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Abstract
The COVID-19 pandemic has forced governments to impose crippling restrictions on the day-to-day activities of citizens. 
To contain the virus and lift these restrictions safely, policymakers need to know quickly where the virus is spreading. 
This has been possible only through widespread testing. Not long after starting largescale testing in the early stages of the 
pandemic and more recently with a surge of new variants, countries hit a roadblock—the shortage of swabs used in the 
testing kits due to disruptions in the supply chain caused by COVID-19. This disruption translates to a variable production 
capacity of the swab suppliers. As a result, when countries order swabs from a swab supplier, their order might not be fully 
satisfied. Hence, adopting a proper swab inventory management model can help countries better manage COVID-19 testing 
and avoid widespread shortages of testing supplies. By considering two different swab demand patterns (i.e., stationary and 
stochastic) and two different production capacity scenarios for the swab supplier (i.e., ample and variable production capac-
ity), we develop four analytical models, in which we consider all combinations of the above demand and capacity scenarios, 
to derive the optimal swab-procurement policy for a country. Given the rapid change of COVID-19 infection cases and the 
limited planning period, countries should aim for reactive scheduling. Through a comprehensive numerical study, we also 
provide guidelines on how countries should optimally react to these changes in the supply and demand of swabs. The research 
implications for managing inventory with stochastic supplier capacity and uncertain demand in a finite time horizon extend 
well beyond the application to COVID-19 testing.

Keywords Disaster management · Inventory management · COVID-19 testing · Supplier capacity uncertainty · Stationary 
and stochastic demand

1 Introduction

It has been over a year since the COVID-19 pandemic took 
control of our lives. While essential workers remained on 
the job, the rest tried to come to terms with life on pause. 
As of October 20, 2021, based on the WHO situation report, 
more than 242 million people have been infected globally, 
and more than 4.91 million people died due to the COVID-
19 pandemic (WHO 2021) Furthermore, the United Nations 
Development Program warns that the COVID-19 pandemic 

is far more than a health crisis; in fact, it is changing socie-
ties and economies at their core (Amir et al. 2020).

As the COVID-19 pandemic surges worldwide, countries 
are mobilizing in a united effort to confront, delay, and pre-
vent its spread. Various trials for candidate vaccines and 
potential therapies have been undertaken. At the beginning 
of 2021, the FDA issued emergency use authorization for 
the Pfizer/BioNTech, Moderna, and Johnson & Johnson 
Vaccines. Similar approval was granted by the European 
Medicines Agency (EMA) for the AstraZeneca/Oxford vac-
cine. Although some vaccines have been approved, mass 
vaccination across the globe is still very slow. It will take 
months to vaccinate the entire population on different con-
tinents (Bushwick 2021). Further, recently reported deaths 
due to blood clotting complications has caused governments 
to pause the use of J&J and AstraZeneca vaccines in the 
U.S. and Europe, making the vaccination pace even slower 
with fewer supplies (Mahase 2021; Wise 2021). Hence, 
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until we reach herd immunity created by vaccines, which 
are currently not widely available for all, testing becomes 
an essential tool in controlling the spread of COVID-19 
(Melwert and Loeb 2021). Note that during the first twelve 
months of the pandemic, even before vaccines were avail-
able, testing was the essential tool to monitor and contain 
the virus. Therefore, to promptly identify and control the 
spread of the virus, widespread access to viral testing has 
played a crucial role as countries and cities plan to loosen 
distancing measures, and open schools (Eddy 2021). Har-
vard researchers have also claimed that unless the U.S. could 
maintain PCR and rapid testing1at a significantly high level, 

it would take tremendous public health risks to open up the 
economy (Wise 2020; Melwert and Loeb 2021; Nuzzo and 
Pond 2021). To reflect the importance of testing in control-
ling spreads of COVID-19, Fig. 1 shows that countries with 
the broadest testing tend to have the fewest cases per capita 
(Craven et al. 2020).

As many health experts suggest (Jones 2020), testing is 
crucial for containing COVID-19, mainly with the rise of 
contagious new variants (Salam 2021); yet many countries 
still grapple with the lack of the necessary materials. Cur-
rently, the most common test is a nasal swab test, which 
involves (1) inserting a swab (i.e., a long stick with a very 
soft brush on the end) up someone's nose into their sinus, to 
collect a sample of secretions; and (2) analyzing the sample 
in the lab for the presence of the virus. The swab test checks 
for active infections, as opposed to an antibody test, which 
requires drawing blood to test whether the patient has been 

Fig. 1  Illustration of COVID-19 Cases Per Capita Associated with Testing Capacity for Different Countries, adopted fromCraven et al. (2020)

1 For information about different types of COVID-19 tests, please 
visit https:// www. fda. gov/ consu mers/ consu merup dates/ coron avirus- 
disea se- 2019- testi ng- basics.

https://www.fda.gov/consumers/consumerupdates/coronavirus-disease-2019-testing-basics
https://www.fda.gov/consumers/consumerupdates/coronavirus-disease-2019-testing-basics
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exposed to and/or has recovered from the virus (Chen et al. 
2020). Many countries' nasal swab testing rate, including 
the United States, is not at the level they desire. Many health 
experts believe that a widespread swab shortage has caused 
or greatly contributed to this gap (Jones 2020; Nellis 2021). 
The shortage of swabs started in the early pandemic, and 
with the recent rise of new COVID-19 variants and the need 
for more home test kits, it persists (Clark 2021; Zuckerman 
2021). For instance, in a recent report published by the Col-
lege of American Pathologists (CAP) in March 2021, 45% of 
laboratories nationwide have difficulties obtaining the test-
ing supplies they need, including swabs due to shortages 
(Stull 2021). Thus, in this study, we tackle the issue of swab 
shortage in a country 2 . We later show how our modeling 
framework also extends to similar dilemmas during a pan-
demic alongside classic inventory problems as additional 
relevant motivations.

The swabs used to conduct the tests have long been pro-
duced mainly by Puritan Medical Products in Maine and 
Copan Diagnostics in Italy, where COVID-19 hit early and 
hard, resulting in disruptions in swab supply chains. Conse-
quently, these two suppliers' production capacity (hereafter, 
production capacity and capacity are used interchangeably) 
was affected (Pfeiffer et al. 2020). This translates into an 
unknown capacity for the supplier over time. That is, the 
more significant the disruption, the more the capacity uncer-
tainty, and vice versa. Therefore, with swab supplier capac-
ity uncertainty, countries must adopt a proper swab inven-
tory management policy to facilitate and well-coordinate 
the testing procedure. Our paper focuses on an inventory 
management problem, where the retailer (e.g., a country or 
a state) orders swabs from a supplier with stochastic capac-
ity. Note that this temporary swab inventory management 
should continue until most people worldwide are vaccinated 
because that is when the supply chain disruption is resolved. 
Due to massive financial support provided by non-govern-
mental organizations and governments worldwide, health 
authorities expect that vaccination will happen soon in the 
rest of the world, i.e., following 12 months (Gebrekidan and 
Apuzzo 2021; Mukherjee 2020). Therefore, our paper con-
siders the time horizon to be finite. This is indeed a key fea-
ture for any pandemic problem—the disruption only occurs 
for a short period of time. Furthermore, because swabs can 
be ordered at any point in time, we focus on continuous 
review models.

Additionally, the demand for swab-testing could have dif-
ferent patterns based on the country's situation. For example, 
in collaboration with public health authorities in Germany, 
some2 researchers have determined the target COVID-19 

testing per day should be 200,000 tests (Cohen and Kupfer-
schmidt 2020). In this case, the country orders swabs based 
on the forecasts; hence, swab demand is deterministic (e.g., 
200,000 tests per day). On the other hand, some countries 
plan to perform a certain number of tests per day. However, 
they may not be able to control and monitor the spread of 
COVID-19; thus, frequent outbreaks over time may occur. 
This leads to changes in swab demand. For instance, the 
United States plans to perform one million tests per day. 
However, due to the outbreaks in different regions, the 
required number of tests varies daily.3 This example, along-
side how other countries plan their COVID-19 testing, shows 
that while the mean of the demand remains the same over 
time, the actual demand varies. In this case, swab demand is 
stationarily stochastic. Therefore, in our analytical analysis, 
we focus on two demand patterns: (1) stationary demand and 
(2) stochastic demand. On the other hand, in our numeri-
cal analysis, we relax the stationarity of the demand and 
provide guidelines how to optimally react to the changes in 
the demand distribution parameters. Furthermore, note that 
any swab shortage results in a COVID-19 testing shortage. 
If shortages occur, demand for COVID-19 testing does not 
vanish; rather, it shows itself as back-orders. For example, 
in the recent surge of COVID-19 in Florida, Arizona, and 
Texas, people have had to wait in a virtual queue for testing 
for a couple of days before they could access a test (Weiner 
2020). Therefore, in our paper, we consider a case where 
testing shortages are back-ordered. Although the above dis-
cussion focuses on a country, our analysis can be extended 
to scenarios wherein tests are handled on a state level. For 
example, Oregon, Missouri, and Arkansas4 plan to perform 
a certain number of tests per day.

To sum up, we study a swab inventory management prob-
lem in a finite time horizon setting. Our model considers a 
country/state/province as the retailer, which orders swabs 
from an overseas supplier facing supply chain disruption. 
Depending on the supplier's capacity constraint and the 
stochasticity of the demand, we study the following four 
models:

Model 1: In this model, demand is stationary, and the 
supplier has ample capacity. This model serves us as the 
first benchmark.
Model 2: In this model, demand is stationary, and the sup-
plier has stochastic capacity. That is, the supplier cannot 
necessarily fulfill the swab demand.

2 Although our analysis is at country-level, similar analysis can be 
applied to a state, insurance company, or hospital.

3 https:// www. cdc. gov/ coron avirus/ 2019- ncov/ cases- updat es/ testi ng- 
in- us. html.
4 https:// rb. gy/ fvv4ny (Oregon), https:// rb. gy/ pvm9os (Missouri), and 
https:// rb. gy/ dgvmov (Arkansas).

https://www.cdc.gov/coronavirus/2019-ncov/cases-updates/testing-in-us.html
https://www.cdc.gov/coronavirus/2019-ncov/cases-updates/testing-in-us.html
https://rb.gy/fvv4ny
https://rb.gy/pvm9os
https://rb.gy/dgvmov
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Model 3: In this model, demand is stochastic (i.e., con-
stant mean over time with non-zero variance), and the 
supplier has ample capacity. This model serves us as the 
second benchmark.
Model 4: In this model, demand is stochastic (i.e., con-
stant mean over time with non-zero variance), and the 
supplier has stochastic capacity. That is, the supplier can-
not necessarily fulfill the swab demand.

We derive the total cost expression for the above four 
models. As one may observe, Model 1 is a simplification 
of Model 3 (i.e., Model 1 can be derived from Model 3 by 
setting the variance of the demand equal to zero in Model 
3). However, Model 1 is the building block of Model 3. For 
Model 1, we derive the optimal policy. For Model 3, we par-
tially derive the optimal policy and devise an algorithm to 
find the optimal policy. The starting point of this algorithm 
is the result of Model 1. Further, Model 2 can be derived 
from Model 4 by setting the variance of the demand equal 
to zero in model 4. However, again, Model 2 is the building 
block of Model 4. For Model 2, we find sufficient conditions 
to obtain the optimal policy. For Model 4, using a restric-
tive assumption, which is the result of Model 2, we derive 
sufficient conditions to partially find the optimal policy. We, 
then, devise an algorithm to characterize the optimal policy 
fully. The starting point of this algorithm is the result of 
Model 2.

Next, through an extensive numerical study, we com-
pare the optimal policies to derive insights for public 
health administrations regarding how to optimally react to 
changes in swab supply chain disruptions and changes in 
daily demand for COVID-19 testing. This study makes three 
major contributions to the literature:

1. To our knowledge, the problem considered here has not 
been studied. This problem is essential in practice and 
has significant implications because it deals with peo-
ple's lives and livelihoods. As many health experts have 
noted, better COVID-19 testing results in better strate-
gies to slow the spread of the virus. At the same time, it 
helps countries and businesses begin to approach their 
pre-pandemic functions and capacities sooner rather 
than later.

2. Given the rapid change of COVID-19 infection cases and 
the limited planning period, governments should aim for 
data-driven and reactive scheduling. Our results provide 
guidelines for the decision-makers (e.g., governments) 
on optimally responding to the changes in the number 
of daily COVID-19 cases and the disruptions the virus 
causes in swab supply chains. For example, our results 
show that under stochastic demand (e.g., when multi-
ple outbreaks occur in the country), as the variation of 
the supplier's capacity increases, the optimal number of 

swabs to be ordered should increase, and consequently, 
the optimal number of back-orders decreases. Addition-
ally, when the mean of supplier's capacity is large, as 
the variation of the supplier's capacity decreases, the 
optimal order quantity should decrease. In other words, 
when swab supply chains face significantly large disrup-
tions, countries should have a higher swab reorder point.

3. Our managerial insights provide decision-makers with 
strategies to better control the spread of COVID-19 by 
reducing the testing back-orders and by optimally order-
ing swabs under different demand circumstances. When 
the swab supply chain is disrupted, as the supplier's aver-
age swab capacity increases, the country should carry 
fewer swabs over the time horizon. This implies that 
as swab-supplier capacity constraint becomes less of 
an issue for the country, it should decrease its reorder 
point. This results in a lower holding cost and a higher 
expected number of back-orders. This observation sheds 
light on the importance of forecasting. That is, if the 
country is sure how many swabs it needs during the time 
horizon (i.e., removing the variability of demand), it can 
reduce the total cost.

Although this study is motivated by the need for COVID-
19 testing, the model and results apply to other situations 
in which a supply chain is disrupted. The closest example 
is the shortage of Personal Protective Equipment (PPE) in 
hospitals and nursing homes that is still persisting (Akhtar 
2021; Paulin and Paulin 2021). Another current example 
is the beef industry in the US. During the pandemic, the 
meat and poultry processing industries appeared to be wal-
loped. Major meat processing plants (e.g., JBS USA Hold-
ings Incorporation and Tyson Foods Incorporation) have 
been among major virus hotspots as workers have fallen ill 
with COVID-19. As a result, their production capacity has 
been unstable, and retailers have faced widespread meat and 
poultry shortages. More recently, a lack of crucial semicon-
ductors due to supply disruption during the pandemic has 
affected most automakers (Reuters 2021). Additionally, the 
major apparel and footwear brands have requested western 
governments to support the vaccination of their overseas 
vital garment manufacturers, which has witnessed a wave of 
factory shutdowns due to surging coronavirus cases (Hoang 
2021). This results in unstable production capacity and 
brands face product shortages.

One may extend our model to classic inventory problems, 
wherein a disruption within a finite time interval occurs due 
to a natural disaster, climate change, or unexpected inci-
dents. Note that our models can be implemented in all these 
scenarios to find the optimal inventory policies yet under 
various finite time intervals. However, one may find that the 
disruption due to pandemics may take longer (e.g., more 
than two years for COVID-19) than disruption due to climate 
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change and natural disaster. For instance, an unexpected fire 
and explosion in Nike's supplier factory disrupted its sup-
ply chain for a couple of months (finite horizon planning), 
wherein the supply capacity was uncertain (Lim and Prakash 
2017). The 2011 Tohoku earthquake caused devastating dis-
ruptions to the industrial supply chains in Japan (Carvalho 
et al. 2021). Specifically, it temporarily (almost six months) 
affected the supplier's capacity. It caused supply disruption 
of the automotive microcontroller parts manufactured by 
Renesas Electronics and delivered to Toyota via its first-
tier vendors like Denso (Matsuo 2015; Son et al. 2021). 
Climate change can also cause some capacity uncertainties 
for the suppliers due to creating severe weather or floods 
(Leonard 2021; Parker 2021). The extreme winter weather 
and ensuing electrical power crisis in Texas worsen supply 
chain woes. For example, severe weather in Austin, the home 
to Samsung's semiconductor factory—which manufactures 
and supplies more than 100k logic and flash memory chips 
per month—caused supply disruptions and uncertainty for 
numerous tech companies such as Dell and Apple during last 
winter (Shih 2021).

The remainder of our paper is organized as follows. In §2 , 
we review the relevant literature. We introduce the model 
set-up in §3 . We present the optimal policy facing stationary 
demand in §4 , where we discuss two scenarios, one without 
any supplier's capacity constraint (benchmark 1) in §4.1 and 
the other with supplier's stochastic capacity constraint in 
§4.2 . We analyze the policy facing stochastic demand in §5 , 
where we investigate two scenarios, one without any sup-
plier's capacity constraint (benchmark 2) in §5.1 , and the 
other with supplier's stochastic capacity constraint in §5.2 . 
In §6 , we further analyze numerically the above-mentioned 
models to derive more insights. We provide concluding 
remarks in §7.

2  Literature Review

Our research is related to inventory management litera-
ture, which has been extensively studied. The majority of 
inventory models assume that the product to be ordered is 
always available (i.e., ample supply availability). Under this 
assumption, when an order is placed, it is received either 
immediately or after a lead time. Given this assumption, 
seminal papers of Harris (1990), Taft 1918, and Wilson 
(1934) among others (Whitin 1954; Wagner and Whitin 
1958) provide various models of lot-sizing and inventory 
management. Nevertheless, we examine the case wherein 
the supply is not guaranteed to be available at the desired 
amount.

There are two streams of literature that consider supply 
(capacity) uncertainties, which cause the output to be ran-
dom in inventory systems and procurement environments. 

The first stream focuses on random yield, which is the out-
come of faulty production processes, which causes part 
of the processed items to be unusable or defective (Yano 
and Lee 1995). Silver (1976) and Shih (1980) extend the 
basic Economic Order Quantity (EOQ) model (in a single 
period and infinite time horizon), in which the proportion 
of defective units in the accepted lot is a random variable. 
Their results include numerical comparisons between these 
newly developed models with the same systems without 
defective items. Noori and Keller (1986) investigate the 
effect of the same phenomenon on an optimal lot size in the 
order quantity/reorder point inventory system (i.e., (Q, r)) . 
They characterize explicit and approximate solutions for 
the back-orders case by assuming that the standard devia-
tion of the lot received is linearly related to the quantity 
requested. Gerchak (1992) extends the (Q, r) model with 
binomial and stochastically proportional yields to address 
both back-ordering and lost sales circumstances. Hong et al. 
(2017) study inventory decisions in an assemble-to-order 
setting wherein items are subject to defect risk (i.e., supply 
uncertainty). They characterize the conditions under which 
dual sourcing is better than single sourcing when a random 
yield is present. For a thorough review of inventory mod-
els with random yields, interested scholars are referred to 
the excellent paper of Yano and Lee (1995) and a recent 
review by Tinani and Kandpal (2017), which surveys mul-
tiple extensions. While this stream of literature focuses on 
random yield, in our paper, we focus on 100% yield. That is, 
there is no faulty production.

In a domain more related to our study, another stream of 
research has focused on variable capacity, which is often 
prompted by material shortages, unplanned repairs, or 
accidental machine breakdowns, which restrict the quan-
tity that could be processed in each cycle (Ciarallo et al. 
1994). Wang and Gerchak (1996) consider an infinite hori-
zon to analyze the effect of variable capacity on optimal 
lot-sizing in the basic EOQ model and continuous review 
(Q, r) inventory system. They provide the optimal condi-
tions for generally distributed variable capacity. They also 
develop practical procedures to find optimal solutions when 
the variable capacity distribution is exponential. Further, 
Hariga and Haouari (1999) analyze a particular case of 
Wang and Gerchak (1996) model, wherein the replenish-
ment lead time is zero. For a general capacity distribution, 
they find that the expected cost per unit of time is a uni-
modal function and pseudo-convex in the ordering quantity. 
Moreover, in his technical note, Wang (2010) characterizes 
the sufficient conditions needed to guarantee that the solu-
tion proposed by Wang and Gerchak (1996) is unique and 
optimal. In the same line of research, while the supplier has 
a random capacity, Wu (2001) analyzes an infinite horizon 
(Q, r) model, wherein the order quantity and the reorder 
point are decision variables. He characterizes the optimal 
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ordering policy's properties when the lead-time has a nor-
mal distribution or is distributed free. Erdem et al. (2006) 
consider the basic EOQ policy (with deterministic demand) 
to model multiple suppliers with random capacities, which 
leads to uncertain yield in orders. They characterize proper-
ties of the optimal order quantity when the random capacity 
of suppliers follows a uniform and exponential distribution. 
Moon et al. (2012) combine the two scenarios of supply 
uncertainties (i.e., variable supplier capacity and random 
yield) to analyze the (Q, r) model when multiple products 
are considered. They use a distribution-free approach (DFA) 
to characterize the optimal solution when the storage and 
investment constraints are involved. They find that vari-
able supplier capacity always increases the optimal lot size 
compared to unlimited capacity. In a recent study, Gholami 
and Mirzazadeh (2018) consider a (Q, r) policy and design 
a mathematical model wherein the demand follows the log-
normal distribution, random capacity follows a gamma-type 
distribution (right-skewed), the ordering cost is a determinis-
tic variable, and it is possible to reduce it by an extra invest-
ment. They propose a solution algorithm to find the optimal 
order quantity. Using a numerical example and under some 
conditions, they find that savings (i.e., decrease in the total 
expected cost) due to using their proposed methodology 
might be more than 20% of using the standard continuous-
review inventory model, wherein the demand follows the 
normal distribution.

Unlike previous research and motivated by COVID-19 
testing and swab production, we focus on a finite time hori-
zon problem. Further, we investigate the effect of stochastic 
capacity constraint on the optimal order quantity in a con-
tinuous review setting. One key assumption in the existing 
literature is that orders in different cycles are equal. How-
ever, in our paper, we relaxed this assumption. Moreover, we 
compare the optimal results of each system with the bench-
mark wherein there is no stochastic capacity. Our results 
help decision-makers manage the inventory systems (i.e., 
minimize the inventory cost) under capacity limitations for 
a fixed planning horizon.

Although we have differentiated our study from those in 
the literature on the EOQ and (Q, r) models, there is vast 
literature on periodic review inventory models focusing on 
supply uncertainty. Federgruen and Zipkin (1986a, b) study a 
single-item, periodic-review inventory model with uncertain 
demands for average-cost and discounted-cost setups while 
the system has a limited production capacity in each period.  
They show that a base-stock policy is optimal in these  
setups. Later, Tayur (1993) provides an algorithm for the  
computation of the optimal policy or the cost for Federgruen  
and Zipkin (1986a,  b)s' models. Ciarallo et  al. (1994)  
consider both finite (single-period and multiple-period) and 
infinite horizons inventory systems for a single product with 
random capacity. They find that the random capacity has no 

effect on the optimal policy in the single-period model but 
results in a unimodal, nonconvex cost function. In multiple-
period and infinite-horizon models, they find that the order-
up-to policies, which depend on the distribution of capacity, 
are optimal despite a nonconvex cost. Considering a single 
item inventory system with uncertain capacity, Güllü (1998) 
presents a procedure for computing the optimal base stock 
level under the expected average cost per period criterion. 
His main contribution is to use the G∕G∕1 queues and their  
associated random walks to model the class of base stock 
inventory policies that operate under demand/capacity  
uncertainty. Further, DeCroix and Arreola-Risa (1998) 
characterize the optimal policy for the multi-product in an 
infinite-horizon. Iida (2002) studies a non-stationary periodic 
review model with stochastic capacity for finite and infinite 
horizons. He finds the lower bounds and upper bounds of the 
optimal order up-to levels converge as the planning horizons 
analyzed become more prolonged. For the sake of brevity, 
scholars who are interested in periodic review models and 
related extensions are referred to the recent review by Tinani 
and Kandpal (2017).

Our research also contributes to and offers insights on 
how to manage the inventory systems and supply chains 
resiliently in the case of disruption due to pandemics. In 
the same vein, a growing body of literature addresses this 
issue from various perspectives as well. Hosseini and Ivanov 
(2021) find supply chain disruption triggers and risk events 
due to the COVID-19 pandemic and quantify the effects of 
disruption. Scholars also evaluate the supply chain resil-
iency considering innovative strategies during the pandemic 
(Moosavi and Hosseini 2021; Khan et al. 2022). Hald and 
Coslugeanu (2021) and Sharma et al. (2021) discuss oppor-
tunities and offer insights on adopting technology in sup-
ply chains during pandemics to mitigate the risks and avoid 
disruption. To further learn about the related works in this 
area, we refer a reader to see Hosseini et al. (2019), Hosseini 
and Ivanov (2020), Ardolino et al. (2022), where a thorough 
literature review are presented.

Closer to the focus of our paper, scholars have studied 
challenges around COVID-19 and how to use operations 
and supply chain techniques to tackle them (Kaplan 2020; 
Nagurney 2021; Nikolopoulos et al. 2021; Kumar et al. 
2022; Yu et al. 2021). On topics related to inventory man-
agement, Eftekhar and Webster (2020) study inventory 
models for a single item under two policies (i.e., procures 
relief items before or after a disaster). They characterize the 
optimal order quantity and approximate methods by mini-
mizing the total cost subject to budget constraints. Eftekhar 
et al. (2021) investigate the role of prepositioning inventories 
and local purchasing for specific products needed to cover 
demands due to a rapid-onset disaster. They determine the 
optimal preposition stock by minimizing the total cost of 
inventory. They also examine how the interplay between 
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supply, demand, and budget uncertainties affects the optimal 
inventory levels. Note that the above recent papers mainly 
focus on cost minimization to find optimal policies to man-
age the inventories based on the local vs. non-local purchas-
ing or purchasing time (i.e., before or after the incidents) for 
a disaster. However, our model mainly focuses on stochastic 
capacity constraint on the optimal order quantity in a con-
tinuous review setting while the demand could be different 
based on the COVID-19 infection pattern. We next present 
the model setup.

3  Model Setting

We consider a country (i.e., a retailer) that is facing the new 
wave of COVID-19 and aims to find the optimal policy for 
ordering its testing kit components (i.e., swabs). Recall from 
the introduction that: 1) although our model is set up for a 
country, it is applicable to any state, province, and city that 
aims to conduct COVID-19 testing; 2) there are two main 
swab suppliers in the world, whose supply chains are facing 
disruption due to the spread of COVID-19 globally. This 
results in uncertain swab-supply capacity. Therefore, in our 
model, we consider a country that orders swabs from an 
overseas supplier, which has a stochastic production capac-
ity. Let x be the supplier's random swab capacity at the time 
of ordering with PDF of f (x) and CDF of F(x).

Moreover, we consider a finite time horizon, T  , because 
an effective vaccine is introduced and vaccination is under-
way. For example, in the United States, the first case of 
COVID-19 was observed in February, 2020, and a vaccine 
was developed by the end of 2020, and vaccination of the 
whole country is in progress. Next, let h be the per swab-unit 
holding cost rate, c be the purchasing cost for one swab, and 
A be the fixed ordering cost (e.g., the shipping cost of a large 
container from supplier's warehouse to country's facility). In 
this paper, we focus on finding the optimal policy for two 
inventory models. In §4 , we derive the optimal policy when 
demand is stationary. This model represents the scenario 
wherein the country has an accurate constant demand fore-
cast or plans to reach a certain number of tests per day. For 
example, the United States plans to reach one million tests 
per day. In this case, let � be the demand rate for swabs. Due 
to the importance of COVID-19 testing to stop the spread of 
the virus, in §4 , we assume shortages are not allowed. Sub-
sequently, in §5 , we derive the optimal policy when demand 
is stochastic, which suggests having shortages is inevitable. 
This model is motivated by the outbreaks in different regions 
of a country, where demand for COVID-19 testing is unpre-
dictable. For instance, New York faced an outbreak in April, 
2020. We define y as the per-time-unit stochastic demand 
for the swabs with PDF of d(y) and CDF of D(y) . To evalu-
ate the performance of optimal polices under each demand 

scenario, we analyze a benchmark that does not restrict sup-
plier capacity. We present the benchmarks in §4.1 and §5.1 
for stationary and stochastic demand, respectively.

To find the optimal policy, we divide the time horizon 
into N cycles, and we assume that ti is the length of cycle i . 
Within cycle i (where i = 1, 2, 3,… ,N) , the country orders 
Qi swabs whenever the on-hand swab inventory reaches the 
reorder point, Ri . Recall that the existing literature assumes 
that orders in different cycles are equal. However, in our 
paper, we relaxed this assumption. Next, let � be the constant 
lead time for the supplier to ship the swabs to the country. 
Therefore, if the supplier has no capacity constraint, on-hand 
inventory increases by Qi after � units of time. However, if 
the supplier is facing the capacity constraint, x , then the on-
hand inventory increases by min

{

x,Qi

}

 after � units of time.
To sum up, the decision variables, resulting in the opti-

mal policy, are: (1) number of cycles N ; (2) length of each 
cycle ti;(3) reorder point Ri; and (4) order quantity Qi . The 
objective is to minimize the country's total cost of manag-
ing its swab inventory. Next, we analyze optimal policies 
facing stationary demand in §4 and optimal policies facing 
stochastic demand in §5.

4  Optimal Policy Facing Stationary Demand

In this section, we consider an inventory management prob-
lem with stationary demand in a finite time horizon setting, 
where the time horizon is divided into N cycles. Without loss 
of generality, we assume � = 0 ⇒ Ri = 0;∀i ∈ {1, 2,… ,N} ; 
otherwise, because � is constant, Ri = �� , ∀i ∈ {1, 2,… ,N} . 
Recall from the introduction that it is countries' highest pri-
ority to avoid COVID19 test shortages. Therefore, in this 
section, we do not allow for any shortages. In §4.1 , we intro-
duce and analyze a benchmark, wherein there is no capacity 
constraint for the supplier. Subsequently, in §4.2 , we ana-
lyze the model where the supplier has stochastic production 
capacity.

4.1  Supplier with Ample Capacity (Benchmark 1)

In this section, (1) the supplier has no capacity constraint. 
Therefore, all the swab-orders placed by the country are 
fulfilled. (2) The demand is stationary. Given the assump-
tions that � = 0 ⇒ Ri = 0 and shortages are not allowed, 
the optimal policy is as follows. At the beginning of cycle 
i ∈ {1, 2,… ,N − 1} , order Qi units of swabs. Whenever 
the on-hand inventory reaches zero, cycle i + 1 begins, 
and an order of Qi+1 should be made. One can observe that 
ti = Qi∕� , where both ti and Qi are decision variables.

Given the optimal policy, the costs involved with swab 
procurement for the country during cycle i ∈ {1, 2,… ,N} 
are as follows. (1) Fixed ordering cost equals A . (2) 
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Purchasing cost equals cQi . (3) Holding cost equals htiQi

2
 . 

Furthermore, for the entire time horizon T = ΣN
i=1

ti =
∑N

i=1
Qi

�
 . 

Therefore, the country's total swab procurement cost over 
the entire time horizon is:

The first term in the above total cost function is the total 
fixed ordering cost. The second term is total purchasing 
cost. Note that �T  is the total demand over the entire time 
horizon. The last term is the holding cost for N  cycles. 
Finally, the country's problem is:

Note that Schwarz (1972) examines a similar model 
wherein a production scenario (i.e., production cost) is 
considered to minimize the total inventory cost. However, 
we focus on a purchasing scenario (i.e., purchasing cost). 
Next, the following lemma helps us simplify the country's 
problem.

Lemma 1 Consider a finite time horizon EOQ model with no 
capacity constraint for the supplier. To minimize the retail-
er's total cost, it is optimal to divide the planning horizon 
into N  cycles with the same cycle length. In other words, 
t1 = t2 = ⋯ = tN =

T

N
.

Proof: All proofs are relegated to the (Supplementary 
Material, Appendix).

Using Lemma 1, the country's problem in Eq. (1) can 
be simplified to:

Proposition 1 presents the optimal number of cycles, 
the optimal order quantity, and the associated optimal total 
cost for the country (i.e., the retailer).

Proposition 1 Consider a finite time horizon EOQ model 
with no capacity constraint for the supplier. In this case, the 
optimal number of cycles over the time horizon, the optimal 
order quantity, and the associated optimal total cost are:

∑N

i=1

�

A + cQi +
htiQi

2

�

Qi=ti�

⇔ NA + cT� +
h�

2

∑N

i=1
t2
i

(1)
min
N,ti

NA + cT� +
h�

2

∑N

i=1
t2
i

s.t.
∑N

i=1
ti = T

(2)min
N

NA + cT� +
h�

2

N
∑

i=1

(

T

N

)2

= NA + cT� +
h�T2

2N

N∗ = T

�

h�

2A

Q∗
i
= �t∗

i
= �

T

N
=
�

2A�

h

TC∗ = T
√

2Ah� + cT�

Similar to the EOQ model, in this model, the optimal 
number of cycles and the optimal order quantity increase 
with the demand. Further, the optimal total cost increases 
as holding costs and fixed ordering cost increase. In the 
next section, we analyze a model with stationary demand 
wherein the supplier has a stochastic capacity.

4.2  Supplier with Stochastic Capacity

In this section, Eq. (1) demand is stationary, and Eq. 
(2) because the swab supply chain faces disruption, the 
swab supplier has a stochastic capacity. Recall that x is 
the supplier's random swab capacity at the time of order, 
with f (x) and F(x) as its PDF and CDF, respectively. The 
optimal policy is as follows. At the beginning of cycle 
i ∈ {1, 2,… ,N − 1} , order Qi units of swabs. However, 
in the presence of swab-supplier capacity constraint, the 
actual number of swabs that the country receives is the 
minimum of Qi and the supplier's available capacity. Next, 
whenever the on-hand inventory reaches zero, cycle i + 1 
begins, and an order of Qi+1 should be made.

Given the optimal policy, when a lot with the size Qi is 
ordered during the ith cycle, the fulfilled number of swabs, 
zi , is:

Next, note that in this model the demand is stationary, 
which implies total demand during cycle i is �ti . There-
fore, to balance swab supply and demand over the cycle, 
zi = �ti and, for the entire time horizon, E

�

∑N

i=1
zi

�

= �T  . 
That is,

Furthermore, the costs involved with swab procurement 
for the country during cycle i ∈ {1, 2,… ,N} are as fol-
lows. Equation (1) Fixed ordering cost equals A. Equation 
(2) Purchasing cost equals czi . Equation (3) Holding cost 
equals htizi∕2 . Therefore, the country's expected total swab 
procurement cost over the entire time horizon is:

The first term in the country's expected total swab cost 
is the total fixed ordering cost. The second term is the total 
purchasing cost of swabs, and the last term is the expected 
total holding cost of swab inventory. In the next lemma, we 
show that, similar to the benchmark in §4.1 , it is optimal to 
order the same number of swabs in different cycles.

zi = m
{

Qi, x
}

E

N
∑

i=1

[

∫
Qi

0

xf (x)dx + Qi

(

1 − F
(

Qi

))

]

= �T

N
�

i=1

E
�

A + czi +
h

2
tizi

� zi=�ti&E
�

∑N

i=1
zi

�

=�T

⇔ NA + c�T +
h�

2

�

N
�

i=1

E
�

t2
i

�

�
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Lemma 2 Consider a finite time horizon EOQ model 
where the supplier has stochastic capacity. To mini-
mize the retailer's total inventory cost, it is necessary: 
Q1 = Q2 = ⋯ = QN = Q.

Lemma 2 implies that, at optimality, order quantities in 
different cycles are equal. It helps us simplify the analysis 
of the country's problem by assuming that all order quanti-
ties in all cycles are equal. We use Lemma 2 to write the 
country's swab problem as:

The constraint in Eq. (3) balances expected supply and 
demand over the entire time horizon, and it can be rewrit-
ten as

Plugging Eq. (4) back into the objective function in Equa-
tion (3) simplifies the country's problem to:

To find the optimal order quantity, we define G(Q) as one 
part of the first derivative of (Q):

Proposition 2 presents the characteristics of the country's 
expected total cost, along with the optimal order quantity.

Proposition 2 Consider a finite time horizon EOQ model 
where the supplier has stochastic capacity. In this case, the 
retailer's total expected cost, K(Q) , is convex and unimodal 
with respect to Q , and the optimal order quantity, Q∗ , is the 
unique solution to the following equation:

To solve Eq. (6), note that G(0) < 0,G(∞) > 0 , and 
𝜕G(Q)

𝜕Q
> 0 . Therefore, to find the optimal order quantity, one 

can set Q = 0 , and incrementally increase Q . The first Q for 
which G(Q) > 0 is Q∗ . Once Q∗ is found, plugging it back 

(3)
min
Q,N

K(Q,N) = NA + c�T +
h

2�
E
�

∑N

i=1
z2
i

�

s.t. N
�∫ Q

0
xf (x)dx + Q(1 − F(Q))

�

= �T

(4)N =
�T

∫ Q

0
xf (x)dx + Q(1 − F(Q))

(5)

min
Q

K(Q) = T

⎡

⎢

⎢

⎢

⎣

2A� + h
�∫ Q

0
x2f (x)dx + Q2(1 − F(Q))

�

2

�∫ Q

0
xf (x)dx + Q(1 − F(Q))

�

⎤

⎥

⎥

⎥

⎦

G(Q) ≜
[

Q2(1 − F(Q)) + 2Q�
Q

0

xf (x)dx − �
Q

0

x2f (x)dx −
2A�

h

]

(6)G(Q) = 0 ⟺ Q2(1 − F(Q)) + 2Q∫
Q

0

xf (x)dx = ∫
Q

0

x2f (x)dx +
2A�

h

into Eq. (4) and K(Q) in Eq. (5) returns the optimal number 
of cycles and optimal total expected cost, respectively. Next, 
to study whether this section's results generate benchmark 
1's results in §4.1 , we consider a case where the variable 
capacity x → ∞ with probability of 1. Corollary 1 presents 
the result of this analysis.

Corollary 1 When the variable capacity x → ∞ with a prob-
ability of 1, the optimal order quantity for the finite time 
horizon EOQ model with stochastic capacity—i.e., the solu-
tion to Eq. (6) -is:

One can observe that the optimal order quantity derived 
in Corollary 1 is similar to that of the benchmark 1. To con-
clude the result in Corollary 1, note that G(Q) =

[

Q2 −
2A�

h

]

 
when x → ∞ with probability of 1. Then, solving G(Q) = 0 
results in the above corollary. To further investigate the 
effect of the supplier's stochastic capacity on optimal policy, 
we provide a numerical example in the context of COVID-19 
testing in the United States.

Example 1: The United States' government has announced 
a goal of 1, 000, 000 COVID-19 daily tests,5 which requires 
a million swabs on a daily basis (i.e., � = 1, 000, 000 swabs 
per day). Each swab is priced around 10 cents. Similar to 
traditional inventory management problems, we assume that 
the annual inventory holding cost is 10% of the purchas-
ing cost. Therefore, daily holding cost is h = $

10%×0.1

365
 . Next, 

although there are no clear data on fixed ordering cost and 
capacity constraint of the swab supplier, we assume that

Q∗ =

√

2A�

h

Table 1  Optimal Order Quantities, Number of Cycles, and Total 
Costs for Finite EOQ with/without Stochastic Supplier Capacity Con-
straint

Without Capacity 
Constraint

With 
Capacity 
Constraint

Optimal Order Size (Q∗) 60, 415, 000 72, 267, 588

Optimal # of Cycles (N∗) 6 8
Optimal Total Cost (TC∗) $604, 150 $722, 680

5 https:// www. cdc. gov/ coron avirus/ 2019- ncov/ cases- updat es/ testi ng- 
in- us. html

https://www.cdc.gov/coronavirus/2019-ncov/cases-updates/testing-in-us.html
https://www.cdc.gov/coronavirus/2019-ncov/cases-updates/testing-in-us.html
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1. the fixed cost of shipping swabs from Europe to the US, 
the cost of shipping a large truck from Europe to Texas, 
is $50006; therefore, we set the fixed cost of ordering, 
A = $50000 , and

2. capacity constraint has a uniform distribution. Here we 
assume x ∼ uniform [0, 800, 000, 000]

Using the above-mentioned setup, the results from bench-
mark 1 in §4.1 and the model with stochastic capacity con-
straint in §4.2 are summarized in Table 1. This example 
illustrates the following results. First, when there is no dis-
ruption (i.e., no stochastic capacity constraint), it is optimal 
to order 60, 415, 000 swabs every two months. When there 
is disruption, it is optimal to order 72, 267, 588 . However, 
not all of this order is fulfilled, due to the supplier's capacity 
constraint. As one may observe, the optimal order quantity 
increases when there is disruption in the supply chain. Next, 
the total cost (excluding the purchasing cost), when there is 
a capacity constraint, is $722, 680 , which is 19.6% higher 
than when there is no capacity constraint. This difference 
represents the effect of disruption in the swab supply chain.

Next, using the Monte Carlo simulation similar to Hadley 
and Whitin (1963), we simulate the capacity constraints, and 
we show the inventory levels of Benchmark 1 in §4.1 and the 
model in §4.2 on Fig. 2.

The solid line represents Benchmark 1, where the inven-
tory level is similar to the well-known EOQ model. The 
dashed line represents the case where the supplier faces 
disruption and, therefore, has a capacity constraint. In this 
case, although the US always orders 72, 267, 588 swabs, 
it receives this amount only two times (out of 6 orders). 
The other four times, they receive less due to the supplier's 
capacity constraint.

Still, this question remains unanswered: How do the 
nature of the supplier's capacity distribution and changes in 
its variance and mean affect the optimal decision variables? 
We answer this question in §6 through a numerical study.

5  Optimal Policy Facing Stochastic Demand

In this section, we consider a continuous inventory man-
agement problem with stochastic demand in a finite time 
horizon, where the time horizon is divided into N  cycles. 

Fig. 2  Illustration of the Cycle Inventory Levels for the Benchmark model (Model with No Capacity Constraint) Discussed in §4.1 and the 
Model with Stochastic Capacity Constraint Discussed in §4.2 , Using Monte Carlo Simulation

6 For information about different types of COVID-19 tests, please 
visit https:// www. uber. com/ us/ en/ freig ht/ shipp er/.

https://www.uber.com/us/en/freight/shipper/
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We define y as the per-timeunit stochastic demand for 
the swabs with PDF of d(y) and CDF of D(y) . Recall that 
countries or states (e.g., the United States, Oregon, Mis-
souri, and Arkansas) plan to perform a certain number 
of tests per day. Thus, we assume the mean of stochastic 
demand is constant over the time horizon. Next, note 
that because demand is stochastic, having shortages is 
inevitable. We assume that all the shortages are back-
ordered, because the need for COVID-19 testing does 
not disappear. In §5.1 , we introduce and analyze a bench-
mark, wherein there is no capacity constraint for the sup-
plier. Subsequently, in §5.2 , we analyze the same problem 
while the supplier has stochastic capacity.

5.1  Supplier with Ample Capacity (Benchmark 2)

In this section, (1) the supplier has no capacity constraint. 
Therefore, all the swab-orders placed by the country are ful-
filled. (2) The demand is stochastic. Thus, the optimal pol-
icy and timeline are as follows. Cycle i ∈ {1, 2,… ,N − 1} 
begins at 

∑i

j=1
tj (where t1 = 0 ) when the on-hand inventory 

of swabs reaches Ri (i.e., the reorder point). At this point, 
an order of Qi should be made. This order will be received 
at
∑i

j=1
tj + � , because the on-hand inventory of swabs 

increases byQi . Note that if demand during lead time is 
greater thanRi , then the country faces a test shortage. Next, 
cycle i + 1 begins when the on-hand inventory of swabs 
reachesRi+1 . An example of the optimal policy during cycle 
i is shown in Fig. 3.

We define � as the mean of demand per time unit, which 
implies the expected demand during cycle i is �ti . There-
fore, to satisfy the expected demand and supply during cycle 
i, ti� = Qi . Similarly, for the entire time horizon, we must 
have:

Given the optimal policy, the costs involved with swab 
procurement for the country during cycle i ∈ {1, 2,… ,N} 
are as follows. (1) Fixed ordering cost equals A . (2) Purchas-
ing cost equals cQi . (3) To determine the holding cost, we 
must first find the average inventory of swabs carried during 
the cycle. To that end, the area under the graph in Fig. 3 is:

(4) Because some of the demand might be back-ordered, 
back-order cost, also, might be incurred. To that end, we 
define � as the per-unit-of-demand back-ordered cost. Recall 
that during cycle i , if swab-demand during lead time is 
higher than Ri , then the country faces a swab shortage. We 
assume shortages are not lost, but rather, are back-ordered, 
because the demand for COVID-19 testing does not disap-
pear. We define z as the demand during lead time; therefore, 
the number of back-orders during cycle i is 

[

z − Ri

]+ , and the 
back-order cost is �

[

z − Ri

]+.
Therefore, the country's expected total swab procurement 

cost is:

(7)
N
∑

i=1

Qi = �T

=
1

2

[

2Ri − ��
]

� +
1

2

[

Ri + Ri+1 − �� + Qi

][

ti − �
]

(8)=
Qi

2�

(

Ri + Ri+1

)

+
Q2

i

2�
− �Qi +

1

2
�
(

Ri − Ri+1

)

Γ = E
�

∑N

i=1
A +

∑N

i=1
cQi +

h

2

∑N

i=1

�

Qi

�

�

Ri + Ri+1

�

+
Q2

i

�
− 2�Qi + �

�

Ri − Ri+1

�

�

+ �
∑N

i=1

�

z − Ri

�+
�

= NA + (c − h�)�T +
h

2

∑N

i=1

�

Qi

�

�

Ri + Ri+1

�

+
Q2

i

�
+ �

�

Ri − Ri+1

�

�

+ �
∑N

i=1
∫ ∞

Ri

�

z − Ri

�

d(z)dz

Fig. 3  Illustration of On-hand Inventory in Time for Continuous 
Review Model Without Capacity Constraint
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The country's objective is to minimize Γ with respect 
to decision variables (i.e., Qi,Ri and N  ). However, we do 
not optimize Γ with respect toRN+1 , because it deals with 
a cycle beyondT  . Without loss of generality, we assume 
thatRN+1 = R1 . The reason is that any swabs left over at the 
end of the horizon can be used for other medical purposes. 
Using this point, we simplify the total expected cost,Γ , to:

We present Lemma 3 to further simplify the expected 
total cost in Eq. (9).

Lemma 3 Consider a finite time horizon continuous review 
inventory model with stochastic demand. To minimize the 
expected total cost shown in Eq. (9), it is necessary that:

Lemma 3 implies that, at optimality, order quantities as 
well as reorder points in different cycles are equal. We use 
Lemma 3 to simplify the supply and demand balance—
which is shown in Eq. (7)  as follows:

Moreover, by using Lemma 3, the expected total cost, 
Γ , simplifies to:

Plugging Eq. (10) into Eq. (11) results in the country's 
cost minimization problem as follows.

We present the optimal order quantity and reorder point 
for this model in Proposition 3.

Proposition 3 Consider a finite time horizon continuous 
review inventory model with stochastic demand. The opti-
mal order quantity and reorder points, respectively, can be 
calculated from:

(9)Γ = NA + (c − h�)�T +
h

2

N
∑

i=1

[

Qi

�

(

Ri + Ri+1

)

+
Q2

i

�

]

+ �

N
∑

i=1
∫

∞

Ri

(

z − Ri

)

d(z)dz

R1 = R2 = ⋯ = RN ≜ R, and

Q1 = Q2 = ⋯ = QN ≜ Q

(10)NQ = �T

(11)

NA + (c − h�)�T +
h

2

∑N

1

�

Q

�
2R +

Q2

�

�

+ �N∫ ∞

R
(z − R)d(z)dz

= NA + (c − h�)�T +
hNQR

�
+

hNQ2

2�
+ �N∫ ∞

R
(z − R)d(z)dz

min
Q,R

K(Q,R) ≜ T
[

�A

Q
+ (c − h�)� + hR +

hQ

2
+

��

Q
∫ ∞

R
(z − R)d(z)dz

]

= T
[

�A

Q
+ c� + h

(

R +
Q

2
− ��

)

+
��

Q
b(R)

]

(12)

(Q∗(R∗),R∗(Q∗)) =

(
√

2(A� + ��b(R∗))

h
,D−1

(

1 −

(

hQ∗

��

))

)

In Eq. (12), because the optimal Q is a function of R∗ , 
and the optimal R is a function of Q∗ , we use Hadley and 
Whitin (1963)'s iterative algorithm to find Q∗ and R∗.

Algorithm 1 There are three steps in Hadley and Whitin 
(1963)'s proposed algorithm to find the optimal order quan-
tity and reorder point:

Step 1: Find Q∗ in Benchmark 1. Name it Q1 . Set i = 0.
Step 2: Set i = i + 1 . Further, find
Step 3: Find Qi+1 = Q∗

(

Ri

)

.
Step 4: Repeat Step 2 and Step 3 until convergence.

Hadley and Whitin (1963) show that the above algorithm 
converges to a minimum expected total cost solution. Based 
on this algorithm: Q1 =

√

A�

h
 . Next, R1 = D−1

(

1 −
(

hQ1

��

)))

 

Next, Q2 =

√

2(A�+��b(R1))
h

 . We continue this trend till 

K
(

Qi,Ri

)

 converges to a minimum total expected cost. We 
use the same algorithm to obtain the optimal swab procure-
ment policy for the country. Although the algorithm is 
straightforward to implement, it does not yield a closed-form 
solution for Q∗ and R∗ . In the next section, we bring the 
notion of the supplier's stochastic capacity to find the coun-
try's optimal ordering policy under uncertain supply.

5.2  Supplier with Stochastic Capacity

In this section, (1) demand,y , is stochastic with PDF of d(y) 
and CDF ofD(y) ; and (2) because the swab supply chain 
faces disruption, the swab supplier has a stochastic capac-
ity. Recall that x is the supplier's random swab capacity at 
the time of order, with f (x) and F(x) as its PDF and CDF, 
respectively. Thus, the optimal policy timeline is as follows. 
Cycle i ∈ {1, 2,… ,N} begins at 

∑N

j=1
tj (where t1 = 0 ) when 

the on-hand inventory of swabs reachesRi . At this point, an 
order of Qi should be made. However, due to the supplier's 
stochastic capacity, the minimum of Qi and the supplier's 
capacity will be fulfilled at

∑N

j=1
tj + � . Note that if demand 

during lead time is greater thanRi , then the country faces a 
testing shortage. Next, cycle i + 1 begins when the on-hand 
inventory of swabs reachesRi+1 , when an order of Qi+1 should 
be made. Given the optimal policy, and the stochasticity of 
the supplier's capacity, we define zi as the number of swabs 
fulfilled by the supplier. Therefore,

zi = m
{

Qi, x
}
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Given the definition of zi , we make the following 
observation.

Observation 1 One can observe that the proposed optimal 
policy for this section is similar to that of §5.1 , with the 
difference being that in this section, the country receives zi 
number of swabs during cycle i , whereas in §5.1 , the country 
receives Qi.

Before we carry on to calculating the expected total cost, 
we make the following assumption.

Assumption 1: Following the results in §5.1 , we assume 
that R1 = R2 = ⋯ = RN = Rand Q1 = Q2 = ⋯ = QN = Q

Given Assumption 1, we define z = min{Q, x} . Next, we 
define � as the mean swab-demand per unit of time, which 
implies the expected demand over the entire time horizon is 
�T  . Therefore, to balance supply and the expected demand 
over the entire time horizon, 

�

∑N

1
z
�

= �T ⇒ NE(z) = �T  . 
Solving this for N gives us:

Given Observation 1, the modified carried inventory—
compared to Eq. (8) over one cycle is z

�

[

z

2
+ R − ��

]

 , and the 
modif ied cost  express ion dur ing cycle  i  i s 
E
(

A + cz + h
z

�

(

z

2
+ R − ��

)

+ �[z − R]+
)

 . Therefore, the 
country's expected total cost is:

Using Eq. (13), we simplify the expected total cost as 
follows:

Lemma 4 presents the characteristics of the expected total 
cost, K(Q,R) , with respect to Q.

Lemma 4 Consider a finite time horizon continuous review 
inventory model with stochastic demand and stochastic 
capacity for the supplier. In this case, the expected total 

(13)
N =

�T
[∫ Q

0
xf (x)dx + Q(1 − F(Q))

]

K(Q,R,N) =

N
∑

1

E
(

A + cz + h
z

�

(

z

2
+ R − ��

)

+ �[z − R]+
)

c = NA + c�T +
Nh

�

(

∫
Q

0

x

(

x

2
+ R − ��

)

f (x)dx + Q

(

Q

2
+ R − ��

)

(1 − F(Q))

)

+ N�∫
∞

R

(z − R)d(z)dz

K(Q,R) = T

⎡

⎢

⎢

⎢

⎣

c� +
A� + h

�∫ Q

0
x
�

x

2
+ R − ��

�

f (x)dx + Q
�

Q

2
+ R − ��

�

(1 − F(Q))
�

+ ��∫ ∞

R
(z − R)d(z)dz

∫ Q

0
xf (x)dx + Q(1 − F(Q))

⎤

⎥

⎥

⎥

⎦

cost, K(Q,R) , is convex and unimodal with respect to Q . We 
define M(Q,R) as a part of the first derivative of K(Q,R)

Lemma  presents the characteristics of the expected total 
cost, K(Q,R) , with respect to R.

Lemma 5 Consider a finite time horizon continuous review 
inventory model with stochastic demand and stochastic 
capacity for the supplier. In this case, the expected total 
cost, K(Q,R) , is convex and unimodal with respect to R.

Although we show the convexity of K(Q,R) with respect 
to Q and R separately, the joint convexity of K(Q,R) with 
respect to (Q,R) is unclear, due to the complexity of the 
problem. However, Proposition 4 sheds light on finding 
the optimal (Q,R).

Proposition 4 Consider a finite time horizon continuous 
review inventory model with stochastic demand and sto-
chastic capacity for the supplier. In this case, the optimal 
order quantity with respect to R (i.e., Q∗(R)) is the unique 
solution to:

and the optimal reorder point with respect to Q (i.e., R∗(Q)) 
is:

Although Proposition 4 does not result in the direct 
calculation of (Q∗,R∗) , one can modify the algorithm dis-

cussed in §5.1 to minimize the expected total cost.

Algorithm 2 The modified algorithm is as follows:

Step 1: Find Q∗ in Benchmark 1. Name it Q1 . set i = 0.
Step 2: Set i = i + 1 . Further, find Ri = R∗

(

Qi

)

.
Step 3: Find Q∗

i+1
 by solving M

(

Qi,Ri

)

= 0.

M(Q,R) = Q2(1 − F(Q)) −
2�

h
[A + �b(R)]

+ 2Q∫
Q

0

xf (x)dx − ∫
Q

0

x2f (x)dx

(14)
M(Q,R) = 0 → Q2(1 − F(Q)) + 2Q∫

Q

0

xf (x)dx

= ∫
Q

0

x2f (x)dx +
2�

h
[A + �b(R)]

R∗(Q) = G−1

(

1 −
h

��

(

∫
Q

0

xf (x)dx + Q(1 − F(Q))

))
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Step 4: Repeat Steps 2 and 3 until convergence.

Our numerical study of 459 instances shows that the 
above algorithm converges to a minimum expected total 
cost. However, the analytical proof is not tractable. Next, 
note that Steps 1 and 2 in the above algorithm are similar 
to that of the algorithm in §5 . Step 3, however, requires 
solving M

(

Qi,Ri

)

= 0  .  To that  end,  note  that 
M
(

0,Ri

)

< 0,M
(

∞,Ri

)

> 0 , and 𝜕M(Q,Ri)
𝜕Q

> 0 . Therefore, 
to find the optimal order quantity in Step 3, one can ini-
tially set Qi = 0 , and incrementally increase it. The first Qi 
for which M

(

0i,Ri

)

> 0 , is Q∗
i+1

.
Recall that G(Q) =

[

Q2(1 − F(Q)) + 2Q∫ Q

0
xf (x)dx − ∫ Q

0
x2f (x)dx −

2A�

h

]

 . 
In Corollary 2, We compare G(Q) and M(Q,R) to derive 
some insights.

Corollary 2 Note that M(Q,R) = G(Q) −
2��b(R)

h
 , which sug-

gests that the optimal order quantity when demand is sto-
chastic is greater than that of when demand is stationary.

Corollary 2 implies that more variability in demand 
results in higher order quantities. We study this obser-
vation in detail in§6 . Next, In Corollary 3, we examine 
Proposition 4 to study whether the results of our proposed 
model in this section generate the results of the benchmark 
model in §5.1 COROLLARY 3. When the variable capac-
ity x → ∞ with the probability of 1, the optimal solution 
to Eq. (14) is:

One can observe that the optimal order quantity derived 
in Corollary 3 is similar to the optimal order quantity of the 
benchmark model in§ 5.1 . To conclude, the result in Corol-
l a r y  3 ,  when  x → ∞ w i t h  t he  p robab i l i t y 
of1,M(Q,R) = Q2 −

2�

h
[A − �b(R)] , and�K(Q,R)

�R
=

hQ−��(1−F(R))

∫ Q

0
xf (x)dx+Q(1−F(Q))

 . 
Setting these two equations equal to zero results in Corollary 
3. To further investigate the effect of supplier's stochastic 
capacity on optimal policy for the country's swab inventory 
management, we provide a numerical example with the con-
text of COVID-19 testing in the United States.

Example 2: For this example, we follow the setting in 
Example 1. Also, we assume demand has Uniform distribu-
tion between 100,000 and 1, 900, 000 swabs and � = 5 cents. 
The optimal order quantity, reorder point, number of cycles, 

(Q∗(R∗),R∗(Q∗)) =

(
√

2(A� + ��b(R∗))

h
,F−1

(

1 −

(

hQ∗

��

))

)

Table 2  Optimal Order Quantities, Number of Cycles, and Total 
Costs for Finite Continuous Review Model with/without Stochastic 
Supplier Capacity Constraint

Without capacity 
constraint

With 
capacity 
constraint

Optimal reorder point (R∗) 1, 664, 700 1, 951, 800

Optimal order size (Q∗) 60, 581, 000 72, 289, 194

Back-order,b(R∗) 110,240 469.14

Optimal total cost (TC∗) $604, 150 $658, 400

Fig. 4  Illustration of the Inventory Levels of Benchmark 2 in §5.1 and the Model in §5.2 Using Monte Carlo Simulation
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and expected total cost for the benchmark model (discussed 
in §5.1 ) and continuous review model with stochastic capac-
ity (discussed in §5.2 ) are reported in Table 2. One may 
observe that, similar to the example in§4.2 , the optimal order 
quantity, reorder point, and expected total cost are larger 
when there is a capacity constraint. We investigate these 
relationships in more detail in §6.

Next, using the Monte Carlo simulation, we simulate the 
capacity constraints and daily demand. We show the inven-
tory levels of the benchmark model (discussed in §5.1 ) and 
continuous review model with stochastic capacity constraint 
(discussed in §5.2 ) on Fig. 4. The solid line represents the 
benchmark, where the inventory level is similar to the well-
known continuous review model. The dashed line represents 
the case where the supplier has a stochastic capacity. In this 
case, although the country always orders 72, 289, 194 swabs, 
they receive that amount only once (out of 6 orders) The 
other five times, they receive less due to supplier's capacity 
constraint.

In the next section, we present our numerical analysis to 
compare our optimal policies further and provide manage-
rial insights.

6  Numerical Implications for Reactive 
Planning

One can observe that the analytical models and proposed 
policies in previous sections are developed based on proac-
tive planning. However, given the rapid change of COVID-
19 infection cases and the limited planning period, govern-
ments should aim for data-driven and reactive scheduling. 
Therefore, one can argue that the only-optimal-inventory 
plan examined in previous sections may not be able to cope 
with rapid variations in COVID-19 data. That is why in 
this section, via an extensive numerical study, we provide 
guidelines for the governments (e.g., decision makers) as to 
how optimally respond to changes in the number of daily 
COVID-19 cases and the disruptions the virus causes in 
swab supply chains. That is, during one cycle, governments 
can observe how problem parameters change and optimally 
react to it in the next cycle. Note that the managerial impli-
cations of this section can be extended to other mentioned 
examples in §1 , such as the shortage of Personal Protective 
Equipment (PPE) in hospitals and nursing homes.

Note that during a pandemic, the number of infected peo-
ple, increases over time, and then, starts decreasing (Duijzer 
et al. 2018). This could potentially translate into an increase 
in the variability of the supplier's capacity constraint, fol-
lowed by a decrease. The same behavior can decrease the 
supplier's capacity, followed by an increase. Hence, in §6.1 , 
we first study how the changes in the mean and standard 

deviation of the supplier capacity constraint affect the opti-
mal policy. This provides guidelines for the governments 
regarding how to tackle smaller or larger disruptions in the 
swab supply chain. Next, in §6.2 , we compare the results in 
§4 and §5 , the difference between which is the stochasticity 
of the demand. This provides guidelines for the governments 
on addressing the issue of changes in the daily number of 
COVID-19 cases and subsequently demand for swabs.

In our numerical experiment, because vaccines were 
developed almost one year after the pandemic started (and 
the expectation that vaccination of most countries may 
take up to one year), we set the planning horizon, T  , to 
1 year (i.e., 365 days). Although it is ideal to set the other 
problem parameters to that of the COVID-19 situation, the 
algorithms to find the optimal swab-order quantities and 
reorder points are complex. Setting the problem param-
eters to large numbers (e.g., � = 1, 000, 000 swabs per day) 
results in a very lengthy process, more than 500 h for the 
number of instances we study. Therefore, we examine a 
set of not-very-large problem parameters similar to Moon 
et al. (2012), which are as follows:

As for the stochastic capacity constraint, we set the mean 
and standard deviation to � ∈ {250, 300, 350, 400} and 
� ∈ {10, 30,… , 170} , respectively. Here we assume a 
uniform distribution for the stochastic capacity constraint.
As for the yearly demand, we set the mean and standard 
deviation, respectively, to: � ∈ {1000, 1500, 2000, 2500} 
and Σ ∈ {250, 300, 400, 500}.
We set  the  other  problem parameters  to 
(h,A,�, �) = ($5, $200, $50, 2 days).

Therefore, we examine 576 instances. Before we move on 
to the guidelines, there are three discussions in order. First, 
note that we only study the effects of demand and capacity 
constraint on the optimal policies. We could, potentially, 
study the effects of other problem parameters (i.e.,h,A,� , 
and � ). These effects, however, are well studied in the  
traditional inventory management literature. For example, 
as h increases, the optimal number of cycles increases and 
the total cost increases. Another example is as A increases, 
the optimal number of cycles decreases and the total cost 
increases. For such results, we refer the reader to Hadley 
and Whitin (1963) and Tinani and Kandpal (2017). Second,  
we only focus on uniform distribution for demand and 
capacity constraints for this section. However, we can  
confirm that our results are qualitatively the same for other 
distributions. Specifically, we examined exponential and 
normal distribution. Third, note that purchasing cost (i.e., 
c�T ) is the same in the total costs in§4.1, §4.2, §5.1 , and§5.2 . 
Therefore, we exclude it from all the total costs reported in 
this section.
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6.1  Guidelines on Changes in Supplier's Capacity

Note that provided algorithms in Sects. 2 and 3 (i.e., Algo-
rithm 1 and Algorithm 2) are slow to obtain the optimal pol-
icy. Given the fast-changing nature of the COVID-19 infec-
tion rate, problem parameters might change from one cycle 
to another. Hence, governments must know the guidelines 
on how to respond to changes in problem parameters swiftly. 
That is why in this section, via studying how changes in � 
and � affect the optimal policy, we provide some guidelines 
for governments.

Guideline 1 When the supplier's capacity is uncertain, gov-
ernments should respond to the changes in the variability of 
the supplier's capacity (i.e., � ) as following:

Governments should increase the reorder point (i.e., R∗ ) 
as the variability in supplier's capacity (i.e., � ) increases 
in presence of stochastic demand. This will result in the 
optimal expected number of back-orders (i.e., b(R∗) ) to 
decrease (i.e., shorter lines to get tested). Moreover, the 
optimal number of cycles (i.e., N∗ ) will increase regard-
less of the demand's stochasticity.
Governments should decrease their order size (i.e., Q∗ 
decreases) when the mean of the supplier's capacity,� , is 
large, as its variability (i.e., � ) decreases. As a result, opti-
mal expected total cost,K(Q∗,N∗) , will decrease, regard-
less of the stochasticity of the demand.
Governments should increase their order size (i.e., Q∗ ) 
as the supplier's capacity's variability (i.e., � ) increases 
and when the mean of supplier's capacity,� , is small. As 
a result, optimal expected total cost (i.e., K(Q∗,N∗) ) will 
increase, regardless of the stochasticity of the demand.

To explain the above guidelines, first, note that higher 
(lower) � implies a larger (smaller) variability (i.e., disruption) 

in the swab supply chain. Therefore, Guideline 1 part 1 suggests 
that countries should have a higher swab reorder point whenever  
swab supply chains face significantly large disruptions. As there 
is more disruption in supply chains due to the uncertainty of 
the capacity, there is a higher chance the swab supplier cannot 
fulfill the order placed by the country. It, however, can only 
fulfill the number of swabs being produced. Therefore, (a)  
the country has to order more frequently to satisfy the total 
demand over the time horizon; and (b) the country has to have a 
higher swab reorder point to avoid stockouts, because of which 
the expected number of swab back-orders decreases. This 
adjustment, however, comes at a cost. First, because the country 
is ordering more frequently, fixed ordering cost increases. Next, 
because the country is carrying more swab inventory, holding 
cost increases. Therefore, total cost faces an increase. Figure 5 
is the graphical representation for this part of Guideline 1.

Guideline 1 part 2 is in line with Corollary 1 and Cor-
ollary 3. It implies, if the mean of swabsupplier capac-
ity is large enough, as the disruption in the supply chain 
decreases, the optimal swab-order quantity decreases, and it 
converges to that of the case with NO swab supplier capacity 
constraint. Guideline 1 part 3 refers to the case where the 
mean of the swab-supplier capacity is small. In this case, as 
disruption increases, it means that the maximum supplier 
capacity increases.

Therefore, the country should increase its optimal swab-
order quantity to increase the chance of receiving a larger 
number of swabs. Before we move to Guideline 2, we pro-
vide evidence for Guideline 1 in Table 3. Because there is 
already evidence for Guideline 1 part 2 in Corollary 1 and 
Corollary 3, we only provide evidence for Guideline 1 part 
1 and part 3.

Guideline 2 Governments should respond to the changes in 
the mean of supplier's capacity (i.e., � ) as following:

Governments should decline their reorder point (i.e., R∗ 
decreases) when the mean of supplier's capacity (i.e., � ) 

Fig. 5  Illustration of the optimal order quantity versus optimal back-
order for different standard deviations of supplier's capacity

Table 3  Effect of changes in the standard deviation of supplier's 
capacity, � , on the optimal policy, where � = 300 and y ∈ [0, 2000]

� Q∗ N∗ R∗ b(R∗) K(Q∗,R∗)

10 298 3 8.05 79.4 8814.32

30 298 3 8.06 74.64  8815.401

50 299 3 8.06 70.28 8817.684

70 300 4 8.07 62.67 8821.059

90 302 4 8.07 59.36 8825.409

110 305 4 8.07 56.35 8830.612

130 310 4 8.08 53.62 8836.539

150 315 4 8.08 51.35 8843.06

170 326 5 8.09 49.71 8849.432
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increases given a stochastic demand. As a result, the opti-
mal expected number of back-orders (i.e., b(R∗) ) increases 
(i.e., patients have to stay in longer lines to get tested).
As � raises, the number of times that governments order 
decreases (i.e., N∗ declines).

To explain the above guidelines, note that higher (lower) 
� is associated with higher (lower) swab-supplier aver-
age capacity. Guideline 2 part 2 implies that less frequent 
orders are optimal when swab-supplier average capacity is 
high. This takes place because, as � increases, more swabs 
are available for the country to order, which results in (a) 
larger fulfillment; (b) larger cycle length (i.e., the smaller 
number of optimal cycles, N∗ ); and (c) lower fixed ordering 
cost. Guideline 2 part 1 is in line with Corollary 3, which 
implies that as � increases, the optimal reorder point (i.e., 
R∗ ) decreases and converges to the R∗ associated with the 
case where there is no capacity constraint. This means that 
as swab-supplier capacity constraint becomes less of an 
issue for the country, the country should decrease its reor-
der point and carry less swab inventory over each cycle. This 
results in: (a) lower holding cost and (b) higher expected 
number of back-orders. Our numerical study suggests that 
the decrease in fixed ordering costs and holding costs only 
sometimes dominates the increase in back-order cost, hence 
a decrease in total cost. In Table 4, we provide the evidence 
for this guideline.

6.2  Guidelines on Supply Chain Disruptions

As mentioned in the introduction, the swab supply chain 
was able to satisfy the global demand before the COVID-19 
pandemic. However, after the pandemic due to swab sup-
ply chain disruptions, global demand surged while global 
supply plunged. This resulted in a worldwide shortage of 
swabs, which resulted in the COVID-19 testing shortage in 
many countries. When such disruptions take place, govern-
ments should proactively react to the changes in supplier's 
capacity. That is why in this section, we provide guidelines 
for governments on how to respond to supply chain disrup-
tions optimally.

Guideline 3 Governments should respond to supply chain 
disruptions as follows when the swab demand is stationary.

Governments should increase order quantity when the 
supplier faces capacity constraints.
Governments should increase the optimal order quantity and 
optimal reorder point when there is a capacity constraint and 
demand is stochastic unless the mean and standard deviation 
of the capacity constraint is relatively smaller than that of 
the demand. As a result, the expected back-order is generally 
smaller when there is a capacity constraint.
Regardless of the demand's stochasticity, governments' 
total inventory cost is higher when there is a capacity 
constraint.

Guideline 3 part 1 implies, if the demand is stationary,  
when the swab supplier faces disruption (i.e., when there is a 
capacity constraint), the country should increase its swab order. 
To explain it, note that due to capacity constraints, not all swab 
orders placed are fulfilled. That is, in one cycle, the country 
might receive a small number of swabs, and in another, it might 
receive Q∗ . Therefore, increasing Q helps the country avoid too 

Table 4  Effect of changes in the mean of supplier's capacity, � , on 
the optimal policy, where � = 10 and y ∈ [0, 2000]

� Q∗ N∗ R∗ b(R∗) K(Q∗,N∗)

250 232 5 10.85431 98.8050 11297.51

300 313 4 10.63035 164.0405 11239.31

350 332 3 10.59432 201.9831 11239.14

400 382 2 10.53953 267.2596 11260.59

Table 5  Comparing the optimal 
policies with and without 
supplier's capacity constraint 
under stationary demand, where 
� = 300 and y ∈ [0, 2000]

N∗ Q∗ Q∗,N∗)

� Without 
capacity 
constraint

With capacity 
constraint

Without 
capacity 
constraint

With capacity 
constraint

Without 
capacity 
constraint

With 
capacity 
constraint

10 3 3 282 283 1414.214 1414.22

30 3 3 282 284 1414.214 1415.439

50 3 4 282 284 1414.214 1420.198

70 3 4 282 286 1414.214 1429.047

90 3 4 282 289 1414.214 1442.364

110 3 4 282 292 1414.214 1460.559

130 3 4 282 296 1414.214 1484.047

150 3 4 282 303 1414.214 1513.259

170 3 5 282 310 1414.214 1548.628
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many orders (i.e., short cycle length, hence, high fixed ordering 
cost). Guideline 3 part 2 implies that if demand is stochastic, 
then the country should set a high reorder point, which helps 
tackle the stochasticity of the capacity constraint. If the country 
receives a number of swabs smaller than Q , in one cycle, the 
country can use the safety stock to avoid stockouts. Moreover, 
with the same logic for Guideline 3 part 1, the country should 
increase its order quantity. All these adjustments come at the 
cost of the increased total cost, which is observed in Sect. 3. In 
Table 5, we provide evidence for Guideline 3 part 1.

Finally, Guideline 4 presents the effect of demand stochas-
ticity on optimal order quantity and optimal total cost.

GUIDELINE 4 Governments should increase their optimal 
order quantity (i.e.,Q∗ ) as uncertainty in demand increases 
regardless of supply chain disruption. This will result in the 
optimal number of cycles (i.e., N∗ ) to decrease.

The above guideline implies that, whether or not the swab  
supplier is facing capacity constraint, the country should order 
more swabs if COVID-19 testing demand is stochastic. This 
results in longer cycle lengths (i.e., a decrease in N ) and increased 
swab inventory carried during each cycle, resulting in higher total 
cost. This guideline sheds light on the importance of forecasting. 
That is, if the country is sure how many swabs it needs during 
the time horizon (i.e., removing the variability of demand), it 
can reduce the total cost. This guideline is in line with traditional 
inventory management literature that suggests that more demand 
variability results in higher optimal order quantities and higher 
total cost. For this guideline, we provide evidence in Table 6. We 
offer a summary and conclusion in the next section.

7  Conclusions

Recently, an outbreak of COVID-19 in China's Wuhan 
resulted in a global pandemic, which crippled many coun-
tries’ economies. To control the spread of the virus, some 

countries (e.g., the United States, varying state-by-state; 
Italy and Germany, nationwide) have adopted shelter-in-
place strategies. To contain COVID-19 and re-open the 
economy, health experts believe that widespread testing is 
crucial, mainly with the rise of contagious new variants. 
However, this is not possible because a critical component 
of COVID-19 testing, nasal swabs, faces a global shortage. 
The reason is that swabs are supplied by two primary pro-
ducers, whose supply chains are facing disruption because 
of COVID-19. This persistent disruption translates to swab 
supplier variable production capacity. As a result, when 
countries order swabs from a swab supplier, their order 
might not be fully satisfied. Hence, adopting a proper swab 
inventory management model can help countries to manage 
COVID-19 testing better. This research is motivated by the 
above inventory management problem. We developed math-
ematical models where: (1) demand for COVID-19 testing 
is assumed to be stationary or stochastic; (2) the supplier's 
production capacity is assumed to be ample or variable; and 
(3) because the vaccination will be completed soon world-
wide, i.e., following 12 months, the time horizon is finite. 
To the best of our knowledge, the existing literature has not 
studied such a problem. Specifically, the model featuring 
stochastic demand and a supplier with variable capacity is 
known to be challenging.

First, we study the case with stationary demand. Because 
of the demand pattern, avoiding swab shortages is possible. 
We divide the planning horizon into multiple cycles, and we 
derive the optimal policy for the following two scenarios. 
(1) We examine a scenario where the supplier has ample 
capacity, because of which all the swab orders placed by 
the country are fulfilled. In this scenario, we prove that it 
is optimal to order the same number of swabs in differ-
ent cycles, and we derive the optimal order quantity. (2) 
We examine a scenario where the supplier has a stochastic 
capacity, because of which it can only fulfill the minimum 
of the number of swabs ordered and its production capac-
ity. Similarly, in this scenario, we prove that it is optimal to 

Table 6  Effect of demand 
(stationary vs. stochastic) 
on optimal policies where 
� = 300, y ∈ [0, 2000]

N∗ Q∗ K(N∗,Q∗)

� Constant 
demand

Stochastic 
demand

Constant 
demand

Stochastic 
demand

Constant demand Stochastic demand

10 3 3 283 313 11239.31 1414.214
30 3 4 284 314 11241.17 1414.214
50 4 4 284 313 11244.58 1414.214
70 4 4 286 314 11248.86 1414.214
90 4 4 289 316 11254.35 1414.214
110 4 4 292 319 11260.32 1414.214
130 4 4 296 323 11266.92 1414.214
150 4 4 303 328 11274.58 1414.214
170 4 5 310 335 11281.52 1414.214
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order the same number of swabs in different cycles, and we 
derive sufficient conditions to find that number. Notably, due 
to the stochasticity of the supplier's capacity, cycles have 
different lengths. Finally, we report the results of these two 
models for a COVID-19-specific example.

Second, we study the case with stochastic demand. 
Because of the demand pattern, having swab shortages is 
inevitable. We divide the planning horizon into multiple 
cycles, and we derive the optimal policy for the follow-
ing two scenarios. (1) We examine a scenario wherein the 
supplier has ample capacity, because of which all the swab 
orders placed by the country are fulfilled. We prove that, in 
this scenario, at optimality, the optimal order quantities and 
the optimal reorder points in different cycles are the same. 
Although we cannot find the optimal order quantity and the 
optimal reorder point in closed-form, we derive the opti-
mal order quantity as a function of order quantity, and we 
also derive the optimal reorder point as a function of order 
quantity. We then propose an iterative algorithm that finds 
the optimal order quantity and optimal reorder point. (2) 
We examine a scenario wherein the supplier has a stochastic 
capacity, because of which it can only fulfill the minimum 
number of swabs ordered and its production capacity. We 
assume that, in this scenario, at optimality, the optimal order 
quantities and the optimal reorder points in different cycles 
are the same. Similarly, we derive the optimal order quantity 
as a function of order quantity, and we also derive the opti-
mal reorder point as a function of order quantity. We then 
propose an iterative algorithm that finds the optimal order 
quantity and the optimal reorder point. Finally, we report 
the results of these two models for a COVID-19-specific 
example.

Lastly, through a comprehensive numerical study, we 
provide guidelines to decision-makers (i.e., governments) 
on optimally reacting to changes in the demand and sup-
ply of the swabs. The most notable managerial implica-
tions are as follows: (1) As the swab supply chain becomes 
more disrupted: (a) governments should increase their reor-
der point, and as a result, the optimal expected number of 
back-orders decreases (i.e., shorter lines to get tested); and 
(b) if the supplier's average capacity is small, governments 
should increase their order size, and as a result, the optimal 
expected total cost increases. (2) When demand's variation 
increases, the optimal order quantity and the optimal total 
cost increase. (3) When supply chain disruptions occur, 
governments' optimal order quantity and optimal total cost 
increase.

Admittedly, our research has two limitations, based on 
which we propose future research possibilities. 1) Algorithms 
to find the optimal policy for the stochastic demand pattern 
are complex and time-consuming for large-scale problems. 
For a real-world example, it could take days to find the opti-
mal solutions on a regular computer (this time could reduce 

to only a few hours on an advanced computer). Any algorithm 
that can reduce the time to find the optimal solution could be 
beneficial for governments, hospitals and insurance companies. 
Therefore, for future research, one can develop more efficient 
heuristics to find the optimal solution promptly. To that end, 
one might want to focus on the properties of the total cost func-
tion expression (i.e., its concavity or convexity) and base their 
algorithm on these properties. 2) We assumed that the mean 
of the demand and capacity constraint are constant over time, 
while in reality this assumption might not hold for some prod-
ucts. For future research, one may relax these assumptions. 
We suggest using Brownian Motion to model such a problem. 
However, this problem will be complex, and the optimal solu-
tions might not be tractable.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s12063- 022- 00308-1.
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