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ABSTRACT
This study was conducted to investigate how far dietary zinc (Zn) modifies the histomorphologi-
cal alterations induced by diabetes in rat kidneys. The animals were divided into negative control
group (10 rats). Diabetes was induced in thirty animals by streptozotocin. After confirming dia-
betes, the animals were divided into three groups (n¼ 10). Group II served as the positive control
group (fed on standard diet), group III was fed on Zn deficient diet, and group IV was fed on Zn
supplemented diet. Caspase-3 immune staining was used to estimate the caspase activity.
Stereological procedures were used to measure the quantity of the immune stain and the surface
area of the Bowman’s space. The renal cortices of group II rats revealed apparent widening of
Bowman’s spaces with few apoptotic figures. The filtration barrier showed thickening of the base-
ment membrane. The proximal convoluted tubules showed patchy loss of the apical microvilli
with swollen mitochondria. The distal convoluted tubules revealed area of irregular basal enfold-
ing. The picture was aggravated by Zn deficiency in group III besides areas of cortical interstitial
fibrosis. The histopathological alterations were minimal in the cortices of group IV. A significant
increase of the Bowman’s space surface area in group II and IV while decrease in group III com-
pared with group I. The expression of Caspase-3 density was significantly increased in group II
and III compared with group I while in group IV was non significant. In conclusion, dietary Zn
modulated renal cortical changes caused by diabetes in rats.
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Introduction

Zinc (Zn) is a well-known essential trace element, how-
ever, its specific roles in the cells are not well under-
stood.1 It is an essential component of enzyme
molecules, proteins, and biomembranes.2 Even though,
its quantities are very small in body tissue, the structure
and hence the stability of proteins such as insulin and
insulin receptors depend on the presence of this elem-
ent.2,3 Cellular activities such as DNA synthesis, gene
expression, enzymatic catalysis, as well as hormonal
release, and storage are regulated by intracellular Zn.4,5

Also acts as a coordinate regulator of cell mitosis and
cell suicide process of apoptosis.4,6

Because our bodies cannot store Zn, continuous Zn
supplementation is essential to maintain normal body
functions.7 Zn deficiency is one of the commonest trace
elements deficiencies particularly in developing coun-
tries.8 Many pathophysiological conditions are accom-
panied with Zn deficiency as in increased loss
(hyperzincuria and sweating),9 increased demands

(severe burns, pregnancy and lactation),10,11 heavy
metal poisoning, aging, and diseases as Down’s syn-
drome.4 Diet supplementation with iron and calcium
lead to decrease in Zn concentration in the circula-
tion.12 Diabetics always suffer low tissue concentration
of Zn, due to defective absorption and increased loss
concomitant with Zn metabolism imbalance.13–16

Diabetes mellitus (DM) is a metabolic disorder associ-
ated with severe oxidative stress caused by the high
glucose levels in the plasma which induces production
of oxygen free radicals that damage different body
cells.17–21 This oxidative stress has been implicated in
the pathogenesis of diseases of most vital organs, par-
ticularly the kidney. Almost all renal structures; glom-
erular basement membranes,22 tubular basement
membrane,23 renal arterioles, and podocytes,24,25 even
the interstitium26 are affected. These changes finally
lead to irreversible renal damage.27

Antioxidants play a beneficial role in preventing dia-
betic complications by decreasing production and/or
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increasing scavenging of the free radicals.28 Trace ele-
ments such as Zn act as a cellular antioxidative defense
together with an action in insulin signal transduction
and glucose metabolism.29 Deficiency of antioxidants
exacerbates oxidative stress associated with
diabetes.30–33

The accompanied Zn depletion with diabetics is
expected to aggravate renal pathological changes. The
present work was conducted to investigate the renal
histopathological changes that accompany dietary Zn
deficiency versus its supplementation in diabetic rats.

Material and methods

Experimental animals

A total of number 40 male Wistar rats weighing
80–100 g were obtained from the Mansoura University
Animal House. They were kept during the study under
standard laboratory conditions with maintained supply
of water ad libitum and diets prepared by dietary spe-
cialist at the animal house. All the performed proce-
dures follow the guideline of the national institute of
health (NIH) for the care and use of laboratory animals
(NIH Publication 85-23 Rev. 1985).

Diets

Standard diet: It was prepared according to Swenerton
and Hurley.34 The diet contained a ration of soybean
protein, sucrose, corn oil, mineral, and vitamin mixture
in drinking tap water.
Zinc deficient diet: The Zn content of the standard
diet was reduced by treatment of the soybean protein
by the tetrasodium salt of ethylenediaminetetraacetic
acid (Na4EDTA) according to35 by suspension of soy-
bean protein with EDTA.
Zinc supplemented Diet: Zn was supplied as ZnSO4

(HEALTHAID LTD, Healthaid House, Marborough Hill,
Harrow, Middlesex, HA1 1UD England) at a dose of
5mg/kg in drinking tap water.36

Procedure

Ten animals, served as the negative control group
(Group I) were maintained on the standard diet for 10
weeks. Diabetes was induced in 30 animals by 5 doses
(20mg/kg) of STZ (Sigma, St. Louide, Mo) in 5 consecu-
tive days.37 Diabetes was confirmed (blood glucose
over 200mg/dL) in whole blood obtained from the tail
vein one week after, using the glucose reagent strips
supplied by Sigma Chemical Co. Diabetic rats were ran-
domly divided into 3 groups (10 rats each). Group II was

used as the positive control group; and were fed the
standard diet. Group III was fed with Zn deficient diet,
group IV was fed with Zn supplemented diet. Ten
weeks after confirmation of diabetes, all rats were sacri-
ficed under pentobarbital anesthesia (5mg/100 g).
Kidneys were collected, and longitudinally dissected
into two equal halves, one half was processed for LM
and the other for EM.

Tissue preparation

For LM, kidney specimens were fixed in 4% paraformal-
dehyde, then immersed in paraffin. Serial sections of
5lm stained by hematoxylin and eosin according to
the standard methods.

For Caspase-3 immune staining, paraffin-embedded
biopsies were deparafinized and hydrated by xylene
and alcohol. To block endogenous peroxidase, the sec-
tions were treated with 3% hydrogen peroxide followed
by incubation over night at 4 �C with primary antibody
raised against Caspase-3 (Clone Caspase-3; Sigma, Saint
Lous, MO), then counterstained with hematoxylin and
finally dehydrated, cleared and mounted.38

For transmission EM, specimens from the kidneys
were immersed in 2.5% glutaraldehyde in 0.1 M cacody-
late buffer (pH 7.3) for 4 h and then post fixed in 1%
osmium tetroxide in 0.1 M cacodylate buffer (pH 7.3) for
2 h. The specimens were dehydrated in ascending
grades of alcohol, and passed in two changes of propyl-
ene oxide to be embedded in Epon. Semi-thin sections
(1lm thick) were stained with toluidine blue to select
the proper sites for ultra-thin sections (60–80 nm thick)
which were cut, double stained with 2% uranyl acetate
and 2% lead citrate and examined with the transmission
electron microscope.39 Preparing specimens were done
in the Electron Microscopy Unit, Mansoura University.

Measurements

By using digital camera (CH-9435 DFC 290, Germany),
quantification data of five randomly selected slides, at
400� magnification, were collected using a package of
image analysis (Leica Q Win standard, digital camera
CH-9435 DFC 290, Germany). Images were saved as TIFF
and analyzed on IntelVR Core I3VR based computer using
Video Test MorphologyVR software (Russia) with a par-
ticular built-in routine for calibrated area measurement
and immune staining quantification. The scoring of the
percentage of the positively brown stained cells to the
negatively stained cells was determined by image ana-
lysis program.

The surface areas of Bowman's space were measured
to assess any micro-anatomical alterations by using
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Image J software version 1.42 (National Institutes of
Health, Bethesda, MD) analysis system at �400 magnifi-
cation in 15 fields of hematoxylin-stained renal sections.

Statistics

By using Statistical Package for Social Science (SPSS)
version 15.0, the data were statistically analyzed.
Unpaired t-test was used for comparison between two
groups. For intergroup comparison, ANOVA test was
applied with the least significance (LSD) post hoc
analysis. Significance was considered when p values
<.001.

Results

LM examination of group I (control group) demon-
strated most of the components of the renal
cortex including; renal corpuscles, proximal convoluted

tubular cell lining with rounded nuclei and acidophilic
cytoplasm and apical brush border, distal convoluted
tubules, macula densa and collecting tubules
(Figure 1(A)).

Renal cortices of group II showed marked changes as
widened Bowman’s spaces, scattered patchy loss of the
apical brush border with some apoptotic figures in the
form of darkly stained nuclei, vacuolated eosinophilic
cytoplasm (Figure 1(B)).

The renal cortices of group III rats showed more dra-
matic histopathological changes in comparison to those
of groups I and II. The cellular lining of the proximal
convoluted tubules showed numerous apoptotic
figures with wide spread areas of apical border loss.
Areas of mild blood extravasations were also evident
(Figure 1(C)).

On contrary, group IV renal cortices showed mild
changes in the form of less modifiable apoptotic figures

Figure 1. (A) photomicrograph of hematoxylin and eosin stained paraffin sections; (A) Control rat renal cortex showing glomeru-
lar capillary (G), Bowmans space (BS), proximal convoluted tubules (P) lined with cuboidal cells with acidophilic cytoplasm,
rounded open face nuclei and apical brush border (arrow), distal convoluted tubules (D) and macula densa (M). (B) The sections
of group II show apparent widded Bowmans space (BS) of the glomerulous (G). The cell linning of the proximal convoluted
tubules (P) with lost apical brush border, apoptotic linning (arrow heads) cells having small darkly satined nuceil and slighly eoso-
phillic vaculated cytoplasm (curved arrows). (C) The sections of group III shows of the glomerulous (G). The cell linning of the
proximal convoluted tubules (P) is distorted with lost apical brush border, apoptotic linning (arrow heads) cells having small
darkly satined nuceil and slighly eosophillic vaculated cytoplasm (curved arrows). Areas of haemrrage are also detected (tailed
arrow). (D) Section in zinc treated renal cortex demonstrates apparently normal glomerular capillaries (G) and minimal vaculation
in proximal tubular (P) lining cells (curved arrows) with small darkly stained nuclei (arrow heads). The distal convoluted tubules
(D) appears normal.
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in the cellular lining of the proximal convoluted tubules
and apparently normal Bowman’s corpuscles and distal
convoluted tubules (Figure 1(D)).

Transmission electron microscopic examination of
the renal cortices of group I (Figure 2(A)) showed all the
components of the normal renal corpuscles including
podocytes with large irregular nuclei. Apparently nor-
mal filtration barrier was formed of regular minor proc-
esses of the podocytes, regular capillary endothelium
and uniform basement membrane forming filtration
barrier. The proximal convoluted tubular lining cells
showed regular basal infoldings with numerous

mitochondria, large euchromatic nuclei and areas of
large apical microvilli (Figure 3(A)). The distal convo-
luted tubular cells appeared normal with well-defined
cell border (Figure 4(A)).

Group II renal cortices revealed an obvious mild
changes in the filtration barrier in the form of irregular
minor podocytic processes, irregular fenestrated endo-
thelium together with areas of basement membrane
thickening (Figure 2(B)). The cells of proximal and distal
convoluted tubules showed swollen mitochondria and
few lysosomes. Areas of detached apical microvilli in
the proximal convoluted tubular lining cells were

Figure 2. A) An electron micrograph demonstrating the renal glomerular corpuscle of the control rat with a part of the cell body
of podocytes (P) and glomerular capillaries (G). The filtration barrier is formed of minor processes of the podocytes (arrows),
fenestrated endothelium of the glomerular capillaries (arrow heads) separated by uniformly thick basement membrane (curved
arrows). B) An electron micrograph of the renal corpuscle of group II rats showing irregular minor podocytic processes (arrows)
and areas of markedly thickened basement membrane (curved arrows). Arrow heads point to the irregular fenestrated endothe-
lium. C) An electron micrograph of the renal corpuscle of group III rats showing a part of the body of podocte (P) with irregular
minor podocytic processes (arrows) and areas of markedly thickened basement membrane (curved arrows) and irregular fenes-
trated endothelium (arrow heads). D) An electron micrograph of the renal corpuscle of group IV rats demenestrating slight thick-
neneing of the basement memebrane (curved arrows) and regular minor processes (arrow heads) of podocytes (P).
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noticed (Figure 3(B)). Areas of decreased basal infold-
ings in the distal convoluted tubules were also seen
(Figure 4(B)).

The renal cortices of group III (Figure 2(C)) showed
extensive changes demonstrated by areas of excessive
thickening of the basement membrane with irregular
fenestrated endothelium. Numerous swollen bizarre
shaped mitochondria and lysosomes were present in
cellular lining cells of both proximal and distal convo-
luted tubules besides areas of interacytoplasmic spaces
(Figures 3(C) and 4, CI). Areas of excessive deposition of
collagen bundles were observed in the cortical intersti-
tium (Figure 4, CII).

Ultra structural examinations of the renal cortices
of group IV were almost normal with minor changes
in the form of areas of slight thickening of the base-
ment membrane of the filtration barrier (Plate 2, D).
The cytoplasm of the cellular lining of both proximal
and distal convoluted tubules appeared more or less
normal apart from multiple secondary lysosomes
(Figures 3(D) and 4(D)).

On analysis of semi-quantitative measurements of
Caspase-3 density of different groups, its expression
showed a highly significant change on comparing
group II and III to the control group (group I). Group IV
showed non significant change when compared with

Figure 3. A) An electron micrograph of the lining cells of proximal tubules of control rat with thick basement membrane
(arrows), rounded euchromatic nucleus (N) with prominent nucleolus (n), numerous mitochondria (M) with regular basal infolding
(tailed arrow) and apical microvilli (V). B) An electron micrograph of proximal tubules of group II rats showing, area of microvilli
(V) with some areas of detachment, swollen bizarre shape mitochondria (M), secondary lysosomes (L) and normal nucleus (N). C)
An electron micrograph of proximal tubules of group III rats showing, area of detached microvilli (curved arrow), swollen bizarre
shape mitochondria (M), wide cytoplasmic spaces (stars) multiple secondary lysosomes (L) and apparently normal nucleus (N). D)
An electron micrograph of the lining cells of proximal tubulus of group IV rats showing regular elongated mitochonderia (M), sec-
ondary lysosomes (L) with normal basal infolding (tailed arrow) and normal apical microvilli (V).
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Figure 4. A) An electron micrograph of the control rat distal tubule lining cells showing definite cell border (arrows) and elon-
gated mitochondria (M) and rounded nuclei (N). B) An electron micrograph of the lining cells of the distal tubules of group II rats
showing distorted basal enfolding (tailed arrow) bizarre shape mitochondria (M) swollen smooth endoplasmic reticulum (Ser) sec-
ondary lysosomes (L) and rounded nucleus (N). C) An electron micrograph of the lining cells of the distal tubules of group III rats
showing irregular thickening of the basement membrane (curved arrow), bizarre shape mitochondria (M), secondary lysosomes (L)
and rounded nucleus (N). II) shows areas of fibrosis in the interstitial tissue (C) with primary and secondary fibrocytes (F1 and F2
respectively). D) An electron micrograph of lining cells of distal tubules of group C rats showing rounded nucleus (N) numerous
free ribosomes (r) with distict cell border (arrows), normal mitochonderia (M) with normal thickened basement membrane (curved
arrow).
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the control one (group I). The different experimental
groups showed inter group significant changes
when compared with each other (Table 1, graph 1,
Figure 5).

The Bowman’s space area showed a significant
increase in group II and IV and significant decrease in
group III compared with the control group (group I). On
comparing the different groups with each other, highly
significant changes were found in-between all groups
(Table 2, graph 2 , Figure 5).

Discussion

Zn is an essential trace element which is important
for maintaining the integrity of the normal cellular
functions. Because our bodies can't store the minimal
required quantity of this important element, there is
a continuous call for its adequate dietary
supplement.

Diabetic nephropathy is the leading cause of death
among diabetics mainly due to end stage renal fail-
ure.40,41 It was proofed that all diabetics suffer Zn defi-
ciency particularly at the late stage.42,43 This fact was
explained by increased Zn renal loss or decreased
absorption.16

The current study was conducted to establish narra-
tive data about the histopathological changes in various
components of renal cortex and how far dietary Zn sup-
plementation can modify these changes.

Although Zn levels in the kidney tissues were not
determined, it is settled that diabetes in non Zn supple-
mented rats caused highest kidney zinc values with sig-
nificant decrease in its plasma levels.44,45 This finding
was explained by the enhanced urinary zinc excretion
in experimentally-induced diabetes.14

Compared with negative control group (Group I),
marked pathological findings were observed in the
positive one (Group II). The renal cortices showed wid-
ened Bowman's space. The filtration barrier had an
irregular of podocytic minor processes with marked
thickening of the basement membrane and irregular
fenestrated endothelium. The cell lining of the proximal
convoluted tubules showed areas of lost apical brush
border with signs of apoptosis in the form of small
darkly stained nuclei and vacuolated cytoplasm. The
cytoplasm contained bizarre shape mitochondria and
secondary lysosomes. The distal tubules had distorted
basal enfolding, bizarre shape mitochondria with swol-
len smooth endoplasmic reticulum and numerous sec-
ondary lysosomes. These findings were supported by
the statistical analysis that demonstrated significant
increase in Caspase-3 expression together with a signifi-
cant increase in the surface area of Bowman's space.

Similar findings were reported in previous stud-
ies.41,46–49 The associated cellular injuries are explained
by that fact that diabetes is associated with activation
of increased free radical production together with

Table 1. Caspase-3 density of the 4 groups.

Group Mean ±SD Significance

Group I 173.0 20.645 p< .001
Group II 181.5 18.006
Group III 203.5a,b 14.554
Group IV 187.7b,c 19.029

p: Probability; SD: standard deviation; Test used: ANOVA followed by post-hoc tukey.
aSignificance versus group I.
bSignificance versus group II.
cSignificance versus group III.
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impaired production of antioxidants with subsequent
increase in tissue oxidative injuries.50–52

Histological and morphometric analysis of kidneys of
the diabetic rats fed on Zn deficient diet (group III)
revealed more extensive degenerative changes in the
form of numerous apoptotic figures, areas of blood
extravasations together with areas of extensive thicken-
ing of the basement membrane. The proximal convo-
luted tubules showed more extensive loss of the apical
microvilli. The cytoplasm cellular lining of both proximal
and distal convoluted tubules showed swollen mito-
chondria, secondary lysosomes and intracytoplasmic
spaces. Collagen bundle deposition was observed in the
cortical interstitium. These changes were confirmed by
morphometric analysis of Caspase-3 density which
showed a highly significant expression compared with
the other groups, while Bowman's space surface area
showed significant decrease compared with the other
groups. These exacerbated histopathological changes
induced by Zn deficiency in diabetics was attributed to

increased chronic cellular oxidative stress.53–57 The
librated reactive oxygen species attack lipids and lipo-
proteins of the membranes, starting a series of chain
reactions of lipid per oxidation inducing the cellular
changes ending in cell death23,58

Areas of interstitial fibrosis in-between distal convo-
luted tubules were also detected by the ultra structural
examination. The increased fibrosis was also described
by Li et. al.59 who specifies this fibrosis by the increased
collagen IV accumulation. Other studies reported endo-
thelial cell damage and hyaline mass formation in
diabetes.52

Group IV (Zn supplemented diets) showed minimal
changes being more or less normal. Secondary lyso-
somes were the main finding. Apoptotic figures were
not evident which was supported by the non significant
change in Caspase-3 expression when compared with
the group (Group I).

The protective effect of Zn is explained by the fact
that Zn is a reactive oxygen species antagonist. It acts

Figure 5. Representative photomicrographs of caspase-3 expression determined by immunohistochemistry. Mean scoring of cas-
pase-3 in the renal cortical areas of the control rats was 173.0 ± 21. It increased in group II (181.5 ± 18). Group III showed signifi-
cant increase (203.5 ± 14). The score returns near normal in group IV (187.7 ± 19). Caspase-3 density (Table 1, graph 1). Initial
increase in group II followed by significant increase in group III and group IV, being more evident in group III. Bowman's space
(Table 2 graph 2). Significant increase in group II, III and IV, while significantly decreased in group III.
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by protecting oxidation of the sulfhydryl groups and
also by scavenging for oxygen species antagonist16,60

or by preventing the increase of free radical forma-
tion.61 Other studies reported similar protective effects
on diabetic kidney59 and on other organs as the
lungs.62

Semi-quantitative assessment of the Bowman’s
space surface area showed significant increase in
group II and IV, while a significant decrease in group
III when compared to group I. This significant increase
in group II can be explained by a decrease in
Bowman’s space pressure and damage to the parietal
epithelial cells which caused by diabetes.63 In spite of
the postulated protective effect of Zn in group IV, the
paradoxical increase in Bowman’s space surface area
may be due to the fact that the mechanism by which
diabetes produces the increased surface area is not
compensated by Zn. On the other hand, the significant
decrease in Group III Bowman's space surface area is
explained by the increased levels of serum glucocorti-
coids accompanying Zn deficiency with subsequent
stress response in the affected cells.64 The high level
of glucocorticoids induces mesangial hypercellularity,
thickening of the Bowman's capsule together with
adhesions in-between the glomerular tufts and the
Bowman’s capsule.65

Caspases are mediators in the process of cell apop-
tosis.66 They are proenzymes that control a cascade of

proteolytic events ending in cell death.67 Caspase-3 is
particularly involved in the process of apoptosis by con-
trolling Ca/Mg-dependent endonuclease which is
involved in segmenting DNA ending in chromatin con-
densation and DNA fragmentation.68–70 It is normally
expressed in the cells indicating normal apoptotic
changes. These processes together with mitosis keep
the tissues and organ sizes and shapes.71

Our study showed significant increased caspase-3
expression in groups II and III compared with group I
indicating increased apoptosis in the renal tubular cells.
This is explained by the cytotoxicity caused by
increased reactive oxygen species leading to activation
of the mitochondrial protein kinases ending in apop-
tosis. Deficiency of Zinc had been associated with
increased apoptosis in other organs as intestine, retina,
thymus, testis, pancreas, bone, and neural epithe-
lium.4,72–76 Other studies reported increased apoptosis
in cells cultured in Zn deficient media.71,77,78

On the other hand, group IV Caspase-3 expression
showed non significant change indicating the protect-
ive effect of Zn supplementation.

Conclusion

The current study proofed the potential protective role
of Zn in diabetic-induced renal damage in rats as evi-
denced by histomorphological observations

Table 2. Bowman’s space of the 4 groups.

Group Mean ±SD Significance

Group I 69466.5 1136.330 p< .001
Group II 90415.5a 2017.575
Group III 11328.2ab 1140.380
Group IV 81241.6abc 2226.433

p: Probability; SD: standard deviation; Test used: ANOVA followed by post-hoc tukey.
aSignificance versus group I.
bSignificance versus group II.
cSignificance versus group III.
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Recommendation

Antioxidants are important to control diabetic nephrop-
athy and zinc supplementation is important to control
progression of diabetic nephropathy.
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