ regulated

unigenes and 89 commonly ‘up-down’ regulated unigenes during

both TMV and CMV infection (Table S15).

These overall datasets presented a significant number of genes

commonly regulated in both TMV- and CMV-infected C.

amaranticolor, suggesting the host plant might make use of some

common pathways for defense against distinct viruses.

Functional categorization of the identified genes
Of the identified differentially expressed genes, efforts have been

first put forward to functional categorization of the 93 commonly

up-regulated unigenes and 368 commonly down-regulated uni-

genes among the TMV-6h, TMV-28h, CMV-6h and CMV-20h.

Apart from the unclassified ones, a total of 49 up-regulated

unigenes and 111 down-regulated unigenes were categorized into

various levels of GO biological processes, predominately in the

‘metabolism’ GO category including disaccharide, lipid, amino

acids, protein, carbohydrate and primary metabolism, while the

remaining ones were assigned to the GO processes of stress,

defense, signal as well as transport (Table S12). Similarly,

functional categorization of the 102 unigenes with ‘down-up’

expression profiles and 89 unigenes with ‘up-down’ profiles

showed that, except the unclassified ones, the unigenes were also

predominately categorized into the ‘metabolism’ GO category

including protein and primary metabolism (Table S15).

To comprehensively assess the biological functions of the

differentially expressed genes, all four sets of differentially

expressed genes were mapped to KEGG database terms and

compared with the whole transcriptome data, with a view to

identify significantly enriched metabolic or signal transduction

pathways. Among all the genes with KEGG pathway annotation,

a total of 1,119, 1,174, 6,064 and 7,571 differentially expressed

genes from the datasets of the early-TMV-inducible genes (TMV-

6h), the late- TMV-inducible genes (TMV-28h), the early-CMV-

inducible genes (CMV-6h) and the late-CMV-inducible genes

(CMV-28h), were assigned to 97, 118, 102 and 118 KEGG

Table 2. Statistics of DGE sequencing data from C. amaranticolor infected with distinct viruses.

Sample Total reads Map to genea

Reads mapping to geneb Unique match readsb Reads-mapped genesb

Healthy 12,503,742 6,232,961 (49.85%) 6,189,719 (49.50%) 106,816 (94.99%)

TMV-6h 11,664,230 5,866,379 (50.29%) 5,826,515 (49.95%) 105,624 (93.93%)

TMV-28h 12,204,006 6,165,075 (50.52%) 6,121,996 (50.16%) 107,101 (95.24%)

CMV-6h 12,501,382 6,383,164 (51.06%) 6,339,408 (50.71%) 105,648 (93.95%)

CMV-20h 12,389,583 5,993,814 (48.38%) 5,948,757 (48.01%) 108,457 (96.45%)

aThe reads were mapped to foliar transcriptom of C. amaranticolor with 112, 452 unigenes.
bThe conservative degree of mismatch was no more than 2 bp.
doi:10.1371/journal.pone.0045953.t002

Figure 6. Changes in gene expression profiles of the TMV- and
CMV-inoculated C. amaranticolor leaves at two different time
points post-inoculation. The comparisons were made between
inoculated and uninoculated (healthy leaves) at each time point. The
numbers of up-regulated and down-regulated genes are summarized.
doi:10.1371/journal.pone.0045953.g006

Foliar Transcriptomic Analysis of C. amaranticolor
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pathways, respectively, suggesting the virus infection induces

global alteration of the genes transcription profiles in C.

amaranticolor.

Specific observations were made for the pathway of plant-

pathogen interaction (PPI), in which, a total of 155, 141, 954 and

685 differentially expressed genes derived from TMV-6h, CMV-

6h, TMV-28h and CMV-20h, respectively, were enriched.

Interestingly, in TMV-6h and CMV-6h which represent the early

stage of HR, over 80% of the differentially expressed genes in PPI

pathway were significantly down-regulated, including RIN4,

RPS2 and RPS5, the key proteins mediate effector-triggered HR

cell death [5,50]. Similarly, the host factors of EFR [51,52] and

WRKY29 [53,54] in Mitogen-activated protein kinase (MAPK)

signaling cascade, the well-known defense marker PR1 [55] and

the essential gene COI1 for jasmonate-regulated defense [56] were

all down-regulated at the early stage. In contrast, at the late stage

of HR (CMV-20h and TMV-28h), the majority (.80%) of the

differentially expressed genes enriched in PPI were highly up-

regulated, such as RIN4, RPS5 and the MAPK signaling cascade-

associated genes MKK4/5 [57] and WRKY25/33 [58–60]. It is

noteworthy to mention the ‘down-up’ expression profiles of the

RIN4 and RPS5, which suggest essential roles of these two genes

during virus-induced HR and merit further investigation. In

addition, a particular interest was given to NHO1, a non-host

resistance gene [61,62], which is the unique gene consistently up-

regulated in all four samples, indicating its yet undetermined role

in virus resistance. Collectively, these observations defined that

number of unigenes in PPI pathway underwent complicated

regulation mechanisms during virus-induced HR, leading to a first

dynamic picture of the changes in the overall pattern of gene

expression in PPI pathway of C. amaranticolor.

Conclusions
This study represents the first application of Illumina sequenc-

ing technology for genomic studies in C. amaranticolor, a host with

the broad-spectrum virus resistance. A single run produced

112,453 unigenes with 62,482 sequences having an above cut-off

BLAST result. From this foliar transcriptome database, 738 RGAs

and a number of sequences represent disease resistance signaling

proteins were identified. By using Illumina sequencing-based DGE

system, we further analyzed the gene expression profiles during

virus-induced HR in C. amaranticolor leaves, and identified numbers

of candidate genes specifically and commonly regulated by TMV

and CMV at early and late stages of the HR. This genome-scale

transcriptional information provides a substantial contribution to

the sequence resources for C. amaranticolor and will particularly aid

in understanding the genetic mechanism of the broad-spectrum

virus resistance conferred by this host.

Materials and Methods

Plant materials preparation
Leaves of 6,7 week-old C. amaranticolor grown in the

greenhouse were inoculated with CMV SD strain [63] and

TMV U1 [64], respectively. Briefly, infectious sap was prepared

with one gram of fresh TMV- or CMV-infected Nicotiana tabacum

leaves that were macerated in 10 mL of inoculation buffer

(50 mM KH2P04, pH 7.0, 1% Celite), and was mechanically

inoculated onto C. amaranticolor leaves dusted with carborundum

powder (600 mesh). The virus-inoculated leaf tissues were

harvested using half leaf method as follows. Half of each virus-

inoculated leaf was first sampled at 6 hpi, while the remaining

halves were collected at 20 hpi for CMV-inoculated leaves and at

28 hpi for TMV-inoculated leaves, at which time point local

lesions became just visible. These samples were accordingly named

as TMV-6h, CMV-6h, TMV-28h and CMV-20h. Notably, the

leaf tissues of CMV-6h or TMV-6h were selected only when the

remaining halves showed significant number of local lesions at

20 hpi (CMV) or 28 hpi (TMV), in order to ensure the tissues of

CMV-6h and TMV-6h being fully infected. Leaves of the healthy

plants were also harvested as control. All samples were immedi-

ately frozen in liquid nitrogen and were stored at 280uC until use.

cDNA library preparation for transcriptome analysis
Total RNA was extracted using TRIzolH reagent (Invitrogen)

according to the manufacturer’s protocol. RNA integrity was

confirmed with RNA6000 Nano Assay using the 2100 Bioanalyzer

(Agilent Technologies, Palo Alto, CA). The samples for tran-

scriptome analysis were prepared using Illumina’s kit following

manufacturer’s instruction. Briefly, using oligo (dT) magnetic

beads (Invitrogen), poly(A) mRNA was first isolated from 6 mg of

total RNA, which was extracted from the mixed materials

containing equal amount of healthy leaves, TMV-8h, CMV-8h,

TMV-28h, and CMV-20h. The mRNA was then fragmented into

Figure 7. The generalized Venn diagrams with four datasets of TMV-6h, TMV-28h, CMV-6h and CMV-28h and their intersections. (A)
Up-regulated genes and (B) down-regulated genes for each time point post-inoculation with TMV or CMV. All comparisons were made between
inoculated and uninoculated (healthy) leaves at each time point.
doi:10.1371/journal.pone.0045953.g007
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smaller pieces at 70uC for 5 min in the fragmentation buffer

(Ambion). Taking these short mRNA fragments as templates,

reverse transcriptase and random hexamer-primer were used to

synthesize the first-strand cDNA. This was followed by second

strand cDNA synthesis using DNA polymerase I (Invitrogen) and

RNaseH (Invitrogen). The resulted short cDNA fragments were

purified with QiaQuick PCR extraction kit (Qiagen) followed by

end repair, adding poly(A), and ligation of sequencing adaptors

with Illumina’s adaptor oligo mix. The fragments were purified for

the section of approximate 200 bp long using Qiaquick Gel

Extraction Kit (Qiagen) and were further enriched with PCR to

create the final sequencing cDNA library.

Analysis of Illumina sequencing results
The cDNA library was sequenced from both of the 59 and 39

ends on the Illumina HiSeqTM 2000 platform. The fluorescent

images deconvolution and quality value calculation were per-

formed using the Illumina data processing pipeline (version 1.6), in

which 90 bp paired-end reads were obtained. Before assembly, the

raw reads were filtered to obtain high-quality clean reads by

removing low quality reads as well as reads with adaptor sequences

or containing unknown nucleotides larger than 5%.

De novo assembly of the clean reads was performed using

SOAPdenovo software [65]. Briefly, SOAPdenovo first combines

the reads with certain length of overlap to form contigs, and the

contigs from the same transcript as well as the distances between

these contigs were further detected by using paired-end reads.

Next, SOAPdenovo connects the contigs using N to represent

unknown sequences between each two contigs, resulting in

Scaffolds. Finally, paired-end reads are used again for gap filling

of scaffolds to generate Unigenes. To determine the sequence

direction, the unigenes were aligned by blastx (E-value,0.00001)

to protein databases in a priority order of NCBI NR, Swiss-Prot,

KEGG and COG. Once a unigene is aligned to none of the above

databases, ESTScan [66] is introduced to decide its sequence

direction. In this study, we provide the unigenes with sequence

directions from 59 end to 39 end, while those without any direction

were from assembly software.

The generated unigenes were used for blast search and

annotation against the plant protein database of NR with a

significant threshold of E-value#1025. Functional categorization

by GO terms [67] was performed using Blast2GO software [68]

with E-value cut-off at 1025. The COG and KEGG pathways

annotation was carried out using Blastall software (E-value

threshold of 1025) against the COG database [69] and the

KEGG database [36], respectively.

Digital gene expression library preparation and
sequencing

Tag library preparation for the distinct C. amaranticolor sample

(healthy leaves, TMV-8h, TMV-28h, CMV-8h and CMV-20h)

was performed in parallel using Illumina gene expression sample

preparation kit as described in cDNA library preparation. The

generated cDNA library was sequenced using Illumina HiSeqTM

2000, resulting in the raw image data, which, subsequently, was

transformed by base calling into sequence data.

Digital gene expression tags analysis
Prior to mapping reads to the reference database, all the raw

reads were filtered to remove low quality reads as well as reads

with adaptor sequences or containing unknown nucleotides larger

than 5%. The filtered sequence data were named as clean reads,

on which all following analyses were based. For annotation, all

reads were mapped to the reference sequences using SOAPa-

ligner/soap2 [65] with a maximum of no more than 2 nucleotides

mismatches. The reads mapped to reference sequences from

multiple genes were filtered, while the remaining reads were

designed as unambiguous tags. For gene expression analysis, the

number of expressed reads was counted and normalized using

RPKM (reads per kb per million reads) [66].

A statistical analysis of the frequency of each read in the

different cDNA libraries was further performed to screen the

differentially expressed genes in C. amaranticolor upon virus

infection. Statistical comparison was performed with a strict

algorithm referring to the method described previously [49]. FDR

was used to determine the threshold of P value in multiple test and

analysis. The threshold as ‘‘FDR#0.001’’ was introduced to judge

the significance of gene expression difference. The identified genes

with differentially expression levels were then mapped to terms in

GO and KEGG database, looking for the significantly enriched

KEGG terms comparing to the genome background.

Data deposition
The nucleotide sequences of raw reads from this study were

submitted to NCBI Gene Expression Omnibus under the

accession number GSE38451.

Supporting Information

Figure S1 Summary of the C. amaranticolor transcrip-
tomic sequences. (A) Size distribution of Illumina sequencing

contigs. (B) Size distribution of distinct sequences after paired-end

and gap filling.

(TIF)

Figure S2 Relationship between the number of identi-
fied genes and the sequencing amount (total read
number). The figures represent DGE reads of healthy leaves

(A), TMV-6h (B), TMV-28h (C), CMV-6h (D) and CMV-20h (E),

respectively, showing a trend of saturation. When the sequencing

amount reaches 12 millions, the number of identified genes almost

ceases to increase.

(TIF)

Figure S3 Distribution of DGE reads derived from healthy
leaves (A), TMV-6h (B), TMV-28h (C), CMV-6h (D) and
CMV-20h (E) on reference genes in the C. amaranticolor
transcriptome.

(TIF)

Table S1 Top BLAST hits from NCBI nr database.
BLAST results against the NCBI nr database for all the
clusters and singletons with a cut-off E value above 1025

are shown.

(RAR)

Table S2 Putative resistance gene analogs (RGAs)
identified from the foliar transcriptome of C. amar-
anticolor.

(XLS)

Table S3 Putative disease resistance signaling proteins
identified from the foliar transcriptome of C. amar-
anticolor.

(XLS)

Table S4 Differentially expressed Genes between TMV-
6h and healthy leaves (early-TMV-inducible genes).
RPKM: reads per kb per million reads. Raw intensity: the total

number of reads sequenced for each gene. FDR: false discovery
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rate. The significance of gene expression difference between

samples was identified by using FDR,0.001 and the absolute

value of log2Ratio #1 as the threshold. To calculate the log2Ratio

and FDR, we set RPKM value of 0.001 instead of 0 for genes that

do not express in one sample.

(XLS)

Table S5 Differentially expressed genes between TMV-
28h and healthy leaves (late-TMV-inducible genes).
RPKM: reads per kb per million reads. Raw intensity: the total

number of reads sequenced for each gene. FDR: false discovery rate.

The significance of gene expression difference between samples was

identified by using FDR,0.001 and the absolute value of log2Ratio #1

as the threshold. To calculate the log2Ratio and FDR, we set RPKM

value of 0.001 instead of 0 for genes that do not express in one sample.

(RAR)

Table S6 Differentially expressed genes between CMV-
6h and healthy leaves (early-CMV-inducible genes).
RPKM: reads per kb per million reads. Raw intensity: the total

number of reads sequenced for each gene. FDR: false discovery

rate. The significance of gene expression difference between

samples was identified by using FDR,0.001 and the absolute

value of log2Ratio #1 as the threshold. To calculate the log2Ratio

and FDR, we set RPKM value of 0.001 instead of 0 for genes that

do not express in one sample.

(XLS)

Table S7 Differentially expressed genes between CMV-
20h and healthy leaves (late-CMV-inducible genes).
RPKM: reads per kb per million reads. Raw intensity: the total

number of reads sequenced for each gene. FDR: false discovery

rate. The significance of gene expression difference between

samples was identified by using FDR,0.001 and the absolute

value of log2Ratio #1 as the threshold. To calculate the log2Ratio

and FDR, we set RPKM value of 0.001 instead of 0 for genes that

do not express in one sample.

(RAR)

Table S8 Common genes between the early-TMV-
inducible genes and the late-TMV-inducible genes.
(XLS)

Table S9 Common genes between the early-CMV-
inducible genes and the late-CMV-inducible genes.

(XLS)

Table S10 Common genes between the early-TMV-
inducible genes and the early-CMV-inducible genes.

(XLS)

Table S11 Common genes between the late-TMV-in-
ducible genes and the late-CMV-inducible genes.

(RAR)

Table S12 Common genes among the early-TMV-induc-
ible genes, the early-CMV-inducible genes, the late-
TMV-inducible genes and the late-CMV-inducible genes.

(XLS)

Table S13 Genes showed ‘down-up’ or ‘up-down’ ex-
pression profiles during the TMV-induced HR.

(XLS)

Table S14 Genes showed ‘down-up’ or ‘up-down’ ex-
pression profiles during the CMV-induced HR.

(XLS)

Table S15 Genes showed ‘down-up’ or ‘up-down’ ex-
pression profiles during both TMV- and CMV-induced
HR.

(XLS)
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