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Abstract We investigate evolutionary dynamics of two-strategy matrix games with
zealots in finite populations. Zealots are assumed to take either strategy regardless of
the fitness. When the strategy selected by the zealots is the same, the fixation of the
strategy selected by the zealots is a trivial outcome. We study fixation time in this
scenario. We show that the fixation time is divided into three main regimes, in one of
which the fixation time is short, and in the other two the fixation time is exponentially
long in terms of the population size. Different from the case without zealots, there is
a threshold selection intensity below which the fixation is fast for an arbitrary payoff
matrix. We illustrate our results with examples of various social dilemma games.

Mathematics Subject Classification 91A22 · 60J70

1 Introduction

A standard assumption underlying evolutionary game dynamics, regardless of whether
a player is social agent or gene, is that players tend to imitate successful others. In
actual social evolutionary dynamics, however, there may be zealous players that stick
to one option according to their idiosyncratic preferences regardless of the payoff that
they or their peers earn. Collective social dynamics in the presence of zealots started to
be examined for non-game situations such as the voter model representing competition
between two equally strong opinions (i.e., neutral invasions) (Mobilia 2003; Galam and
Jacobs 2007; Mobilia et al. 2007; Xie et al. 2011; Singh et al. 2012). Zealots seem to be
also relevant in evolutionary game dynamics. For example, voluntary immunization
behavior of individuals when epidemic spreading possibly occurs in a population can
be examined by a public-goods dilemma game (Fu et al. 2011). In this situation, some
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individuals may behave as zealot such that they try to immunize themselves regardless
of the cost of immunization (Liu et al. 2012).

In our previous work, we examined evolutionary dynamics of the prisoner’s
dilemma and snowdrift games in infinite populations with zealots (Masuda 2012).
Specifically, we assumed zealous cooperators and asked the degree to which the
zealous cooperators facilitate cooperation in the entire population. We showed that
cooperation prevails if the temptation of unilateral defection is weak or the selection
strength is weak. For the prisoner’s dilemma, we analytically obtained the condition
of cooperation.

In the present paper, we conduct a finite population analysis of evolutionary dynam-
ics of a general two-person game with zealots. Evolutionary games in finite popula-
tions have been recognized as a powerful analytical tool for understanding properties
of evolutionary games such as conditions of cooperation in social dilemma games.
In addition, the outcome for finite populations is often different from that for infinite
populations (Nowak et al. 2004; Taylor et al. 2004; Nowak 2006). We take advantage
of this method to understand evolutionary dynamics of games with zealots for general
matrix games.

It should be noted that the fixation probability, i.e., the probability that a given
strategy eventually dominates the population as a result of stochastic evolutionary
dynamics, is a primary quantity to be pursued in evolutionary dynamics in finite
populations. Nevertheless, fixation trivially occurs in the presence of zealots if all
zealots are assumed to take the same strategy; the zealots’ strategy always fixates. For
example, if there is a single zealous cooperator in the population, cooperation always
fixates even in the conventional prisoner’s dilemma game. However, in this adverse
case, fixation of cooperation is expected to take long time; the relevant question here
is the fixation time (Antal and Scheuring 2006; Traulsen et al. 2007; Altrock and
Traulsen 2009; Altrock et al. 2010; Assaf and Mobilia 2010; Ewens 2010; Wu et
al. 2010; Altrock et al. 2011; Assaf and Mobilia 2012; Kreindler and Young 2013).
Here we examine the mean fixation time of the strategy selected by the zealots. This
quantity serves as a probe to understand the extent to which zealots influence non-
zealous players in the population. The fixation time would be affected by the payoff
matrix, population size, number of zealous players, and strength of selection. We
derive the asymptotic dependence of the mean fixation time on the population size
when the fraction of zealots in the population is fixed. Mathematically, we extend the
approach taken in Antal and Scheuring (2006) to the case with zealots.

2 Model

We assume a well-mixed population of N + M players under evolutionary dynamics
defined as follows. In each discrete time unit, each player selects either of the two
strategies A or B. Each player plays a symmetric two-person game with all the other
N + M − 1 players in a unit time. The payoff matrix of the single game for the row
player is given by

( A B

A a b
B c d

)
. (1)

123



Evolutionary dynamics in finite populations 467

The fitness of a player on which the selection pressure operates is defined as the payoff
summed over the N + M − 1 opponents.

We assume that N players may flip the strategy according to the Moran process
(Moran 1958; Ewens 2010). We call these players the ordinary players. The other
M players are zealots that never change the strategy irrespectively of their fitness.
Because our primary interest is in the possibility of cooperation in social dilemma
games induced by zealous cooperators, we assume that all zealots take strategy A; A
is identified with cooperation in the case of a social dilemma game. We also assume
that a, b, c, d ≥ 0 for the Moran process to be well-defined.

Because we have assumed a well-mixed population, the state of the evolutionary
process is specified by the number of ordinary players selecting A, which we denote by
i . In each time step, we select an ordinary player with the equal probability 1/N . The
strategy of the selected player is updated. Then, we select a player, called the parent,
whose strategy replaces that of the previously selected player. The parent is selected
with the probability proportional to the fitness among the N + M players including
the zealots and the player whose strategy is to be replaced. The population size N
is constant over time. It should be noted that a player is updated once on average in
time N .

Because the zealots always select A, the Moran process ends up with the unanimous
population of A players (we impose a > 0 for this to be true). In other words, fixation
of A always occurs such that the issue of fixation probability is irrelevant to our model.

3 Results

We calculate the mean fixation time and its approximation in the case of a large
population size by extending the framework developed in Antal and Scheuring (2006)
(also see Van Kampen 2007; Redner 2001; Krapivsky et al. 2010; Ewens 2010).

3.1 Mean fixation time: exact solution

Consider the state of the population in which i (0 ≤ i ≤ N ) ordinary players select
strategy A. A total of i + M and N − i players, including the zealots, select strategies
A and B, respectively. The Moran process is equivalent to a random walk on the i
space in which i = 0 is a reflecting boundary, and i = N is the unique absorbing
boundary.

The fitness of an A and B player is given by

fi = (i + M − 1)a + (N − i)b

N + M − 1
(2)

and

gi = (i + M)c + (N − i − 1)d

N + M − 1
, (3)
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respectively. In a single time step, i increases by one, does not change, or decreases
by one. We denote by T +

i and T −
i the probabilities that i shifts to i + 1 and i − 1,

respectively. These probabilities are given by

T +
i = N − i

N

(i + M) fi

(i + M) fi + (N − i)gi
(4)

and

T −
i = i

N

(N − i)gi

(i + M) fi + (N − i)gi
. (5)

We denote by ti the mean fixation time when there are initially i ordinary players
with strategy A. As shown in Ewens (2010), pp. 86–91 (see Appendix A for a full
derivation), we obtain

ti =
N−1∑
j=i

q j

j∑
k=0

1

T +
k qk

, (6)

where

qk =
k∏

j=1

T −
j

T +
j

. (7)

In Eq. (7), we interpret q0 = 1.

3.2 Deterministic approximation of the random walk

In this section we classify the deterministic dynamics driven by the expected bias of
the random walk (i.e., T +

i − T −
i ) into three cases, as is done in the analysis of popu-

lations without zealots (Taylor et al. 2004; Antal and Scheuring 2006). The obtained
classification determines the dependence of the mean fixation time on N , as we will
show in Sect. 3.3.

We first identify the equilibrium points of the deterministic dynamics, i.e., i satisfy-
ing T +

i = T −
i . Equations (4) and (5) indicate that i = N always yields T +

i = T −
i = 0,

corresponding to the fact that i = N is the unique absorbing state. Other equilibria
are derived from

(i + M) [(i + M − 1)a + (N − i)b] − i [(i + M)c + (N − i − 1)d] = 0. (8)

We set y ≡ i/N (0 ≤ y < 1), m ≡ M/N , and ignore O(N−1) terms in Eq. (8) to
obtain

f (y) ≡ (a − b − c + d)y2 + [2ma + (1 − m)b − mc − d] y + m2a + mb = 0.

(9)
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Table 1 Classification of the
three cases of the mean fixation
time when N is large

a − b − c + d ≤ 0 a − b − c + d > 0

c < (m + 1)a Case (i) Case (i) or (iii)

c > (m + 1)a Case (ii) Case (ii)

We define

ỹ = − 1

2(a − b − c + d)
[2ma + (1 − m) b − mc − d] , (10)

D = [2ma + (1 − m)b − mc − d]2 − 4m(ma + b)(a − b − c + d), (11)

y∗
1 =

⎧⎨
⎩

ỹ −
√

D
2(a−b−c+d)

(a − b − c + d �= 0),

− m(ma+b)
2ma+(1−m)b−mc−d (a − b − c + d = 0),

(12)

and

y∗
2 =ỹ +

√
D

2(a − b − c + d)
. (13)

We will use y∗
2 only when a − b − c + d > 0. In the continuous state limit, the

deterministic dynamics driven by T +
i −T −

i is classified into the following three cases,
as summarized in Table 1. The derivation is shown in Appendix B.

Case (i) : f (y) > 0 holds true for all y (0 ≤ y ≤ 1) such that the dynamics starting
from any initial condition tends to y = 1 (Fig. 1a). In an infinite population,
A dominates B. In a finite population, we expect that the fixation time
is short. This case occurs when c < (m + 1)a and one of the following
conditions is satisfied:
• a − b − c + d ≤ 0.
• a − b − c + d > 0 and y∗

1 ≤ 0 (i.e., 2ma + (−m + 1)b − mc − d ≥ 0).
• a − b − c + d > 0, 0 < y∗

1 < 1 (i.e., 2ma + (−m + 1)b − mc − d < 0
and −(2m + 2)a + (m + 1)b + (m + 2)c − d < 0), and D ≤ 0.

• a−b−c+d > 0 and y∗
1 ≥ 1 (i.e.,−(2m+2)a+(m+1)b+(m+2)c−d ≥

0).
Case(ii) : f (y) = 0 has a unique solution y∗

1 (0 < y∗
1 < 1) such that the dynamics

starting from any initial condition converges to y∗
1 (Fig. 1b). In an infinite

population, A and B coexist. In a finite population, we expect that the fixation
time is long. This case occurs when c > (m + 1)a.

Case (iii) : f (y) = 0 has two solutions 0 < y∗
1 < y∗

2 < 1. Dynamics starting from
0 ≤ y < y∗

2 converges to y∗
1 , and that starting from y∗

2 < y < 1 converges
to y = 1 (Fig. 1c). In an infinite population, a mixture of A and B and the
pure A configuration are bistable. In a finite population, we expect that the
fixation time is long if the dynamics starts with 0 ≤ y < y∗

2 and short if it
starts with y∗

2 < y < 1. This case occurs when

c < (m + 1)a, (14)
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Without zealots

With zealots

(a) (b) (c)

(d) (e) (f) (g)

Case (i) Case (ii) Case (iii)

A dominates B B dominates A coexistence bistable

0
0

0 0

0 1

Fig. 1 Schematic classification of the deterministic dynamics driven by T +
i − T −

i . a–c Populations with
zealots. d–g Populations without zealots. Filled and open circles represent stable and unstable equilibria,
respectively. Filled squares represent the absorbing boundary condition. It should be noted that we identify
y = i/N

a − b − c + d > 0, (15)

0 < ỹ < 1, (16)

and

D > 0 (17)

are satisfied.

The condition given by Eq. (14) is related to the so-called cooperation facilitator
assumed in a previous model (Mobilia 2012) as follows. Consider a hypothetical
infinite population in which almost all players select A, i.e., y ≈ 1. Then, the payoff
that a player with strategy A gains by being matched with the other ordinary players
and zealous players is equal to (m + 1)a. The payoff that a player with strategy
B gains by being matched with the other ordinary players, but not zealous players,
is equal to c. Therefore, Eq. (14) represents the condition for the stability of the
homogeneous population of strategy A against invasion by B when zealous players
somehow contribute to the payoff of ordinary A players and not to that of ordinary B
players. Such a zealous player is equivalent to the cooperation facilitator assumed in
Mobilia (2012).

In the corresponding model without zealots, there are four scenarios: A dominates
B (Fig. 1d), B dominates A (Fig. 1e), a mixture of A and B is stable (Fig. 1f), and A
and B are bistable (Fig. 1g) (Antal and Scheuring 2006). The cases shown in Fig. 1d, f,
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and g are analogous to cases (i), (ii), and (iii), respectively, for the game with zealots.
The case shown in Fig. 1e never occurs in the game with zealots because y tends to
increase in the absence of A owing to the fact that unanimity of B among the ordinary
players is a reflecting boundary of our model. In fact, this case corresponds to case
(ii) for the presence of zealots (Fig. 1b). If we set m → 0, we obtain case (i) when
a − c > 0 and b − d > 0, case (ii) when a − c < 0, and case (iii) when a − c > 0 and
b−d < 0. As is consistent with Antal and Scheuring (2006), the classification depends
only on the a − c and b − d values. However, the scenario in which B dominates A
(Fig. 1e) does not happen even with the vanishing density of zealots (i.e., m → 0)
because the unanimity of B remains to be a reflecting boundary as long as there is at
least one zealot.

3.3 Mean fixation time: large N limit

In this section, we analyze the order of the mean fixation time in terms of N when N
is large. We assume that the fraction of zealots in the population, i.e., m = M/N , is
fixed. Because the mean fixation time is by definition the largest for i = 0, i.e., the
initial condition in which all ordinary players select B, we focus on t0. To evaluate t0,
we rewrite Eq. (6) for i = 0 as

t0 =
N−1∑
k=0

1

T +
k qk

N−1∑
j=k

q j . (18)

3.3.1 Case (i)

We obtain

T −
i

T +
i

= 1 − N f (i/N )

(i + M)[(i + M − 1)a + (N − i)b] , (19)

where f (y) (0 ≤ y < 1) is given by Eq. (9). In case (i), f (y) > 0 holds true.
Therefore,

T −
i

T +
i

≤ sup
0≤y<1

{
1 − f (y)

(y + m)[(y + m)a + (1 − y)b]
}

≡ε < 1 (20)

is satisfied for 0 ≤ i ≤ N − 1. By using Eq. (20), we obtain

1

qk

N−1∑
j=k

q j =
N−1∑
j=k

j∏
�=k+1

T −
�

T +
�

≤
N−1∑
j=k

ε( j−k−1) ≤ 1

ε

1

1 − ε
. (21)

Because the left-hand side of Eq. (21) is at least unity, we obtain

t0 ∝
N−1∑
k=0

1

T +
k

. (22)
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The substitution of y = i/N and m = M/N in Eq. (4) yields

1

T +
i

= 1

1 − y
+ (y + m)c + (1 − y)d

(y + m) [(y + m)a + (1 − y)b]
. (23)

In particular, we obtain

1

T +
i

≈ 1

1 − y
(y ≈ 1). (24)

Equation (24) implies that

t0 ∝ N ln N . (25)

This result coincides with the previous result for the absence of zealots (Antal and
Scheuring 2006).

3.3.2 Case (ii)

In Case (ii), T +
i − T −

i > 0 for 0 ≤ i < N y∗
1 and T +

i − T −
i < 0 for N y∗

1 < i < N .
Therefore, qi takes the minimum at i ≈ N y∗

1 . We denote the value of i that satisfies
i < N y∗

1 and qi ≈ qN−1 by i∗. Such an i∗ exists if q0 ≥ qN−1. If q0 < qN−1,

we regard that i∗ = 0. Using the relationship qi = [
q̃(i/N )

]N for a function q̃(y)

(0 ≤ y < 1) (Antal and Scheuring 2006) (also see Appendix C), we obtain

t0 =
N−1∑
k=0

1

T +
k qk

N−1∑
j=k

q j

∼
N−1∑
k=0

1

T +
k qk

max{qk, qN−1}

∼
N−1∑
k=i∗

qN−1

qk

∼√
N

[
q̃(1)

q̃(y∗)

]N

, (26)

where

q̃(y∗) = min
0≤y<1

q̃(y). (27)

To derive the last line in Eq. (26), we used the steepest descent method (Antal and
Scheuring 2006) (also see Appendix D).

Equations (23) and (24) imply that 1/T +
k in Eq. (26) is safely ignored near the

singularity at y ≈ 1 because it would contribute at most ∝ N ln N to the fixation time.
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Fig. 2 The exponent γ for the
mean fixation time [Eq. (28)]
plotted against the density of
zealots m for the prisoner’s
dilemma game with a = 1,
b = 0, c = 1.2, and d = 0 (solid
line) and the snowdrift game
with a = β − 0.5, b = β,
c = β − 1, d = 0, with β = 1.5
(dotted line). We calculated γ on
the basis of Eqs. (26), (27), and
(55)

0 0.1 0.2 0.3 0.4 0.5
0

0.03

0.06

0.09

0.12

0.15

m

Therefore, we obtain

t0 ∝ √
N exp(γ N ), (28)

where γ > 0 is a constant that depends on a, b, c, d, and m. The dependence of γ on
m is shown in Fig. 2 for sample payoff matrices for the prisoner’s dilemma game (solid
line) and snowdrift game (dotted line). For both games, γ monotonically decreases
with m, implying that the fixation time decreases with m. In particular, γ is equal to
zero, which corresponds to t0 ∝ N ln N , when m is larger than a threshold value.

3.3.3 Case (iii)

In this case, qi takes a local minimum at i = N y∗
1 and a local maximum at i = N y∗

2 .
Therefore, behavior of the random walk in the range 0 ≤ i < N y∗

2 is qualitatively the
same as that for case (ii), and that in the range N y∗

2 < i < N is qualitatively the same
as that for case (i). Because the former part makes the dominant contribution to the
fixation time, the scaling of the mean fixation time is given by Eq. (28).

Case (iii) occurs when strategy A is disadvantageous when it is rare and advanta-
geous when it is frequent. The coordination game provides such an example (Sect. 5.4).

3.3.4 Summary and the borderline case

In summary, the mean fixation time in the limit of large N is given by t0 ∝ N ln N
in case (i) and t0 ∝ √

N exp(γ N ) (γ > 0) in cases (ii) and (iii). For the parameter
values on the boundary between the two scaling regimes, the same arguments as those
for the model without zealots (Antal and Scheuring 2006) lead to t0 ∝ N 3/2.

4 Dependence of the mean fixation time on the selection strength

We examine the influence of the selection strength, denoted by w, on the mean fixation
time. To this end, we redefine the fitness to an A and B player by 1 − w + w fi and
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1 − w + wgi , respectively, where fi and gi are given by Eqs. (2) and (3) (e.g., Nowak
et al. 2004; Nowak 2006). Consequently, we replace the payoff matrix given by Eq. (1)
by

( A B

A 1 − w + wa 1 − w + wb
B 1 − w + wc 1 − w + wd

)
. (29)

Equation (1) is reproduced with w = 1.
For sufficiently weak selection, we obtain t0 ∝ N ln N , i.e., case (i), regardless of

the payoff matrix. To prove this statement, we note that, by using the payoff matrix
shown in Eq. (29), condition c < (m + 1)a in the case of w = 1 is generalized to

c < (m + 1)a + m

(
1

w
− 1

)
. (30)

Therefore, if the original game in the case of w = 1 belongs case (ii), i.e., c > (m+1)a,
the game belongs to case (i) or (iii) (Table 1) if Eq. (30), or equivalently,

w < w1 ≡ m

c − (m + 1)a + m
(31)

is satisfied. For a fixed payoff matrix, w1 monotonically increases with m, consistent
with the intuition that existence of zealots would lessen the fixation time.

Next, the sign of a − b − c + d is not affected by the selection strength. Therefore,
we assume a − b − c + d > 0 and prove that a condition for case (iii), i.e., Eq. (17), is
violated with a sufficiently small w. Because the value of ỹ given by Eq. (10) is also
unaffected by w, we start with assuming 0 < ỹ < 1, which is a necessary condition
for case (iii) [Eq. (16); see Appendix B]. The condition D < 0 in the case of w = 1,
where D is defined by Eq. (11), is generalized to

wD − 4(1 − w)m(m + 1)(a − b − c + d) < 0. (32)

Because the condition imposed on D, which distinguishes cases (i) and (iii), is
relevant only for a − b − c + d > 0 (Table 1), Eq. (32) is satisfied for an arbitrary
payoff matrix if

w < w2 ≡ 4m(m + 1)(a − b − c + d)

D + 4m(m + 1)(a − b − c + d)
. (33)

Therefore, case (iii) is excluded with a sufficiently small w value.
The threshold value of w below which t0 ∝ N ln N , which we denote by wc, is

given by

wc =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

min{w1, w2, 1} (w1 > 0, w2 > 0),

min{w1, 1} (w1 > 0, w2 < 0),

min{w2, 1} (w1 < 0, w2 > 0),

1 (w1 < 0, w2 < 0).

(34)
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We can alternatively introduce the selection strength by replacing Eqs. (2) and (3)
to redefine the fitness by

fi = exp

[
β

(i + M − 1)a + (N − i)b

N + M − 1

]
(35)

and

gi = exp

[
β

(i + M)c + (N − i − 1)d

N + M − 1

]
, (36)

where β is the selection strength (Traulsen et al. 2008). In Appendix E, we show that
qualitatively the same result holds true in the sense that there is a threshold value of β

below which the fixation is fast irrespective of the a, b, c, d, and m values. It should be
noted that, with Eqs. (35) and (36), a, b, c, and d are allowed to take negative values.

5 Examples

We compare the mean fixation time for some games with that for the neutral game,
i.e., a = b = c = d > 0. In the absence of zealots, the neural game yields T +

i = T −
i

(1 ≤ i ≤ N − 1). The random walk is unbiased, and the so-called mean conditional
fixation time is equal to N (N −1) (Antal and Scheuring 2006). The mean conditional
fixation time is defined as the mean fixation time starting from state i = 1 under the
condition that the absorbing state at i = N , not i = 0, is reached.

The neutral game in the presence of zealots yields T +
0 > T −

0 = 0 and T +
i /T −

i =
(i + M)/ i (1 ≤ i ≤ N − 1). Therefore, the random walk is biased toward i = N for
all i . More precisely, we obtain

t0 = N (N + M)
∑

0≤k≤i≤N−1

i !(k + M)!
k!(i + M)!

1

(N − i)(i + M)
. (37)

As in Antal and Scheuring (2006), we say that fixation is fast (slow) if t0 is smaller
(larger) than the value given by Eq. (37). It should be noted that t0 ∝ N ln N for the
neutral game because it corresponds to w = 0 < wc.

5.1 Constant selection

As a first example, consider the case of frequency-independent selection such that A
and B are equipped with fitness r and 1 (under w = 1), respectively. When a = b = r
and c = d = 1, the threshold selection strength below which t0 ∝ N ln N , i.e., case
(i), holds true is given by

wc =
⎧⎨
⎩

m
(m+1)(1−r)

(
r ≤ 1

m+1

)
,

1
(

r ≥ 1
m+1

)
.

(38)
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If w > wc, case (ii) occurs. Even if A is disadvantageous to B, A fixates fast with
the help of zealots regardless of the selection strength if 1/(m + 1) < r < 1. This
condition is more easily satisfied when m is larger.

5.2 Prisoner’s dilemma game

Consider the prisoner’s dilemma game with a standard payoff matrix given by a = 1,
b = 0, c = T , and d = 0, where T > 1. Strategies A and B represent cooperation
and defection, respectively. It should be noted that a − b − c + d < 0. With a general
selection strength, the conditions derived in Sect. 3.2 imply that t0 ∝ N ln N , i.e.,
case (i), if T < 1 + m/w, and t0 ∝ √

N exp(γ N ) with case (ii) if T > 1 + m/w.
This condition coincides with that for the dominance of cooperators in the case of the
infinite population (Masuda 2012).

The mean fixation time with w = 1 and m = 0.2 obtained by direct calculations
of Eq. (18) is shown in Fig. 3a. In this and the following figures, the t0 values are
those normalized by that for the neutral game [Eq. (37)]. The behavior of t0 is qual-
itatively different according to whether T is larger or smaller than 1 + m/w = 1.2.
If T < 1.2, the ratio of t0 for the prisoner’s dilemma game to t0 for the neutral game
seems to approach a constant as N → ∞. This is consistent with case (i). In contrast,
if T > 1.2, t0 grows rapidly, which is consistent with case (ii). To be more quantita-
tive, 400

√
N exp(γ N ) divided by the t0 value for the neutral game is shown by the

dashed line in Fig. 3a. It should be noted that 400 is a constant for fitting and that γ

value is theoretically determined as described in Sect. 3.3.2. The theory (dashed line)
agrees well with the exact numerical results (thinnest solid line). We remark that the
normalized t0 behaves non-monotonically in N ; it takes a minimum at an intermediate
value of N .

Next, to examine the effect of the selection strength, we set T = 1.2 and m = 0.1.
The mean fixation time as a function of N and w is shown in Fig. 3b. Equation (34)
implies that t0 ∝ N ln N when w < wc = 0.5. Consistent with this result, t0 grows
fast as a function of N when w is large (i.e., w = 0.7 and 1). In particular, for w = 1,
400

√
N exp(γ N ) normalized by the t0 value for the neutral game (dashed line in

(a) (b) (c)
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Fig. 3 The normalized mean fixation time for the prisoner’s dilemma game as a function of N . We set
a = 1, b = 0, c = T , and d = 0. In a, we set m = 0.2 and w = 1. In b, we set T = 1.2 and m = 0.1. In
c, we set T = 1.2 and w = 1. The dashed lines represent 400

√
N exp(γ N ) divided by the t0 value for the

neutral game
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Fig. 3b) agrees well with the exact results (thin solid line). For small w (i.e., w = 0.4),
t0 seems to scale with N ln N (thick solid line).

Figure 3c shows the dependence of t0 on N for different densities of zealots (i.e.,
m). It should be noted that the baseline t0 value derived from the neutral game depends
on the value of m. Because we set T = 1.2 and w = 1 in Fig. 3c, the threshold value
of m is equal to 0.2. In fact, the normalized t0 diverges according to ∝ √

N exp(γ N )

when m = 0.1 (dashed line and thick solid line), whereas it seems to converge to a
constant value when m = 0.3 (thin solid line).

Figure 3 indicates that t0 for the prisoner’s dilemma game is always larger than that
for the neutral game (i.e., the normalized t0 is larger than unity). This is consistent
with the intuition that cooperation is difficult to attain in the prisoner’s dilemma game
as compared to the neutral game.

Finally, consider the symmetrized donation game, which is another standard form
of the prisoner’s dilemma game, given by a = b′ − c′, b = −c′, c = b′, and d = 0,
where b′ is the benefit, and c′(< b′) is the cost. For the Moran process to be well-
defined, we require 1 − w + wb ≥ 0, i.e., w < 1/(1 + c′). For this payoff matrix, we
obtain

wc =
⎧⎨
⎩

m
m−b′+(1+m)c′

(
b′
c′ ≤ m+1

m

)
,

1
(

b′
c′ ≥ m+1

m

)
.

(39)

Fixation occurs fast for a large benefit-to-cost ratio, large m, or small selection strength.

5.3 Snowdrift game

In this section, we examine the snowdrift game (Maynard Smith 1982; Sugden 1986;
Hauert and Doebeli 2004) defined by a = β−0.5, b = β−1, c = β, and d = 0, where
β > 1. Strategies A an B are identified as cooperation and defection, respectively.
Each player is tempted to defect if the other player cooperates, as in the prisoner’s
dilemma game. However, different from the prisoner’s dilemma game, a player is
better off by cooperating if the partner defects; mutual defection is the worst outcome.
In the infinite well-mixed population without zealots, the game has the unique mixed
Nash equilibrium in which the fraction of cooperation is equal to (2β − 2)/(2β − 1).

Numerical evidence for the replicator dynamics, corresponding to an infinite pop-
ulation, suggests that cooperation is dominant if m is large or w is small (Masuda
2012). For the finite population, we obtain

wc =
{

2m
3m−2mβ+1

(
β ≤ m+1

2m

)
,

1
(
β ≥ m+1

2m

)
.

(40)

If w < wc, we obtain t0 ∝ N ln N , i.e., case (i). If w > wc, we obtain t0 ∝√
N exp(γ N ) with case (ii). A large value of β or m makes the fixation time smaller.

This result makes sense because a large β generally favors cooperation.
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Fig. 4 Mean first-passage time
for the coordination game. We
set N = 200, a = d = 1,
b = c = 0, m = 0.2, and w = 1
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5.4 Coordination game

The coordination game given by a = d > 0 and b = c = 0 has two pure Nash
equilibria in the infinite well-mixed population without zealots. For a finite population
in the presence of zealots, Eq. (34) yields

wc =
⎧⎨
⎩

8m(m+1)

a(−4m2−4m+1)+8m(m+1)

(
0 ≤ m ≤

√
2−1
2

)
,

1
(√

2−1
2 ≤ m ≤ 1

)
.

(41)

If w < wc, we obtain t0 ∝ N ln N , i.e., case (i). It should be noted that any strength of
selection 0 ≤ w ≤ 1 yields t0 ∝ N ln N if there are sufficiently many zealots, similar
to the game with constant selection, prisoner’s dilemma game, and snowdrift game.
If w > wc, we obtain t0 ∝ √

N exp(γ N ) with case (iii).
The mean first-passage time from state 0 (i.e., all ordinary players select B) to

state i , i.e.,
∑i−1

j=0 σ j , is shown in Fig. 4. It should be noted that t0 is equal to this
first-passage time to exit i = N . We set N = 200, a = d = 1, b = c = 0, m = 0.2,
and w = 1. Equation (41) implies wc = 48/49 for these parameter values. Because
w = 1 > wc, we obtain case (iii).

The first-passage time increases slowly as i increases when i is small. It rapidly
increases with i for intermediate values of i , Once the random walker passes the critical
i value, it feels a positive bias such that the first-passage time only gradually increases
with i for large i . The values of i that separate the three regimes are roughly consistent
with the analytical estimates y∗

1 = 0.1 and y∗
2 = 0.2 [Eqs. (12), (13)]. It should be

noted that the first-passage time shows representative behavior of case (iii) although
w is only slightly larger than wc.

6 Discussion

We extended the results for the fixation time under the Moran process (Antal and
Scheuring 2006) to the case of a population with zealous players. Similar to the case
without zealots (Antal and Scheuring 2006), we identified three regimes in terms
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of the payoff matrix, number of zealots, and selection strengths. In one regime, the
fixation time is small (i.e., ∝ N ln N ). In the other two regimes, it is large (i.e.,
∝ √

N exp(γ N ) with γ > 0). We illustrated our results with representative games
including the prisoner’s dilemma game, snowdrift game, and coordination game.

Zealots have several impacts on evolutionary dynamics in finite populations. First,
fixation of one strategy A always occurs with zealots because we assumed that all
zealots permanently take A. Second, there is a case in which fixation is fast if the
fraction of A players is sufficiently large, whereas fixation is slow if the fraction of
A is small. This scenario occurs for the coordination game. In the absence of zealots,
the same game shows bistability such that the fixation to the unanimity of A or that of
B occurs fast (Antal and Scheuring 2006). Third, for a selection strength smaller than
a threshold value, the fixation is fast for any payoff matrix. In the absence of zealots,
the dependence of the mean fixation time on N for large N values is completely
determined by the signs of a −c and b−d (Antal and Scheuring 2006). Therefore, the
scaling of the mean fixation time on N is independent of the selection strength because
manipulating the selection strength does not change the sign of the effective a − c or
b − d value. If the payoff matrix is given in the slow fixation regime, the fixation is
exponentially slow even for a small selection strength. In contrast, in the presence of
zealots, slow fixation can be accelerated if we lessen the selection strength.

Mobilia examined the prisoner’s dilemma game with cooperation facilitators
(Mobilia 2012). A cooperation facilitator was assumed to cooperate with coopera-
tors and not to play with defectors. The cooperation facilitator and zealous cooperator
in the present study are common in that they never change the strategy. However,
they are different. First, zealous cooperators are embedded in a well-mixed population
such that they myopically cooperate with defectors as well as cooperators. Second,
the ordinary players may imitate the zealous cooperator’s strategy (i.e., cooperation).
In contrast, players do not imitate the cooperation facilitator’s strategy (i.e., coopera-
tion) in Mobilia’s model. As a consequence, cooperation does not always fixate in his
model.

Examination of the case of imperfect zealots, in which zealots change the strategy
with a small probability (Masuda 2012), warrants future work.
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Appendix A: Derivation of Eq. (6)

Denote by Pi (t) the probability that the random walker starting from state i at time
0 is absorbed to state N at time t . The normalization is given by

∑∞
t=0 Pi (t) = 1. It

should be noted that PN (0) = 1 and PN (t) = 0 (t ≥ 1). The mean fixation time when
i ordinary players initially select strategy A is given by
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ti =
∞∑

t=0

t Pi (t). (42)

It should be noted that tN = 0.
Pi (t) satisfies the recursion relation given by

Pi (t) = T −
i Pi−1(t − 1) + (1 − T −

i − T +
i )Pi (t − 1) + T +

i Pi+1(t − 1). (43)

By multiplying both sides of Eq. (43) by t and taking the summation over t , we obtain

ti = T −
i ti−1 + (1 − T −

i − T +
i )ti + T +

i ti+1 + 1. (44)

In terms of σi ≡ ti − ti+1, Eq. (44) can be rewritten as

T −
i σi−1 − T +

i σi + 1 = 0. (45)

The solution of Eq. (45) is given by

σi = σ0qi + qi

i∑
k=1

1

T +
k qk

, (46)

where 0 ≤ i ≤ N − 1 and qi is given by Eq. (7).
We set i = 0 in Eq. (44) and use T −

0 = 0 to obtain

t0 = (1 − T +
0 )t0 + T +

0 t1 + 1. (47)

Therefore, we obtain

σ0 = t0 − t1 = 1

T +
0

. (48)

Using Eq. (48), we reduce Eq. (46) to

σi = qi

i∑
k=0

1

T +
k qk

. (49)

The mean fixation time is given by

ti =
N−1∑
j=i

σ j + tN

=
N−1∑
j=i

q j

j∑
k=0

1

T +
k qk

. (50)
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Appendix B: Classification of the deterministic dynamics induced by the biased
random walk

B.1 When a − b − c + d < 0

We obtain d2 f (y)/dy2 < 0 for a − b − c + d < 0. Because

f (0) = m2a + mb > 0, (51)

f (1) = (m + 1)2a − (m + 1)c, (52)

where we used the assumption a > 0 in Eq. (51), we distinguish the following two
cases. If c < (m + 1)a, f (y) > 0 is satisfied for 0 ≤ y ≤ 1, yielding case (i) in the
main text. If c > (m + 1)a, a certain y∗

1 (0 < y∗
1 < 1) exists such that f (y) > 0 for

0 ≤ y < y∗
1 , and f (y) < 0 for y∗

1 < y ≤ 1. Therefore, case (ii) occurs.

B.2 When a − b − c + d > 0

We obtain d2 f (y)/dy2 > 0 for a − b − c + d > 0. In this situation, Eq. (51) holds
true.

If f (1) < 0, i.e., c > (m+1)a, a certain y∗
1 (0 < y∗

1 < 1) exists such that f (y) > 0
for 0 ≤ y < y∗

1 , and f (y) < 0 for y∗
1 < y ≤ 1. Therefore, case (ii) occurs.

Suppose that f (1) > 0, i.e., c < (m + 1)a. To analyze this case, let us write

f (y) = (a − b − c + d)(y − ỹ)2 + m2a + mb − [2ma + (1 − m)b − mc − d]2

4(a − b − c + d)
,

(53)

where

ỹ = −2ma + (1 − m)b − mc − d

2(a − b − c + d)
. (54)

(i) If ỹ ≤ 0, i.e., 2ma + (−m + 1)b − mc − d ≥ 0, we obtain f (y) ≥ f (0) > 0 for
y ≥ 0. Therefore, case (i) occurs.

(ii) If ỹ ≥ 1, i.e., −(2m+2)a+(m+1)b+(m+2)c−d ≥ 0, then f (y) ≥ f (1) > 0,
yielding case (i).

(iii) If 0 < ỹ < 1, we have the following two subcases:
(a) If D = [2ma + (1 − m)b − mc − d]2 − 4m(ma + b)(a − b − c + d) > 0,

f (y) = 0 has two solutions 0 < y∗
1 < y∗

2 < 1. In the deterministic dynamics
driven by the bias T +

i − T −
i , y∗

1 and y∗
2 are stable and unstable, respectively.

Therefore, case (iii) occurs.
(b) If D ≤ 0, we obtain f (y) ≥ 0 for all 0 ≤ y < 1, where the equality holds

true only when D = 0 and y = ỹ. Therefore, case (i) occurs.
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B.3 When a − b − c + d = 0

The quadratic term in f (y) disappears when a − b − c + d = 0. The classification of
the dynamics in this case coincides with that for a − b − c + d < 0.

Appendix C: Derivation of q̃( y)

To derive the relationship qi = [
q̃(i/N )

]N , we write

qi = exp

(
i∑

k=1

ln
T −

k

T +
k

)

= exp

{
i∑

k=1

ln
k [(k + M)c + (N − k − 1)d]

(k + M) [(k + M − 1)a + (N − k)b]

}

≈ exp

⎧⎨
⎩N

y∫
0

ln
y′ [(y′ + m)c + (1 − y′)d

]
(y′ + m) [(y′ + m)a + (1 − y′)b]

dy′
⎫⎬
⎭ , (55)

where y = i/N and y′ = k/N . Because the integral on the right-hand side of Eq. (55)
is independent of N , we obtain qi = [

q̃(y)
]N . It should be noted that q̃(0) = 1 is

consistent with q0 = 1.

Appendix D: Steepest descent method

As done in Antal and Scheuring (2006), we use the steepest descent method to evaluate∑N−1
k=i∗(qN−1/qk) in Eq. (26) as follows:

N−1∑
k=i∗

qN−1

qk
∼

N−1∑
k=i∗

[
q̃(1)

q̃(k/N )

]N

∼N

1∫
i∗
N

[
q̃(1)

q̃(y′)

]N

dy′

=N

[
q̃(1)

q̃(y∗)

]N 1∫
i∗
N

exp

⎡
⎣−

ln q̃(y′)
q̃(y∗)
1
N

⎤
⎦ dy′ (56)

where q̃(y∗) = min0≤y<1 q̃(y). We approximate the integral by a Gaussian integral
to obtain

∫
exp

[
− F(y′)

λ

]
dy′ ≈

√
2πλ

F ′′(y∗)
exp

[
− F(y∗)

λ

]
(57)
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with F(y′) = ln
[
q̃(y′)/q̃(y∗)

]
and λ = 1/N such that

N−1∑
k=k∗

qN−1

qk
∼ √

N

[
q̃(1)

q̃(y∗)

]N

. (58)

Appendix E: Weak selection introduced via an exponential function leads to fast
fixation

Assume that the fitness of an A and B player is given by Eqs. (35) and (36), respectively.
Then, we obtain

T −
i

T +
i

= igi

(i + M) fi

= exp

{
β

[(i + M)c+(N − i − 1)d]−[(i + M − 1)a+(N − i)b]

N + M − 1
+ln

i

i + M

}
.

(59)

If T −
i /T +

i < 1, i.e.,

β
[(i + M)c + (N − i − 1)d] − [(i + M − 1)a + (N − i)b]

N + M − 1
+ ln

i

i + M
< 0

(60)

holds true for any i (1 ≤ i ≤ N −1) and N , the fixation occurs fast (i.e., t0 ∝ N ln N ).
By substituting y = i/N and m = M/N in Eq. (60) and ignoring O(N−1) terms, we
obtain

β
(x + m)(c − a) + (1 − x)(d − b)

1 + m
< ln

x + m

x
. (61)

Because the right-hand side of Eq. (61) is positive, there exists βc > 0 such that
t0 ∝ N ln N when 0 ≤ β < βc. It should be noted that, in contrast to the assumption
throughout the present article, a, b, c, and d are allowed to be negative in the present
analysis because fi and gi given by Eqs. (35) and (36) are positive irrespective of the
a, b, c, and d values.
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