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SUMMARY

Many factors modulate the state of cortical activity, but the importance of cortical state variability 

for sensory perception remains debated. We trained mice to detect spatially localized visual stimuli 

and simultaneously measured local field potentials and excitatory and inhibitory neuron 

populations across layers of primary visual cortex (V1). Cortical states with low spontaneous 

firing and correlations in excitatory neurons, and suppression of 3- to 7-Hz oscillations in layer 4, 

accurately predicted single-trial visual detection. Our results show that cortical states exert strong 

effects at the initial stage of cortical processing in V1 and can play a prominent role for visual 

spatial behavior in mice.
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In Brief

Speed et al. show that visual behavior in mice is strongly influenced by the state of activity in 

primary visual cortex (V1). Single-trial perceptual accuracy was highly predictable from 

oscillations in the input layers and from correlations between excitatory neurons.

INTRODUCTION

Behavioral factors such as sleep, wakefulness, and movement have strong effects on the state 

of cortical activity. Cortical states are typically defined by the degree of shared fluctuations 

among cortical neural populations, measured by local field potential (LFP) frequency power 

(Harris and Thiele, 2011), and neural population correlations (Kohn et al., 2009). Cortical 

states exert profound effects on sensory responses (Haider and McCormick, 2009; Petersen 

and Crochet, 2013), but there remain unresolved questions about cortical states and their 

effects on sensory perception.

One question concerns the role of cortical states for perception across sensory modalities. In 

primates performing visual tasks, cortical states strongly influence stimulus detection 

(Gilbert and Li, 2013; Reynolds and Chelazzi, 2004; Spitzer et al., 1988). However, recent 

studies in mice show that somatosensory perception occurs in a wide variety of cortical 

states—even those with correlations and activity patterns resembling slow-wave sleep 

(Sachidhanandam et al., 2013). It is unknown how cortical states influence visual perception 
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in mice and unclear whether the underlying mechanisms are like those in other mammalian 

visual systems or like those in other mouse sensory cortical areas.

A second question concerns how cortical states coordinate excitatory and inhibitory neuron 

population activity during perception. In primates performing visual tasks, selective 

attention strongly modulates cortical state (Engel et al., 2016) and population correlations 

(Kohn et al., 2016; Nienborg et al., 2012). Reduction of correlated activity (decorrelation) 

best accounts for perceptual improvements in these tasks (Cohen and Maunsell, 2009), but 

the neuronal subtypes involved remain unclear. Identification of cortical neuron subtypes in 

higher mammals presents challenges, since action potentials of many excitatory neurons are 

indistinguishable from those of inhibitory neurons (Constantinople et al., 2009; Haider et al., 

2010; Soares et al., 2017; Vigneswaran et al., 2011). This may hinder full understanding of 

excitatory and inhibitory contributions to sensory perception.

A third question concerns how cortical states affect information flow across cortical layers 

during sensory perception. A recent study of primate visual cortex area V4 revealed that 

cortical states underlying selective visual attention strongly modulate correlations in the 

input layers (Nandy et al., 2017). In contrast, input layers in primary visual cortex (V1) 

exhibit low correlations and low sensitivity to cortical state changes (Hansen et al., 2012; 

Poort et al., 2016; Smith et al., 2013). It remains unknown how cortical states modulate 

activity across input and output layers of V1 during visual perception in mice.

Several recent studies have provided insight about cortical states in awake mice. During 

quiet awake conditions, pupil fluctuations can index low- and high-arousal cortical states in 

the absence of overt behavioral changes (McGinley et al., 2015a; Reimer et al., 2014; Vinck 

et al., 2015). These methods have revealed how changes in neuronal correlations, LFP 

spectral power, and membrane potential alter sensory responsiveness. These studies suggest 

that there are multiple ways that key features of cortical states in awake, non-behaving 

conditions could impact sensory signal reliability and coding (McGinley et al., 2015b). 

Importantly, only one of these studies examined features of cortical states and their 

relationship to perception, during an auditory task (McGinley et al., 2015a). It still remains 

unknown how specific features of cortical states across layers of mouse V1 support visual 

perceptual behavior.

To address these unresolved questions, we trained mice to detect visual stimuli appearing in 

discrete portions of the visual field and, simultaneously, measured LFP and excitatory and 

inhibitory neuron populations across layers of V1. Our approach used overt behavioral 

outcomes as criteria to identify the features of cortical states associated with accurate visual 

behavior. We then quantitatively assessed how effectively each of these features predicted 

stimulus detection on single trials across subjects. This approach revealed that in layer 4 

(L4) of V1, enhanced narrowband gamma (50–70 Hz) LFP oscillations before the stimulus 

and suppressed low-frequency (3–7 Hz) oscillations during the stimulus accurately predicted 

single-trial visual detection.
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RESULTS

Visual Detection Latency and Sensitivity Depend upon Spatial Location

We designed a behavioral assay of visual spatial perception in stationary head-fixed mice 

(Figure 1A). Mice reported detection of visual stimuli by licking for water rewards. These 

were obtained only if they licked during the stimulus window (typically 1–1.5 s). Stimuli 

appeared only after a mandatory period of no licks had elapsed (typically 0.5–6 s, 

randomized per trial). Static horizontally oriented Gabor gratings appeared in one of two 

fixed spatial locations, either in the monocular or binocular visual fields. Gratings appeared 

at one of these locations for a block of 15–50 consecutive trials, and then switched to the 

other location for a new block of trials (Figure 1B). During training, we progressively 

increased task difficulty by making stimuli smaller and lower in contrast (see STAR 

Methods). Increasing task difficulty presented greater opportunity to examine trial-by-trial 

fluctuations of perception. Mice typically learned this task in 2–3 weeks and performed 

hundreds of trials per day.

Mice performed this detection task using vision. Stimulus location and contrast significantly 

affected reaction times and detection sensitivity. Mice detected binocular stimuli 

significantly more rapidly than monocular stimuli, even at lower contrasts (Figure 1C, left 

versus right panels). Moreover, within a given spatial location, higher contrast stimuli 

elicited significantly faster reaction times (Figure 1C). Detection sensitivity (d′; see STAR 

Methods) was significantly greater than chance level in both locations, with binocular vision 

exhibiting greatest sensitivity (Figure 1D). Lower visual contrast decreased detection 

sensitivity in both locations, significantly in the binocular visual field (Figure 1D). 

Sensitivity to stimulus location and contrast did not depend upon grating orientation (not 

shown). Taken together, these results show that two major aspects of vision—spatial location 

and contrast—significantly influence visual detection behavior in mice. The remainder of 

this paper examines the neural correlates of monocular detection in the contra-lateral 

hemisphere.

Activity in primary visual cortex (V1) was necessary for stimulus detection. 

Pharmacological or optogenetic inactivation of monocular V1 abolished monocular 

detection, while interleaved trials of binocular detection were not significantly impaired 

during the same experiments (Figure S1; see STAR Methods). Inactivation of adjacent non-

visual cortex caused no behavioral impairment. These results indicate that localized activity 

in V1 supports stimulus detection in retinotopically matched regions of visual space.

Stimulus Detection Failures Are Correlated with Strong Oscillations in L4

We performed acute recordings of laminar population activity in V1 during visual spatial 

detection. We recorded in monocular V1 for two reasons. First, monocular detection trials 

exhibited greatest task difficulty; second, monocular stimuli activate V1 unilaterally, 

restricting the early stimulus-evoked activity to one hemisphere. We recorded from task-

relevant V1 neurons by measuring the spatial receptive field (RF) at each recording site, and 

ensuring that these overlapped the average location of the monocular stimuli during spatial 

detection (Figure S2A).
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LFP was starkly different during successful versus failed detection. Detection failures 

(Misses) were often accompanied by synchronized, low-frequency (3–7 Hz) LFP 

oscillations during the stimulus (Figure 2A, gray). By functionally identifying cortical layers 

(Niell and Stryker, 2008; Pluta et al., 2015), we found that these 3- to 7-Hz oscillations were 

strongest in L4 and L5/6 (Figures S2E and S2F). Moreover, 3- to 7-Hz residual LFP power 

was selectively and significantly elevated only during failed detection (Miss) trials (Figures 

2B–2D).

Successful detection was preceded by elevated narrowband gamma (50–70 Hz) LFP in L4. 

Narrowband gamma residual power was strongest in L4 (Figure S2E), and in the absence of 

visual contrast. Remarkably, L4 narrowband gamma power varied with behavioral outcome: 

it was significantly elevated and then suppressed by the onset of visual contrast selectively 

on Hit trials (Figures 2E–2G).

Stimulus Detection Is Correlated with Low Spontaneous Firing and Low Correlations

We next examined laminar activity of single neurons comprising two distinct classes: broad 

waveform regular spiking (RS) putative excitatory neurons, and narrow waveform fast-

spiking (FS) putative inhibitory neurons (Figures 3A and 3B). Spike widths of FS neurons 

matched those of parvalbumin (PV) interneurons directly activated by channelrhodopsin 

(Figures S3A–S3C). This suggests that FS neurons in our experiments are PV interneurons.

RS and FS neurons displayed two distinct activations during successful detection. The initial 

visual response peaked and terminated rapidly, hundreds of milliseconds before the average 

reaction time (Hit trials; Figure 3A). By aligning to reaction times (first lick) on Hit trials, a 

second, rapidly rising late-phase response emerged prior to the first lick (Figure 3B); this 

was not present on Miss trials aligned to stimulus offset (Figure 3A, gray; see Figure S5 for 

Hit trial alignment to stimulus offset). Late-phase activity on Hit trials was not a movement 

artifact: firing terminated abruptly upon reward delivery, even though mice continued to lick 

vigorously during reward consumption.

Lower firing rates and reduced correlations preceded successful detection. On a cell-by-cell 

basis, RS and FS neurons in L2/3 and L5/6 fired significantly less before Hit versus Miss 

trials (Figures 3B and S3D–S3F). Accordingly, RS neuron pairs in L2/3 and L5/6 were 

significantly less correlated before Hit trials, as were FS pairs in L5/6 (Figure S3; 

correlations between Gaussian smoothed spike trains; see STAR Methods). Lower 

correlations prior to successful detection were not driven by higher arousal; pupil dilates 

with increasing arousal, yet it was significantly smaller before Hit versus Miss trials (Figure 

S4).

Stimuli evoked higher firing rates on Hit versus Miss trials. On a cell-by-cell basis, stimuli 

detected on Hit trials evoked significantly more spikes during the early sensory response in 

RS neurons across all layers, and in FS neurons in L4 and L2/3 (Figure 3C); this trend was 

even more evident after accounting for pre-stimulus activity (Figure S5). More spikes were 

also evoked during the late sensory response on Hit trials, particularly for FS neurons 

(Figure 3D; see also Figure S5).
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Moreover, stimuli evoked lower noise correlations on Hit trials. RS neuron pairs in all layers 

displayed significantly lower noise correlations on Hit versus Miss trials, as did FS neuron 

pairs in L2/3 (Figure S3). These noise correlations were normally distributed across pairs, 

showing little evidence for discrete clusters of high and low correlation pairs (not shown).

RS Neurons and L4 LFP Oscillations Predict Single-Trial Behavior Most Accurately

Which aspects of cortical states predict trial-by-trial visual spatial detection performance? 

We observed robust signatures of cortical states across network, laminar, and cellular levels, 

even when averaging across multiple behavioral sessions and subjects. We thus quantified 

the accuracy of predicting single-trial behavior from cortical state signatures at both network 

(LFP) and cellular (RS/FS neuron) levels.

Prior to stimulus onset, RS neurons predicted single-trial behavior more accurately than FS 

neurons. Increased or decreased firing rates and correlations in RS neurons (associated with 

Hits and Misses) predicted behavioral outcomes significantly better than chance (Figure 4B; 

51 ± 4% versus 56 ± 4% correctly predicted single trials; mean ± SD; p < 0.01; for cross-

validated SVM classifier, see STAR Methods). Firing rates and correlations of RS neurons 

predicted behavior better than both factors in FS neurons (see Figure S6 for laminar effects). 

Pre-stimulus pupil area also predicted behavioral outcomes significantly better than chance 

(Figure S4D; 60 ± 3%).

Upon stimulus onset, L4 LFP oscillations provided the best predictions of single-trial 

behavior. Stimulus evoked 3- to 7-Hz L4 LFP power predicted trial outcome with 84 ± 11% 

accuracy, better than any other stimulus-driven factor (Figures 4C and S7). In parallel, 

stimulus-evoked suppression of L4 narrowband gamma LFP power predicted 71 ± 10% of 

single trials. A two-factor ANOVA revealed a significant interaction between time period 

(pre-stimulus and stimulus) and predictions from LFP power (both low-frequency and 

narrowband gamma power; F = 100.5, p < 10−50, correction for multiple comparisons). At 

the level of firing rates (aggregated across layers; see STAR Methods), both RS and FS 

neurons predicted better than chance (RS, 55 ± 4%; FS, 55 ± 4%), at a level comparable to 

predictions from pre-stimulus rates. However, measuring stimulus-evoked firing rates 

relative to pre-stimulus baseline (ΔFiring rate) significantly improved predictions (RS, 62 ± 

4%; FS, 63 ± 3%; Figure 4D). Behavioral predictions from firing rates were particularly 

strong for L2/3 FS cells (Figure S6). Remarkably, pairwise noise correlations between RS 

neurons predicted behavioral outcome significantly better than firing rates (RS × RS, 75 ± 

7%; FS × FS, 71 ± 4%; p < 0.001 for RS noise correlations versus RS rates). RS noise 

correlations were highly predictive across all layers (Figure S6). Predictions from noise 

correlations were not sensitive to within-trial synchrony and were not entirely explained by 

different numbers of spikes on Hits versus Misses (Figure S6). Finally, pupil diameter 

provided markedly inferior predictions of perceptual outcome compared to firing rates, noise 

correlations, or stimulus-evoked LFP oscillations.

DISCUSSION

Here, we revealed that specific features of cortical state fluctuations across layers of V1 play 

an important role for visual spatial perception in mice. Cortical states associated with lower 
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noise correlations, suppressed firing, and elevated gamma power before stimulus onset 

accurately predicted single trials of visual behavior. During the stimulus, the absence of 

oscillations in L4, higher stimulus-evoked firing, and lower pairwise noise correlations 

predicted stimulus detection. Our findings identify previously unknown neural correlates of 

visual perception in mice and quantify their efficacy in predicting single-trial behavior.

We revealed that multiple features of cortical states were significantly predictive of visual 

behavior in mice. Our study used behavioral outcome as criteria to examine features of 

cortical states before and during stimulus onset; we then tested how accurately these criteria 

predicted behavior on completely separate trials, across behavioral sessions, and across 

mice. We found that cortical states with high pre-stimulus firing rates and correlations 

predicted failures of visual detection. Recent studies of somatosensory detection found that 

pre-stimulus and early stimulus evoked activity in somatosensory cortex were not predictive 

of behavioral outcome (Sachidhanandam et al., 2013), whereas late period stimulus activity 

provided better behavioral predictions (Sachidhanandam et al., 2016). Differences across 

studies may arise from circuit organization across cortical areas, or from specific behavioral 

context. In our visual spatial task, monocular detection was most difficult, and this may have 

accentuated the relationship between cortical states and behavior (Chen et al., 2008; 

McGinley et al., 2015a; Spitzer et al., 1988). Compared to prior studies of full-field contrast 

detection (Histed et al., 2012), our task used relatively higher contrast stimuli, but these were 

10-fold smaller in area (10–15° diameter circle); moreover, these stimuli were only 

presented to one eye in the trials considered here. Additionally, our study isolated neural 

correlates of cortical states and effects on perception in stationary conditions, minimizing 

complicated interactions between arousal, visual motion, locomotion, and motor control 

(Niell and Stryker, 2010; Poort et al., 2015; Saleem et al., 2013; Vaiceliunaite et al., 2013; 

Vinck et al., 2015). In our conditions, pupil area generally predicted behavior less accurately 

than the simultaneously recorded neural signatures of cortical states. Understanding the 

effects of cortical states on neural activity and perception across modalities, in a variety of 

behavioral contexts, remains an important topic for future study.

Selective coordination of population activity in specific layers of mouse V1 supported 

perception. First, elevated narrowband gamma power in L4 before stimulus onset was a 

major factor predicting correct detection, similar to the role of gamma power in visual 

detection in primates (Fries, 2015; Lima et al., 2011; Womelsdorf et al., 2006). Second, low 

levels of pre-stimulus and stimulus-evoked correlations preceded successful stimulus 

detection (Cohen and Maunsell, 2009; Mitchell et al., 2009). We observed that low noise 

correlations (decorrelation) between RS neurons predicted behavioral outcome better than 

firing rates, similar to studies of visual perception in primates (Cohen and Maunsell, 2009). 

However, FS neuron activity did not predict behavior better than RS activity, at odds with 

other findings (Mitchell et al., 2007; Snyder et al., 2016). This may be due to differences in 

RS and FS neuron identification and function in higher mammals (Constantinople et al., 

2009; Soares et al., 2017; Vigneswaran et al., 2011). In mice, >90% of FS neurons are PV 

inhibitory neurons and >90% of RS neurons are excitatory neurons (Lee et al., 2010; Pfeffer 

et al., 2013; Rudy et al., 2011), enabling relatively distinct interpretation of roles of these 

two cell types. Our findings come with several important caveats. First, narrowband gamma 

in mouse V1 has origins and mechanisms distinct from broadband gamma (Saleem et al., 
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2017). Second, we computed correlations on spike trains smoothed at a time-scale of the 

membrane time constant; the role of correlations may differ at other timescales. Finally, 

effects on gamma and correlations were not driven directly by visual attentional cues, a topic 

for further investigation.

Mouse visual behavior was most accurately predicted by cortical state features found in L4 

of V1. In L4, selective modulation of narrowband gamma and suppression of 3- to 7-Hz 

oscillations predicted 70–80% of single behavioral trials. A recent study of L2/3 neurons 

described similar low-frequency oscillations, but these were also linked to changes in 

locomotion, and were less clearly related to behavioral outcomes (Einstein et al., 2017). We 

found here that these 3- to 7-Hz oscillations invaded all cortical layers but were largest and 

most predictive of behavior in L4. In parallel, pre-stimulus narrowband gamma was 

strongest in L4, and the degree of its suppression also strongly predicted behavior. Our study 

shows that cortical states exert widespread effects in mouse V1, and these can accurately 

predict perceptual outcomes on individual trials.

STAR★METHODS

CONTACT FOR REAGENT AND RESOURCE SHARING

All requests for resources should be directed to and will be fulfilled by Bilal Haider 

(bilal.haider@bme.gatech.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

All procedures were approved by the Institutional Animal Care and Use Committee at the 

Georgia Institute of Technology and were in agreement with guidelines established by the 

National Institutes of Health and the Animals (Scientific Procedures) Act 1986 (UK).

Implant surgery—Male C57BL6J mice (4–6 weeks old; reverse light cycle individual 

housing; bred in house; RRID: IMSR_JAX:000664) were chronically implanted with a 

custom-built stainless steel headplate with recording chamber (3–4 mm inner diameter) 

under isoflurane anesthesia (5% induction, 0.5% - 2% maintenance). The headplate was 

affixed to the skull using a thin layer of veterinary adhesive (VetBond) then securely bonded 

to the cranium (Metabond). The recording chamber was sealed with elastomer (KwikCast). 

Following implantation, mice were allowed to fully recover for 3 days. After recovery, 

animals were handled and acclimatized for 3–4 days to the head fixation apparatus, and then 

placed under a restricted water schedule for behavioral training. In some experiments, we 

performed similar procedures in male offspring of PV-cre (RRID: IMSR_JAX:017320) 

crossed with Ai-32-ChR2 (RRID: IMSR_JAX:024109) mice to optogenetically activate PV 

inhibitory neurons during behavior (Figure S1).

Water restriction—Mice learned to perform visual detection for water rewards. Mice 

received a minimum daily amount of water (40 ml/kg/day; 1 ml/day for a typical 25 g 

mouse). Reference weights were computed according the previous methods (Burgess et al., 

2017). Well-trained mice typically received all of their minimum daily water (and often 

more) exclusively during the task. Early in training, naive mice often received less than their 
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minimum amount of hydration in the task, so they received precisely measured supplemental 

hydration (hydrogel) to reach daily requirements.

METHOD DETAILS

Behavioral training—Mice learned the contingency between stimulus appearance and 

reward availability through passive instrumental conditioning. In early sessions, reward was 

automatically delivered after a fixed delay (0.6 –0.7 s) relative to stimulus onset. With 

training, the latency to first lick aligned to stimulus onset occurred before reward delivery, 

indicating that the mouse was reacting to the visual stimulus with anticipatory licks. The 

mouse then transitioned to active visual detection sessions, in which reward delivery 

occurred only if the mouse licked during the stimulus window (typically 1.5 – 2 s early in 

training). Detection performance was quantified using the psychophysical sensitivity metric 

d-prime (d’) (Green and Swets, 1974). Hit rates were calculated from correct detection trials 

(licks during stimulus window) while false alarm rates were calculated from trials with 

blank targets (0% contrast; 20% of trials). When d’ was above chance levels for 2 

consecutive days, stimulus contrast range and/or size was decreased to maintain difficulty. 

Once animals exhibited performance above chance for both binocular and monocular stimuli 

of high and low contrast, we performed acute neural recordings.

Stimulus shaping—Mice detected static horizontal Gabor gratings, presented in either the 

binocular or monocular visual field on linearized LCD monitors (60 or 80 Hz refresh rate). 

Grating phase was randomized every trial, while spatial frequency (range 0.05 – 0.1 cycles/

deg) and stimulus size (σ range 10°−20°) remained fixed across blocks of trials. Binocular 

contrasts ranged from 2% - 75% (38 ± 26% during recording sessions, mean ± SD) 

monocular contrasts ranged from 50%–90% (74 ± 21%). During recording sessions, in 

addition to the detected stimuli, task-irrelevant stimuli were presented to facilitate receptive 

field mapping (bars 9 degrees wide, 2.5%–5% contrast, 0.1 s duration, 0.3 s interval, 

randomized location). These faint and brief bars did not affect behavior, and are not 

analyzed here.

Cortical silencing: Pharmacological: A glass micropipette (~10 μm tip) was filled with 5 

μL of 5 μg/μL muscimol (Sigma) dissolved in artificial cerebrospinal fluid. The pipette was 

lowered in monocular V1 to a depth of 700 μm (L5), and positive pressure of ~17 mBar 

ejected 0.1 μL over 6–10 s. The pipette was slowly withdrawn to 300 μm, and the procedure 

was repeated in L2/3, as in prior studies (Komiyama et al., 2010).

Cortical silencing: Photoinhibition: In optogenetic inactivation experiments with PV-cre x 

Ai32(ChR2) mice (Figure S1), the skull was thinned over monocular V1 and a fiber-coupled 

LED (473 nm) delivered pulses of light to inactivate V1 on 25% of detection trials (1 s 

during visual stimulus, starting 0.1 s before stimulus and ramping to 5.8 mW measured at 

the cranium).

Recordings: Surgical preparation: On the day of recording, mice were anesthetized with 

isoflurane and a small (~100–500 μm) craniotomy was opened over the monocular portion 
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of V1 (0.5 mm anterior to lambda, 2–2.5 mm lateral to central suture). Mice recovered for at 

least 3 hours prior to recording during behavior.

Recordings: Electrophysiology: Recordings were done with multi-site silicon probes 

(NeuroNexus) consisting of either a single 32-channel shank, or two 16-channel shanks. 

Electrodes were advanced ~1000 μm below the cortical surface. Data were collected for the 

duration of a behavioral session (typically 100–300 trials), after which a task-irrelevant 

stimulus was presented to facilitate receptive field mapping of the recording site (100% 

contrast vertical flashed bars, 9 degrees in width, duration 0.1 s, inter-stimulus interval 0.3 s, 

placed in random locations tiling 144 degrees of the visual field). The craniotomy was kept 

sterile and covered with silicone elastomer in between consecutive recording days (typically 

2–4 from the same site).

Recordings: Eye Tracking: In a subset of mice, we simultaneously recorded the pupil (6 

mice across 59 sessions and 3476 trials). A high speed camera (Imaging source DMK 

21Bu04.H) with a zoom lens (Navitar 7000) and infrared filter (Mightex, 092/52×0.75) was 

placed approximately 22 cm from the animal’s right eye under near-infrared LED 

illumination (Mightex, SLS-02008-A). Video files were acquired and processed using the 

Image Acquisition Toolbox in MATLAB. 1 mm corresponded to ~74 pixels on each frame.

Data analysis: Spike sorting: Raw electrical signals were amplified and digitized 

(Blackrock Microsystems) then exported for post processing. Extracellular spikes were 

isolated using the KlustaViewa Suite (Rossant et al., 2016). Briefly, automated clustering 

was followed by three manual steps. First, obvious noise artifacts were eliminated. Second, 

poorly isolated waveforms were classified as multiunit activity. Waveforms of the remaining 

clusters were carefully curated in PCA space in parallel with unit auto- and cross-correlation 

histograms to define well-isolated single units. A small number of units (n = 7) with low 

signal to noise ratio (SNR) < 3 were excluded because of unreliable measurement of spike 

widths. No additional criteria were used to include or exclude units from further analysis. 

The average SNR of our units (n = 224) was 35.0, and the average recording yield was 17.2 

± 8.9 units per session (mean ± SD).

We classified Fast spiking (FS) and Regular Spiking (RS) units according to spike width. 

Histograms of population spike widths (measured peak to trough) were clearly bimodal 

(Figure S3). Units with a peak-to-trough width less than 0.57 ms were classified as FS, and 

broader units classified as RS. This classification of FS neurons closely agrees with previous 

studies of mouse V1 (Niell and Stryker, 2010), where FS neurons consist nearly exclusively 

of parvalbumin (PV) positive inhibitory neurons (Pfeffer et al., 2013). We additionally 

verified the inhibitory identity of FS neurons in our awake recording conditions by 

expressing channelrhodopsin in parvalbumin (PV) interneurons, and measuring spikes of PV 

interneurons directly activated by light (Figure S3).

Data analysis: Correlations: Spike trains were convolved with a Gaussian filter (half-width 

10 ms), and cross correlations were calculated between smoothed spike trains on a trial-by-

trial basis (MATLAB xcorr function with ‘coeff’ normalization). This normalization scales 

the cross correlation by the maximum value of the autocorrelation. For all correlation 
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analyses, we used the peak value of the cross correlation across all lags. Pre-stimulus period 

correlations were calculated during blank (gray screen) conditions and limited to a 

maximum of 3 s (or less, if the inter-trial interval was smaller on that particular trial, range: 

0.5 – 3 s). Noise correlations were calculated trial-by-trial by subtracting the mean stimulus 

response (per neuron, averaged across all trials) from the individual spike trains on those 

particular trials (Schulz et al., 2015). Cross correlations were then calculated as described 

above. This measure of residual spike train correlation during the stimulus is related to but 

distinct from other measures of noise correlations (e.g., spike count correlations; Cohen and 

Kohn, 2011). Stimulus period spike trains consisted of the 0.5 s preceding the stimulus onset 

until the reaction time for correct trials, or until stimulus offset (1 – 2 s) for failed detection 

trials.

Data analysis: Classifier: We trained a support vector machine (SVM) classifier to predict 

behavioral outcome from simultaneously recorded neural activity (1175 hit trials, 1031 miss 

trials). Training sets consisted of firing rates or correlations sub-sampled in a ratio and sum 

that matched the average recording session (~5 FS cells and ~15 RS cells). For layer specific 

correlations, we sub-sampled a total of 15 neuron pairs within specific layers per trial, again 

to match statistics of the average recording session. Training and testing sets consisted of 

200 trials each (100 hit and 100 miss). Classifier performance was determined by the 

fraction of correctly classified trials in the testing set (MATLAB ‘fitcsvm’ function). 

Gaussian kernels for SVM classification were optimized using a bayesian optimization 

procedure (MATLAB ‘bayesopt’ function). This entire procedure was repeated 50 times to 

compute the mean and standard deviation of classifier performance for the dataset.

In a similar way, we constructed a classifier with the time series of pupil diameter in the 3 s 

preceding the stimulus. Again, training and testing sets consisted of 100 randomly selected 

hit and miss trials, and performance was determined by fraction of correctly classified trials 

in the testing set.

Trial classification with LFP gamma power used the residual power spectrum of the LFP 

between 50–70Hz, and low frequency LFP power 5 – 10 Hz, with the same training and 

testing parameters described above.

Data analysis: Pupil: We first sub-selected a region of interest that captured changes in 

pupil for all frames in the file (Figure S4A). Frames were then smoothed using a 2D 

Gaussian filter. We then selected intensities to separate the pixels within and outside of the 

pupil. A contour was drawn according to the identified intensities, and a least-squares error 

2D ellipse was fit to the contours. Pupil area was calculated as the percent deviation from the 

mean [(A − Ā) * 100/Ā], where A is the area in pixels and Ā is the average area across all 

frames. If an ellipse could not be fit, a NaN value was inserted for that frame. For analysis of 

pupil position, we looked at changes in the azimuthal coordinate of the fitted ellipse across 

frames, since this was the axis in which stimulus position varied.

Data analysis: LFP: Local field potentials were obtained by bandpass filtering raw neural 

signals from 0.3 to 200 Hz. Laminar LFP responses were calculated by using current source 

density analysis (Figure S2), and averaging across channels within an identified layer. We 
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defined L4 to span ± 100 microns around the location of the earliest and largest CSD sink, 

consistent with prior functional and anatomical localization of L4 in mouse V1 (Lien and 

Scanziani, 2013; Pluta et al., 2015). We then averaged laminar LFP responses across 

behavioral sessions and animals (11 mice, 15 sessions, 2206 trials) to evaluate differences 

for Hit and Miss trials.

We analyzed the excess (residual) LFP power during Hit and Miss trials in low (2–20 Hz) 

and narrowband gamma (50–70 Hz) frequencies. As in our previous studies, we calculated 

residual power by fitting the entire power spectrum with a single exponential that excluded 

the band of interest. The difference (actual – fit) is divided by the fit to obtain fractional 

residual power. The power spectral density (fast Fourier transform (FFT) of the 

autocorrelation of the LFP) was calculated during the pre-stimulus and stimulus presentation 

epochs. Narrowband gamma (50–70 Hz) residual power was estimated by fitting the spectral 

density between 30–90 Hz, excluding 50–70 (Saleem et al., 2017). Residual low frequency 

power was estimated in the same manner, by fitting between 2–20 Hz excluding 4–12 Hz. 

Residual power was calculated per trial.

QUANTIFICATION AND STATISTICAL ANALYSIS

The total neural dataset consisted of 15 recording sessions from 11 mice, 1175 hit trials, 

1031 miss trials, n = 224 units (52 FS cells,172 RS cells). All details of statistical 

comparisons and definition of center and dispersion are contained in the figure legends. In 

general, non-parametric Wilcoxon rank sum tests (unpaired data), signed rank tests (paired 

data), or Kruskal-Wallis ANOVA tests (corrected for multiple comparisons) were performed, 

unless otherwise noted. Significance was defined at α = 0.05, unless noted. No strategies 

were employed for randomization of subjects, recordings, data collection, or analysis. Aside 

from spike sorting quality metrics, no neural data was excluded from analysis. Algorithmic 

strategies for randomization and error estimation (e.g., classifier cross-validation) are 

described in the relevant sections. No tests were used to justify sample size, but ours is 

comparable to several recent studies of behaving mice (Poort et al., 2015; Saleem et al., 

2017; Vaiceliunaite et al., 2013; Vinck et al., 2015).

DATA AND SOFTWARE AVAILABILITY

Data structures and MATLAB code necessary for reproducing results of the manuscript are 

available from the lead contact upon reasonable request.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• The state of activity in primary visual cortex (V1) influences perception in 

mice.

• Low-frequency oscillations in layer 4 hinder stimulus detection.

• Narrowband gamma oscillations in layer 4 promote stimulus detection.

• These two key aspects of cortical states accurately predict single-trial 

behavior.
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Figure 1. Visual Detection Latency and Sensitivity Depend upon Spatial Location
(A) Head-fixed mice faced two monitors placed in the binocular (blue) and monocular 

(black) visual fields. Mice reported detection of visual stimuli (gratings) by licking for 

water. A photosensor recorded licks, a camera monitored the right eye, and silicon probes 

recorded activity in the left hemisphere. (B) Example session of visual detection, where 

stimuli appeared in one location for 50 consecutive trials, and then switched to the other 

location for 50 trials. Mice obtained reward upon first lick (open circles) during the stimulus 

presentation window (1-s duration). Reaction times were faster for binocular (blue) versus 

monocular detection (black). (C) Reaction times decreased with increased stimulus contrast. 

Crosses indicate mean reaction time per block of 10–50 trials, circles indicate population 

mean reaction time (n = 9 mice, 752 blocks, >30k trials; last quartile of total training 

sessions). Binocular (blue): low contrast, 0.41 ± 0.04 s; high contrast, 0.37 ± 0.03; mean ± 

SEM; p < 0.01 rank sum test. Monocular (black): low contrast, 0.56 ± 0.06 s; high contrast, 

0.47 ± 0.03; mean ± SEM; p < 0.01 rank sum test. Binocular low and high contrasts (mean), 

45% and 67%; monocular low and high contrasts (mean), 72% and 85%. (D) Detection 

sensitivity (d′) improved with higher stimulus contrast. Crosses indicate d′ per daily session 

(n = 7 mice, 475 sessions, >115k trials from last quartile of training days). Circles indicate 

population mean. Binocular (blue): low contrast, 1.25 ± 0.06; high contrast, 2.04 ± 0.08; 

mean ± SEM; monocular (black): low contrast, 0.59 ± 0.05; high contrast, 0.62 ± 0.06; mean 

± SEM. All population means significantly greater than chance level (p < 0.01, sign test). 

Binocular sensitivity varied significantly with contrast (p < 0.01, rank sum test). Monocular 

sensitivity not different with contrast (p = 0.4). Binocular contrast means: 32% and 60%; 
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monocular contrast means: 83% and 98%. Behavioral performance required V1 activity 

(Figure S1).
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Figure 2. Cortical State Signatures in Layer 4 LFP during Visual Spatial Detection
(A) Single units and local field potential (LFP) recorded simultaneously with a multisite 

probe in monocular visual cortex (V1) during visual detection. Layers 2/3 (L2/3), L4, and 

L5/6 estimated by current source density analysis (see Figure S2). Detection failure (Miss; 

gray box) occurred in the midst of successful detection trials (Hits; green boxes). (B and C) 

L4 LFP residual power in 2- to 20-Hz range on Hit (green) and Miss (gray) trials, measured 

for the pre-stimulus (B) and stimulus (C) periods. Traces indicate mean ± SEM; n = 15 

sessions in 11 mice. Residual power integrated from 3 to 7 Hz significantly greater on Miss 

versus Hit trials during stimulus (paired signed rank test, p < 0.01). No significant difference 

between Hits and Misses pre-stimulus (p > 0.4). (D) Significantly elevated 3- to 7-Hz 

integrated power on Miss trials during stimulus (paired signed rank test, p < 0.01). (E and F) 

L4 LFP residual narrowband gamma (50–70 Hz) power on Hit (green) and Miss (gray) 

trials, measured for the pre-stimulus (E) and stimulus (F) periods. Residual power integrated 

from 50 to 70 Hz significantly greater on Hit versus Miss trials before stimulus (paired 

signed rank test, p < 0.01). (G) Significantly reduced 50- to 70-Hz integrated power on Hit 

trials during stimulus (paired signed rank test, p < 0.01).
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Figure 3. Cortical States with Low Spontaneous Activity Promote Stimulus Detection
(A) Left: regular-spiking (RS) (n = 172) and fast-spiking (FS) (n = 52; Figure S3) neurons in 

monocular V1 during monocular detection (Hit trials, colored; Miss trials, gray). Spikes 

binned at 25 ms, smoothed ± 1 bin. Mean ± SEM, aligned to stimulus onset. Same 

experiments as Figure 2. Right: aligned either to first lick (Hit trials) or stimulus offset (Miss 

trials). See Figure S5 for alignment of Hit trials to stimulus offset. (B) Firing rate difference 

(Hit minus Miss) before stimulus onset for RS and FS neurons across layers. RS cells fired 

significantly less before Hit trials in L2/3 (−0.6 ± 0.2 spikes/s; p < 0.01), but not in L4 (−0.2 

± 0.1; p = 0.09) or L5/6 (−0.3 ± 0.2; p = 0.05). Mean ± SEM, cell-by-cell paired signed rank 

for all (see Figure S7). FS cells also fired significantly less in L2/3 before Hit trials (−0.3 ± 

0.2 spikes/s; p = 0.04) and L5/6 (−1.2 ± 0.5; p = 0.03), but not in L4 (+0.2 ± 0.4; p = 0.7). 

(C) Similar to (B), for firing rate difference in early stimulus period (0–0.2 s after stimulus 

onset). RS neurons across all layers fired significantly more during Hit trials (L2/3, + 4.9 ± 

2.3; L4, + 4.1 ± 1.7; L5/6, + 2.0 ± 0.8; p < 0.01 for all; Figure S5). FS neurons also fired 

significantly more in L2/3 (5.6 ±2.4; p < 0.01) and L4 (6.1 ± 1.4; p < 0.01), but not in L5/6 

(4.3 ± 2.7; p = 0.4). (D) Similar to (B), for firing rate difference in late stimulus period (−0.2 

s to stimulus offset on Misses, or first lick on Hits). In L4, both RS (1.2 ± 0.6; p < 0.01) and 

FS (4.9 ± 2.5; p = 0.02) neurons fired significantly more on Hit trials, as did FS neurons in 
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L2/3 (2.2 ± 0.9; p < 0.01). See Figure S5 for firing rate differences relative to pre-stimulus 

baseline.
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Figure 4. RS Activity and L4 LFP Oscillations Predict Single-Trial Behavior
(A) Pre-stimulus LFP power in L4 predicted single-trial behavioral outcome significantly 

better than chance (L4 3- to 7-Hz residual power, 59 ± 5%; L4 LFP narrowband gamma 50- 

to 70-Hz residual power, 57 ± 4%; mean ± SD; p < 0.01, sign test for all). Prediction quality 

not significantly different between frequency bands (p = 0.8; Kruskal-Wallis nonparametric 

ANOVA with Tukey correction for multiple comparisons throughout). For cross-validated 

linear classifier, see STAR Methods. (B) Pre-stimulus RS firing rates (left, 54 ± 4%) and RS 

× RS pairwise correlations (right, 56 ± 4%) predicted single-trial behavioral outcome 

significantly better than chance (p < 0.01, sign test), as did FS firing rates (51 ± 4%) and FS 

× FS correlations (51 ± 4%; p = 0.01 and p = 0.02). No significant difference between 

prediction quality from RS rates or correlations (p = 0.1). RS and FS neurons aggregated 

across layers; see Figure S6 for laminar predictions. (C) Same as (A), for predictions from 
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LFP power during stimulus. Stimulus-evoked L4 3- to 7-Hz power predicted single trials 

with 84 ± 11% accuracy, while suppression of narrowband gamma 50- to 70-Hz power 

predicted with 71 ± 10% accuracy. Prediction quality from L4 3- to 7-Hz power was 

significantly better than that from narrowband gamma power (p < 0.01, nonparametric 

ANOVA, multiple comparisons). (D) Same as (B), for firing rates and correlations during 

stimulus. Both RS and FS firing rates predicted single trials better than chance (RS, 55 ± 

4%; FS, 55 ± 4%). Evoked firing rates relative to pre-stimulus baseline (ΔFiring rate) 

predicted significantly better than raw firing rates (RS, 62 ± 4%; FS, 63 ± 3%; p < 0.001 for 

comparisons to firing rates; aggregated across layers). Pairwise noise correlations during the 

stimulus predicted behavioral outcome most accurately (RS, 75 ± 7%; FS, 71 ± 4%; p < 

0.001 for RS and p = 0.07 for FS for comparisons to ΔFiring rates; aggregated across 

layers). For laminar predictions from ΔFiring rates and correlations, see Figure S6.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Chemicals, Peptides, and Recombinant Proteins

Muscimol (Figure S1) Sigma-Aldrich M1523

Experimental Models: Organisms/Strains

Mouse C57BL6 (all Main figures) Jackson Laboratory IMSR_JAX:000664

Mouse PV-cre (Figure S1) Jackson Laboratory IMSR_JAX:017320

Mouse Ai-32-ChR2 (Figure S1) Jackson Laboratory IMSR_JAX:024109

Software and Algorithms

MATLAB Mathworks, Inc. https://www.mathworks.com/

KlustaSuite Rossant et al., 2016 https://klusta.readthedocs.io/en/latest/
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