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Abstract

Background: Hypoxic ischaemic encephalopathy (HIE) in newborns can cause significant long-term neurological disability.
The insult is a complex injury characterised by energy failure and disruption of cellular homeostasis, leading to
mitochondrial damage. The importance of individual metabolic pathways, and their interaction in the disease process is not
fully understood. The aim of this study was to describe and quantify the metabolomic profile of umbilical cord blood
samples in a carefully defined population of full-term infants with HIE.

Methods and Findings: The injury severity was defined using both the modified Sarnat score and continuous multichannel
electroencephalogram. Using these classification systems, our population was divided into those with confirmed HIE
(n = 31), asphyxiated infants without encephalopathy (n = 40) and matched controls (n = 71). All had umbilical cord blood
drawn and biobanked at 280uC within 3 hours of delivery. A combined direct injection and LC-MS/MS assay (AbsolutIDQ
p180 kit, Biocrates Life Sciences AG, Innsbruck, Austria) was used for the metabolomic analyses of the samples. Targeted
metabolomic analysis showed a significant alteration between study groups in 29 metabolites from 3 distinct classes
(Amino Acids, Acylcarnitines, and Glycerophospholipids). 9 of these metabolites were only significantly altered between
neonates with Hypoxic ischaemic encephalopathy and matched controls, while 14 were significantly altered in both study
groups. Multivariate Discriminant Analysis models developed showed clear multifactorial metabolite associations with both
asphyxia and HIE. A logistic regression model using 5 metabolites clearly delineates severity of asphyxia and classifies HIE
infants with AUC= 0.92. These data describe wide-spread disruption to not only energy pathways, but also nitrogen and
lipid metabolism in both asphyxia and HIE.

Conclusion: This study shows that a multi-platform targeted approach to metabolomic analyses using accurately
phenotyped and meticulously biobanked samples provides insight into the pathogenesis of perinatal asphyxia. It highlights
the potential for metabolomic technology to develop a diagnostic test for HIE.
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Introduction

Hypoxic ischaemic encephalopathy (HIE) occurs in 2 per 1000

deliveries [1], and causes 1 million neonatal deaths globally per

year [2]. The hypoxic ischaemic (HI) insult is a complex injury,

characterised by biphasic depletion in high energy phosphates.

ATP levels initially decrease concurrently with the insult, recover

following resuscitation, only to become depleted hours later,

producing a secondary energy failure [3]. This secondary energy

failure has been shown to be related to long-term outcome, and it

is this step that current interventions, such as therapeutic

hypothermia, attempt to attenuate [4,5].

Therapeutic hypothermia improves outcome in neonates with

moderate and severe HIE if initiated in the first 6 hours [5].

However the ability to recognise and diagnose those who would

benefit from therapy is not always possible within this time period.

Current standard methods to identify those at risk of HIE, are

known to be unreliable [6,7], and clinical grading systems such as

the Sarnat score are most accurate beyond the time period for

initiation of treatment [5,8,9].

Alternate methods of early assessment include neuro-imaging

and neurophysiological monitoring, however early MRI is often

impractical and can underestimate the degree of injury sustained

[10]. Cotside neonatal electroencephalogram (EEG) is reliable in

grading encephalopathy and an excellent predictor of long term

outcome [11]. However a highly specialised skill set is required,

which is rarely available to the neonatologist in the acute setting.

Although amplitude integrated EEG (aEEG) is more widely used
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by clinicians, its interpretation is user dependent [12], and most

neonatologists report they are not confident in their own

interpretive ability [13]. This lack of a widely available objective

measure has created the need for new markers of injury severity, to

ensure all infants receive appropriate care.

The above findings have led to interest in blood based

biomarkers for both the early grading of injury and the prediction

of long-term outcome [14,15,16]. To-date most of this work has

focused on targeted analysis of individual proteins [16,17,18,19].

These proteins are chosen based upon our current understanding

of the disease mechanism in HIE, but as mentioned above this is

a complex disease for which the exact mechanism of which has yet

to be fully elucidated. The injury is known to be multifactorial,

involving energy depletion, the accumulation of intracellular Ca++

and excitatory amino acid release secondary to membrane

depolarisation and failure of ATP dependent ion pumps, and

the production of reactive oxygen species, culminating in

mitochondrial membrane permeability and cell death [1,20].

Therefore analysis of an individual protein in isolation over

simplifies the injury that occurs. Such methods lack the adaptive

potential of a systems-based approach, being unable to incorporate

any dynamic interaction into a predictive model, and provide

limited further insight into the disease mechanism.

Metabolomics is a systems biology strategy for exploring the low

molecular weight biochemicals (metabolites) present in the

metabolome of an organism [21]. It provides a description of

the metabolic pathways activated, and their relation to one

another, therefore affording a systems biology description of the

disease mechanism leading to secondary energy failure, instead of

isolated views of the process. Metabolomics details the final

metabolic phenotype of the HI injury, reflecting the impact and

interaction of the individual’s genomic, and transcriptomic input,

as well as the HI injury sustained. In addition to further

elucidating the disease process, a biochemical signature of HIE

could be used to recognise injury severity. A number of animal

metabolomic models of perinatal asphyxia have been recently

published, highlighting the potential benefits of metabolomic

analysis in human neonatal studies [22,23,24,25].

To date no human studies of serum metabolomic analysis in

neonatal HIE have been published. The aim of this study was to

describe and quantify the metabolomic profile of umbilical cord

blood samples in a carefully defined group of full term infants with

perinatal asphyxia and HIE, using strict standard operating

procedures for the collection, processing and analysis of samples.

Materials and Methods

Patient Selection
The study was conducted from May 2009 to June 2011 in

a single maternity hospital with 9000 deliveries per annum. Ethical

approval was obtained from the Clinical Research Ethics

committee of the Cork Teaching Hospitals. Infants over 36 weeks

gestation were eligible for inclusion if they had one or more of

these previously described risk factors for asphyxia [26,27,28,29];

an arterial cord pH ,7.1, 5 minute Apgar score #6, or

resuscitation at delivery required intubation. Parents of neonates

meeting inclusion criteria were approached and written informed

consent was obtained. Demographic and clinical details were

prospectively recorded. Each infant had a HIE grade based on the

modified Sarnat staging system assigned at 24 hours of age by

a dedicated research fellow (BW) [8,30]. The decision to initiate

therapeutic hypothermia was at the clinicians’ discretion. When

infants were cooled, total body hypothermia was used, cooling the

infant to 33–34 degrees Celsius for 72 hours, as per the TOBY

registry protocols (https://www.npeu.ox.ac.uk/tobyregister). The

cases were divided into those with HIE, and those with

biochemical or clinical risk of asphyxia without clinical enceph-

alopathy (Asphyxia). Short term outcome was assessed using

a standardised neurological assessment performed on day 3 and

discharge [31].

All case infants had EEG monitoring during the first 24 hours of

life. The EEG was commenced as soon as possible following

delivery. Silver-silver chloride EEG electrodes were applied to the

scalp at F3, F4, C3, C4, T3, T4, O2, O1 and Cz (according to the

international 10 - 20 system of electrode placement, modified for

neonates). The EEG was recorded using the NicOne video-EEG

system (Carefusion, Madison, WI). The entire video - EEG was

analyzed by an experienced neonatal electroencephalographer.

The background EEG was graded as mild, moderate or severe

according to a modification of a standardized HIE grading system

[32], which we have previously described [11]. Electrographic

seizures were identified, if there was a stereotyped repetitive

discharge on one or more channels, with a clear evolution, that

lasted for greater than 10 seconds.

A matched control population was recruited over the same

period as part of an ongoing birth cohort study (The BASELINE

Study www.baselinestudy.net). The controls and cases were

matched for both infant and maternal demographic parameters

including; gestational age, gender, birth weight and centile,

method of delivery, maternal ethnicity, maternal age, and

maternal body mass index (BMI). Ante-natal parental consent

was obtained for all control infants enrolled. The control

population had no clinical signs of asphyxia, or other medical

issues at delivery. Clinically they were healthy, had normal

examinations, and did not have EEG monitoring.

Sample Collection and Storage
Umbilical cord blood was drawn on all case and control infants

using identical standard operating procedures. 6 ml of umbilical

cord blood was drawn from the cord, and placed in a plain serum

tube within 20 minutes of delivery of the placenta. The Serum

tube was allowed to clot for 30 minutes at 4uC. It was then

centrifuged at 24006g for 10 minutes at 4uC. The serum was

pipetted into a second spin tube, and centrifuged for a further 10

minutes at 34006g at 4uC. Following the second spin, the serum

was aliquoted into lithium heparin microtubes and stored at

280uC until analysis. The time from birth to samples being placed

within the 280uC freezer was always under 3 hours.

Metabolomic Analysis
Sample preparation and metabolomic analyses were performed

at The Metabolomics Innovation Centre (TMIC), University of

Alberta, Canada. A targeted quantitative metabolomics approach

using a combined Direct Flow Injection (DFI-) and liquid

chromatography (LC-) MS/MS assay (AbsolutIDQTM p180 kit)

was used for the metabolomic analyses of the samples. The kit is

a commercially available assay from Biocrates Life Sciences AG

(Innsbruck, Austria). This kit assay, in combination with a 4000

QTrap (Applied Biosystems/MDS Sciex, Concord, Ontario,

Canada) mass spectrometer, allowed simultaneous quantification

of 148 metabolites (including 19 Acylcarnitines, 71 Phosphatidyl-

cholines, 10 Lysophosphatidylcholines, 15 Sphingolipids, 21

Amino Acids, and 10 Biogenic Amines). A detailed list of all

analysed metabolites is provided in Table S1. The method

combines the derivatization and extraction of analytes with the

selective mass-spectrometric detection using multiple reaction

monitoring (MRM) pairs. Isotope-labelled internal standards are

integrated into a kit plate filter for metabolite quantification.

Metabolomic Profile of Neonatal HIE
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The AbsoluteIDQTM p180 kit contains a 96 deep-well plate

with a filter plate attached with sealing tape, as well as reagents

and solvents used to prepare the plate assay. The first 14 wells in

each kit are used for standardization and quality control. A

straightforward sample preparation step was used for the assay, as

described in the kit’s user manual. Serum samples were left to thaw

on ice and then vortexed and centrifuged at 13,0006g. A total of

10 ml of supernatant from each serum sample was loaded on a filter

paper placed on top of the kit plate and dried in a stream of

nitrogen. Subsequently, 20 ml of a 5% solution of phenyl-

isothiocyanate was added for derivatization. After incubation,

the filter spots were dried again using an evaporator. Extraction of

the metabolites was then achieved by adding 300 ml methanol

containing 5 mM ammonium acetate. The extracts were obtained

by centrifugation into the lower 96-deep well plate, followed by

a dilution step with 600 ml of the kit’s mass spectrometry running

solvent. The extracts were analyzed using a 4000 QTrap (Applied

Biosystems/MDS Sciex) mass spectrometer. The samples were

delivered to the mass spectrometer by a LC method followed by

a FIA method. MRM detection was used for quantification.

MetIQ software, which is proprietary to Biocrates and included in

the kit, was used to control the entire assay workflow. This

included sample registration to automated calculation of metab-

olite concentrations to the export of data into other data analysis

programs.

As an additional level of quality assurance, and to measure the

precision and repeatability of the metabolite quantification (Table

S1), serum from two of the control patients were repeatedly (and

alternately) introduced into the analysis after every 9th test sample.

This resulted in 16 external quality control samples (8 from each

patient). The remaining test samples were randomly ordered,

stratified by outcome, such that no experimental bias was

introduced by plate location and therefore MS injection order.

All analytical procedures were performed by TIMC in isolation,

blinded to both the identity of the external QCs and the study

outcome groups.

Statistical and Metabolomic Analysis
Statistical comparisons of clinical data between cases and

controls were performed using Student’s t test, Mann–Whitney

test, x2 test or Fisher exact test, as appropriate.

Metabolites measured with more than 20% missing data were

dropped from subsequent statistical analysis. Relative Standard

Deviation (RSD) for the two sets of QC samples was calculated for

each metabolite. Data was then log transformed. Analysis of

covariance was performed comparing each metabolite to each

clinical variable in turn, in order to assess potential bias in the

study design.

For each metabolite reproducibly detected, the null hypothesis

that the means of matched case and control sample populations

were equal was tested using paired Wilcoxon signed rank test.

Correction for multiple comparisons was performed using the

method described by Benjamini and Hochberg [33]. Both p-values

and corrected q-values are reported. The median absolute

difference (mM), and median percentage increase, in paired case

versus control samples was also reported with 95% confidence

intervals.

In order to compare the univariate results from the two arms of

this study (HIE vs. control and asphyxia vs. control) a bi-plot of median

percentage increase for those metabolites significant in either

comparison was constructed. In addition, for the combined sample

populations, Canonical Variate Analysis (CVA) [34] was per-

formed on this set of differentially changing metabolites in order to

visualise the associated multifactorial and correlated discrimina-

tion between all 4 groups.

Multivariate profile-wide predictive models were constructed

using Partial Least Squares Discriminant Analysis (PLS-DA)

[35,36]. For each model, all of the reproducible metabolites for

a given comparison were included. For each metabolite, data were

Figure 1. Flow diagram detailing enrolment of study infants.
doi:10.1371/journal.pone.0050520.g001

Metabolomic Profile of Neonatal HIE

PLOS ONE | www.plosone.org 3 December 2012 | Volume 7 | Issue 12 | e50520



mean centred, and scaled to unit variance [37]. Missing values

were imputed using the k-nearest neighbour method [38]. The

number of latent variables in each model was selected using

stratified 10-fold cross validation, and associated R2 and Q2

statistics calculated. Here, R2, the squared correlation coefficient

between the dependent variable and the PLS-DA prediction,

measures ‘‘goodness-of-fit’’ (a value between zero and one, where

one is a perfect correlation). Q2 provides a measure of ‘‘goodness-

of-prediction’’ and is the averaged correlation coefficient between

the dependent variable and the PLS-DA predictions for the 10-

fold out data sets generated during the cross-validation process.

Further validation was performed to check the robustness of the

final PLS-DA model by comparing it’s R2 value to a reference

distribution of all possible models using permutation testing

(N = 1000) following the standard protocol for metabolomic

studies [39,40]. Here a reference R2 distribution is obtained by

calculating all possible PLS-DA models under random reassign-

ment of the case/control labels for each measured metabolic

profile. If the correctly labelled model’s R2 value is close to the

centre of the reference distribution then the model performs no

better than a randomly assigned model and is therefore invalid.

For all PLS-DA models described here the associated reference

distribution plots are provided, from which an estimate of the

probability of the candidate model randomly occurring can be

estimated. In addition, a receiver operating characteristic (ROC)

curve was determined for each model (including bootstrap 95%

confidence intervals for specified model specificity) such that an

accurate assessment of discriminatory ability could be made [41].

For each PLS-DA model, variable importance values in the

projection (VIP) are computed according to Chong and Jun [42].

Finally, Backward Stepwise Logistic Regression (BSLR) [43]

was performed in order to determine the most parsimonious

model for discriminating between HIE samples and the combined

asphyxia plus normal samples. Covariate corrected ROC analysis

was performed to assess the potential confounding influence of

pertinent clinical variables [41].

All of the statistical analyses were carried out using the Matlab

scripting language (http://www.mathworks.com/), with the ex-

ception of the logistic regression which was performed using

STATA 12.0 (http://www.stata.com/).

Results

Study Population
100 neonates meeting inclusion criteria were recruited to this

study. 29 of these were subsequently excluded (5 had insufficient

cord samples; 16 had no EEG; 5 had missing clinical details; 3 had

Table 1. Demographic Details of Study Population.

HIE Control HIE P Asphyxia Control Asphyxia P

(n = 31) (n =31) (n =40) (n=40)

Gestational Age (wks) 40.3 (1.1) 40.3 (0.9) 0.84 40.1 (1.3) 40.1 (1.1) 0.96

Gender (M/F) 20/11 21/10 0.79 27/13 27/13 1.0

Birth Weight (gm) 3543 (595) 3502 (463) 0.76 3713 (576) 3645 (508) 0.58

Birth Weight Centile 40 (20, 73) 46 (16, 82) 0.92 65 (34, 85) 65 (25, 84) 0.86

Method of Delivery 0.81 1.0

SVD 6 (20%) 8 (26%) 14 (35%) 14 (35%)

Instrumental 15 (48%) 15 (48%) 19 (48%) 19 (48%)

Emergency LSCS 10 (32%) 8 (26%) 6 (15%) 6 (15%)

Elective LSCS 1 (2%) 1 (2%)

Sarnat Score

Severe/Moderate/Mild 6/6/19 … … …

Therapeutic hypothermia 11 … … …

EEG Background

Severe/Moderate/Mild-Normal 8/3/20 … 0/0/40 …

Outcome at discharge

Severe/Mild/Normal 7/4/20 0/0/31 0.001 0/1/39 0/0/40 0.314

1st pH 6.96 (0.18) 7.28 (0.18) ,0.001 7.04 (0.9) 7.22 (0.12) ,0.001

1 minute Apgar score 3 (1, 5) 9 (9, 9) ,0.001 6 (3, 7) 9 (9, 9) ,0.001

5 minute Apgar score 6 (3, 7) 10 (10, 10) ,0.001 8 (6, 9) 10 (9, 10) ,0.001

Maternal Ethnicity 0.08 0.56

Western European 26 (84%) 30 (96.7%) 38 (95%) 39 (97.5%)

African 2 (6.4%)

Indian 3 (9.6%) 1 (3.3%)

Asian 2 (5%) 1 (2.5%)

Maternal Age (yrs) 26.8 (5.0) 29.0 (4.9) 0.32 30.2 (6.3) 30.4 (4.9) 0.57

Maternal BMI kg/m2 25.2 (3.9) 24.0 (4.8) 0.35 26.1 (4.2) 24.2 (3.6) 0.06

Values are mean (SD), median (interquartile range), or n (%).
doi:10.1371/journal.pone.0050520.t001
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an alternate diagnosis [1 perinatal infarction, 1 neuromuscular

disease, 1 sepsis]) leaving a study population of 71, 31 with clinical

HIE, and 40 with asphyxia but not encephalopathic (Figure 1).

Among the 31 infants with clinical HIE, 6 had a severe Sarnat

score, 6 moderate, and 19 mild. In addition, 70 of the 71 cases had

early multichannel-EEG, the 1 infant that did not, was a severe

case of HIE who did not survive beyond the delivery room. The

grade of encephalopathy assigned by early multichannel–EEG

strongly correlated and supported the clinical grade (Spearman’s

correlation coefficient = 0.779, p,0.001). 6 cases with encepha-

lopathy developed electro-clinical seizures, and 5 died. 11 infants

with HIE received therapeutic hypothermia, 1 infant with severe

HIE did not survive to the neonatal unit. 71 healthy matched

control infants were recruited.

There was a strong correlation between Sarnat score and short-

term outcome in infants with HIE (r= 0.884, p,0.001; r= 0.807,

p,0.001; for Amiel-Tison on day 3 and at discharge respectively).

Specifically in all those with severe HIE (n = 6), assessment of

short-term outcome demonstrated a severely abnormal Amiel-

Tison (or death) on day 3 and discharge. 4 infants with moderate

HIE had a severely and 1 a mildly abnormal Amiel-Tison on day

3, which by discharge improved to severely abnormal in 1, mildly

abnormal in 1, and normal in 4. In those with mild HIE the

Amiel-Tison on day 3 was mildly abnormal in 5 and normal in 14,

and by discharge mildly abnormal in 3 and normal in 16. Of the

infants with Asphyxia, 1 had a mildly abnormal Amiel-Tison at

discharge (reduced thumb abduction), all others were normal, and

similarly all of the controls had a normal newborn examination.

The demographic and clinical details are given in table 1. There

were no clinical or laboratory evidence of maternal or neonatal

infection in any of the infants studied.

Umbilical Cord Serum Analysis
148 metabolites were reproducibly measured in serum obtained

from the umbilical cord blood from each of the 142 infants

studied. Analysis of covariance showed that there was no

significant association between any of the measured metabolites

and the potential confounding clinical variables in this study

(gestational age, gender, birth weight and centile, method of

delivery, maternal age and ethnicity, and maternal BMI).

Assessment of the Quality Control measurements revealed an

average Relative Standard Deviation (QCRSD) of 5%, an average

biological signal-to-noise ratio of 23 dB. See Table S1 for details.

Only one metabolite had more than 20% missing values.

Using a critical p-value of ,0.01, 29 metabolites were found

to be significantly different between either asphyxia vs. matched

controls or HIE vs. matched controls (Table 2). Of the 29

significant metabolites, 14 differed significantly in both compar-

isons, 9 differed significantly in only the HIE vs. matched

controls comparison, and 6 differed significantly in only the

asphyxia vs. matched controls comparison. Figure 2 describes

the percentage increase in metabolite concentrations for only

the significant metabolites in either arm of the study. The plot

clearly shows three clusters of metabolite classes. Glyceropho-

Figure 2. A comparison plot of percentage increase in metabolite concentration for metabolites that significantly differed in either
the asphyxia vs. matched control comparison (squares), the HIE vs. matched controls (triangles), or both comparisons (circles).
doi:10.1371/journal.pone.0050520.g002
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spholipids were significantly altered in the Asphyxia versus

Control comparison, Amino Acids significantly altered in the

HIE versus Control comparison and Acylcarnitines were

significantly altered in both comparisons. It is important to

note that whilst the Acylcarnitines cluster was significant in both

comparisons these metabolites are more significantly increased

for the HIE infants compared to the asphyxia infants. Canonical

Variate Analysis of the combined data sets (all 142 infants)

confirms the univariate results (Figure 3). The first canonical

variate (CV1) describes a significant multivariate mean differ-

ence between cases and controls for both HIE and asphyxia

outcomes. The second canonical variate (CV2) describes an

orthogonal and significant multivariate mean difference between

the HIE and asphyxia group but not the control groups. Note

that there was no significant difference between the two control

groups in either CV1 or CV2.

Cross-validated Partial Least Square Discriminant Analysis

(PLS-DA) models for HIE versus matched controls, and asphyxia

versus matched controls, were built using two latent factors (Figure

S1 and Figure S2). The HIE versus matched controls model had

an R2 = 0.59, Q2 = 0.43, and an AUC of 0.96 (95% CI: 0.83–

1.00). The asphyxia versus matched controls model had an

R2 = 0.43, Q2 = 0.23, and an AUC of 0.91 (95% CI: 0.83–0.96).

Permutation testing showed that the probability of any of these

models randomly occurring was less than 0.001 (Figure S1 and

Figure S2). Variable importance plots for both these models

showed similar discriminatory metabolite profiles localised to the

Acylcarnitine, Amino Acid, Glycerophospholipid metabolite

classes (Figure S3).

The data from all infants was then combined, and a PLS-DA

model for HIE versus all other outcomes (asphyxia and both the

control groups) constructed. Once again this model was built

using two latent factors. The HIE model had an R2 = 0.32,

Q2 = 0.22, and an AUC of 0.92 (95% CI: 0.84–0.97) (Figure 4).

Permutation testing showed that the probability of this models

randomly occurring was less than 0.001 (Figure S4). Figure 4

describes the PLS-DA model predictions. The box-plot is

grouped by modified Sarnat score. Here a Sarnat score of

zero is equivalent to the ‘‘asphyxia’’ classification, and Sarnat

score of 1, 2 and 3 represent the 3 levels of HIE severity. For

a fixed specificity of 0.95 the corresponding sensitivity for

predicting HIE (at any level) is 0.75 (95% CI: 0.55–0.88). The

associated variable importance plot shows a discriminatory

metabolite profile consisting of mainly Acylcarnitines and

Amino Acids (Figure 5).

Using the combined infant populations, backward stepwise

logistic regression was performed using the metabolite subset

described in Figure 5 (VIP.1) as a starting point. It was possible to

find a parsimonious model to discriminate HIE from all other

outcomes using only 5 metabolites (Table 3). All 5 metabolites

significantly contributed to the logistic model (p,0.01), thus

minimising the probability of the model fitting to random

multivaraite associations in the data. This model produced an

AUC of 0.92 (95% CI: 0.83–0.96) and for a fixed specificity of

0.95 produced a corresponding sensitivity of 0.72 (95% CI: 0.54–

0.88). The associated ROC curve was not significantly different to

that of the associated PLS-DA model. Figure 6 compares the ROC

curves for all the described PLS-DA models together with the 5-

metabolite logistic regression model.

Finally, covariate corrected ROC analysis was performed to

assess the potential confounding influence of the clinical

variables described in Table 1 (Method of Delivery; Gender;

Figure 3. Canonical Variate Analysis for the combined data sets. Squares = asphyxia cases; Circles =matched asphyxia controls;
Triangles =HIE cases; Diamonds=matched HIE controls. Solid circles = 95% confidence intervals for each group population; Dashed circles = 95%
confidence intervals for the mean of each group.
doi:10.1371/journal.pone.0050520.g003
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Birth Weight; Gestational Age; Maternal Age; Maternal BMI)

on the uncorrected logistic regression predictions described

above. A linear covariate adjusted model was used (STATA:r-

ocreg), together with nonparametric bootstrap AUC estimates.

The adjusted ROC curve produced an AUC of 0.93 (95% CI:

0.81–0.99), which was a marginal, but non-significant, improve-

ment in prediction when compared to the uncorrected model.

Statistical analysis of the parameter values in the linear

adjustment model confirmed that none of the potential

confounding factors had any significant influence on the

uncorrected ROC curve (Table S2).

Discussion

To accommodate the complex multi-factorial nature of neo-

natal hypoxic-ischaemic injury, this study used metabolomic

techniques to describes the biochemical derangement present in

the cord blood of a carefully defined cohort, with clinical and EEG

evidence of HIE.

Figure 4. The predictive scores for a PLS-DA model built to discriminate between HIE versus all other outcomes (asphyxia and both
the control groups) using the complete data set. The PLS score box plot is grouped by Sarnat score. Here a Sarnat score of zero is equivalent to
the ‘‘asphyxia’’ classification, and Sarnat grade of 1, 2 and 3 represent the 3 levels of increasing HIE severity. The model was optimally built using 2
latent factors. The model had an R2 = 0.32, Q2 = 0.22, and an AUC of 0.92 (95% CI: 0.84–0.97). For a fixed specificity of 0.95 the corresponding
sensitivity for predicting HIE (at any level) is 0.75 (95% CI: 0.55–0.88), the corresponding decision boundary is indicated by a dashed line in the
boxplot. Note: the Quality Control samples (repeated injection of serum from two control patients: QC1 & QC2) are projected through the PLS-DA
model and the subsequent predictions give an estimation of model precision.
doi:10.1371/journal.pone.0050520.g004

Figure 5. Variable importance plot for the HIE versus ‘all other outcomes’ PLD-DA model. A VIP score .1 indicates an important
contribution to the model.
doi:10.1371/journal.pone.0050520.g005
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Targeted metabolomic analysis showed a significant increase in

29 of the 148 measured metabolites in the umbilical cord blood of

infants with either asphyxia or HIE compared to matched healthy

controls. Three distinct metabolite classes were disrupted: Amino

Acids, Acylcarnitines, and Phosphatidylcholines (Table 2 &

Figure 2). Of these, a group of 8 amino acids were significantly

increased in neonates with HIE relative to matched controls, but

not in the asphyxia group. While a group of 13 acylcarnitines were

significantly increased in both study groups; however, for the

acylcarnitines the increase was more pronounced in the HIE

population. Canonical Variate Analysis (Figure 3) suggested that

the major disruption in the metabolomic profile is due to asphyxia

severity (CV1), dominated by the acylcarnitines profile; however

there is also an additional degree of orthogonal discrimination

between HIE and asphyxia (CV2).

Given the sporadic nature and lack of antenatal warning for

perinatal asphyxia, it can prove difficult to recruit and collect

suitable samples in these infants. This has lead to multiple studies

of neonatal asphyxia including a heterogeneous population of

mixed gestational age [44,45], and broad inclusion parameters

[46,47]. Recognising the complex nature and multiple potential

aetiologies of this disease, we attempted to remove as many

confounding variables as possible limiting our analyses to term

infants, with the injury carefully defined using both modified

Sarnat score and EEG. The modified Sarnat score was the

primary means used to categorise grade of injury [8,30], as this

reflects standard clinical practice. The EEG was used to validate

these findings as it is also a robust predictor of outcome, and has

the advantage of being able to be assessed blindly [48,49,50].

Given the strong correlation (r= 0.779, p,0.001) between the two

grading systems, and similarly strong correlation between clinical

grade and short-term outcome, we were confident in the accuracy

of the grade assigned for analysis.

The current study is limited by the lack of a separate validation

cohort. This is due to the difficulty in recruitment and collection of

cord blood samples in a timely fashion as discussed above. Despite

this, there is strong supporting evidence for these findings from

a recent animal model [25]. Solberg et al. drew plasma samples at

the start and end of hypoxia in a piglet model, and biobanked the

samples at 270uC pending analysis. The same 148 metabolites as

described in the current study were analysed by Solberg et al.

using the AbsolutIDQ kit p150 (Biocrates Life Sciences AG,

Innsbruck, Austria), plus a further 65 metabolites, including

additional amino acids, biogenic amines, bile acids, oysterols, and

organic acids were analysed using alternate techniques. Of the 148

metabolites analysed in both cohorts, 18 were significantly altered

in the two, all from the acylcarnitine and amino acid metabolite

classes. In all cases of agreement the direction of alteration was the

same in both the animal model and the current study [51]. Given

that Solberg et al. used similar methods for biobanking, identical

methods of analysis, and that metabolites are largely species-

independent, their findings are strongly supportive of the

metabolomic profile described here. However it must be noted

that in the animal model although all cases had perinatal asphyxia,

the severity of brain injury was not quantified. As such the authors

could only discuss their results in relation to asphyxia and not HIE.

Under aerobic conditions, energy production is a complex

process with differing metabolite classes being catabolised through

multiple interacting pathways. For fatty acids catabolism, they are

transported across the inner mitochondrial membrane by carni-

tine, in the form of an acylcarnitine [52]. They are then activated

by the addition of CoA and enter the b-oxidation pathway,

producing FADH2, NADH, and Acetyl-CoA, while the liberated

carnitine is recycled for further transport. The reducing equiva-

lents proceed to enter the electron transport chain, with a net

production of ATP, while the Acetyl-CoA enters the Krebs cycle,

Figure 6. A ROC comparison of all models produced in this
study. Triangle = PLS-DA: HIE versus matched controls, AUC= 0.96
(95% CI = 0.83–1.00); Square = PLS-DA: Asphyxia versus matched con-
trols, AUC=0.91 (0.83–0.96); Diamond= PLS-DA: HIE versus ‘all other
outcomes’ (all metabolites), AUC=0.91 (0.83–0.96); Circle = Logistic
Regression: HIE versus ‘all other outcomes’ (5 metabolites), AUC= 0.92
(0.84–0.97). For clarity the convex-hull ROC curve approximations are
shown. All AUC calculations were made on the actual predicted values.
doi:10.1371/journal.pone.0050520.g006

Table 3. Logistic regression model for HIE versus ‘all other outcomes’: AUC of 0.92 (95% CI: 0.83–0.96) A specificity of 0.95
produced a corresponding sensitivity of 0.72 (95% CI: 0.54–0.88).

Metabolite Class b Std (b) z-score P.|z| b - 95% Conf.

Decenoyl-L-carnitine Acylcarnitines 219.52 20.77 23.8 ,0.001 229.59 29.45

3, 5-Tetradecadiencarnitine Acylcarnitines 12.12 0.78 2.78 0.005 3.58 20.67

PC ae C38:0 Glycerophospholipids 29.83 0.82 22.71 0.007 216.95 22.71

Phenylalanine Aminoacids 17.48 20.76 3.19 0.001 6.74 28.22

Proline Aminoacids 10.22 0.84 4.42 ,0.001 5.69 14.75

constant offset b0 – 292.32 – 23.16 0.002 2149.66 234.98

Standardised parameter values (Std (b)) indicate an equal contribution from all constituent metabolites. Statistical analysis (z-score) of the b values indicated that all the
constituent metabolites significantly contributed to the model.
doi:10.1371/journal.pone.0050520.t003
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with further energy production. Amino acids are used in energy

production by conversion to glucose, ketone bodies, or frequently

key intermediates in the Krebs cycle (e.g. Isoleucine can produce

either Acetyl-CoA, through condensation, or Succinyl-CoA

through transamination) [53,54].

In the event of Hypoxia-ischemia, there is a switch to anaerobic

metabolism, and a breakdown in these normal processes [55]. An

animal model of Hypoxia-ischemia demonstrated that the reduced

rate of b oxidation, likely due to an alteration in the NADH/NAD

and FADH2/FAD ratios, becomes the rate limiting step for fatty

acid metabolism [56]. In animals this results in an increase in

matrix long-chain acyl-CoA and their upstream pre-cursors, the

long-chain acylcarnitines. This increase in levels of acyl-CoA, and

long chain acylcarnitines cause further disruption to oxidative

metabolism, and can be directly toxic. Similarly the disruption of

the Krebs cycle results in an increase in the cycle’s intermediaries

and pyruvate breakdown products [25,27,57,58]. This could result

in an accumulation of their precursor amino acids, as described in

this study. An additional explanation for the increase in the

branched chain amino acids and alanine, found in this study, is

that they are known to act as alternate energy sources, for the

perinatal brain and muscles [59], potentially leading to their

mobilisation under conditions of reduced energy production.

Studies of carnitine, and acylcarnitine profiles, in perinatal

asphyxia using post-natal blood samples (collected from Day 1–7)

have yielded conflicting results [60,61,62]. This is unsurprising as

post-natal samples may be altered secondary to resuscitation [25],

or the infant’s method of feeding, making their analysis unreliable.

The only other study of human cord blood samples was conducted

by Meyburg et al. [63]. The authors profiled healthy term

neonates (n = 70), and found an inverse relationship between

several short and long chain acylcarnitines, and both pH and 5

minute Apgar score. Although Meyburg et al. was looking at

healthy neonates, the inverse relationship described is consistent

with our findings.

In the current study, acylcarnitines were raised in infants with

both asphyxia and HIE relative to controls, while amino acids

were predominantly raised in those with HIE. Wainwright et al.,

hypothesised that high acyl-CoA levels may be ‘‘the earliest and

a cardinal irreversible event in ischemia’’, preceding the formation

of oxygen free radicals and nitric oxide [64]. This is a potential

explanation for the acylcarnitine rise in both case groups found in

this study, implying an earlier alteration in the acylcarnitine profile

following an asphyxia event, than alterations of amino acids.

Wainwright was particularly interested in this possibility, as their

animal model found that carnitine supplementation prior to the

hypoxic event could attenuate the injury sustained in their models

[64,65].

In addition we demonstrate the potential for the metabolic

signature present in the umbilical cord blood to distinguish injury

severity, and therefore the possibility of directing the need for

treatment. The multivariate discriminant analysis models (PLS-

DA) showed clear multifactorial metabolite associations with both

asphyxia and HIE (Figure 5). The PLS-DA model discriminating

HIE from all other outcomes (Figure 4) indicated that the

biomarker signature for HIE has the potential to predict severity of

insult rather than a yes/no binary outcome. The more severe the

modified Sarnat score the more accurate the classification. Using

robust data mining and modelling techniques, we have shown that

the metabolite profile in the cord blood at birth, representing the

latent systems-wide interaction in the metabolome, is sufficient to

produce a robust predictive model for presence of encephalopathy

at 24 hours of age with an AUC of 0.93.

Perinatal asphyxia is a complex disease with a broad spectrum

of injury, dependent on factors such as specific aetiology, duration

of insult, time after injury, and intervention provided. The classical

use of single markers to predict disease does not allow the

adaptability required in such a multi-faceted disease entity, rather

the use of a mutli-factorial model is required to appropriately

define the injury. For this reason in the current study, single

metabolites were not highly significant, while the multi-metabolite

HIE model was highly predictive, and able to distinguish between

all groups. While this PLS-DA model has not been validated in an

independent human cohort, there is much similarity to a previously

described animal model [25].

In summary, we have described the profile of the human

metabolome in neonatal asphyxia for the first time, identifying an

alteration in 29 metabolites from the glycerophospholipid, amino

acid and acylcarnitine classes. Furthermore we have demonstrated

the potential of this metabolic signature at birth, to predict on-

going encephalopathy at 24 hours. With further validation these

metabolites may offer the potential to improve prediction of injury

severity at the time of birth.

Supporting Information

Figure S1 A 10-fold cross-validated PLS-DA model built to

discriminate between HIE versus matched controls using all 148

measured metabolites. (a) PLS-DA predictive scores (circles = HIE;

Squares = Controls;+= QC1; 6= QC2). The associated ROC

curve had an AUC of 0.96 (95% CI: 0.83–1.00). (b) A plot of the

R2 and Q2 values for a range of latent factors. The optimal

number of latent factors to avoid over-fitting was determined to be

equal to 2. The optimal model had an R2 = 0.59 and Q2 = 0.43 (c)

A non-parametric test comparing the ‘candidate’ model (red line)

and the randomly permuted H0 distribution (blue histogram)

showed that the probability of a model of this quality randomly

occurring was less than 0.001.

(TIFF)

Figure S2 A 10-fold cross-validated PLS-DA model built to

discriminate between asphyxia versus matched controls using all

148 measured metabolites. (a) PLS-DA predictive scores (circle-

s = asphyxia; Squares = Controls; += QC1; 6= QC2). The

associated ROC curve had an AUC of 0.91 (95% CI: 0.83–

0.96). (b) A plot of the R2 and Q2 values for a range of latent

factors. The optimal number of latent factors to avoid over-fitting

was determined to be equal to 2. The optimal model had an

R2 = 0.43 and Q2 = 0.23 (c) A non-parametric test comparing the

‘candidate’ model (red line) and the randomly permuted H0

distribution (blue histogram) showed that the probability of a model

of this quality randomly occurring was less than 0.001.

(TIFF)

Figure S3 Variable importance plots for (a) the HIE versus

matched controls PLD-DA model and (b) the asphyxia versus

matched controls PLD-DA model. A VIP score .1 indicates an

important contribution to the model.

(TIFF)

Figure S4 A cross-validated PLS-DA model to discriminate

between HIE versus all other outcomes (asphyxia and both the

control groups) using all 148 measured metabolites (a) The optimal

number of latent factors to avoid over-fitting was determined to be

2, with an R2 = 0.32 and Q2 = 0.22. Model scores are shown in

figure 3. (b) A non-parametric test comparing the ‘candidate’

model (red line) and the randomly permuted H0 distribution (blue

histogram) showed that the probability of a model of this quality

randomly occurring was less than 0.001.
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(TIFF)

Table S1 List of quantified metabolites. Included for each

metabolite: The recommended limit of detection for the specified

platform; percentage of missing values (i.e. metabolite concentra-

tion below the measurable limit); mean serum concentration across

the whole sample population; The Relative Standard Deviation

(RSD) for the two repeat-injection Quality Control patients (8 reps

per patient evenly dispersed across the experimental run) – an

RSD of ,20% is considered acceptable; The Biological Signal to

Noise ratio (S/N) in decibels (dB) – this gives an indication of

biological information content, calculated using the following

equation: 20 log (RMSsample/RMSQC), where RMS = Root

Mean Squared amplitude of the mean centred data. A S/N

.15 dB indicates excellent information content.

(DOC)

Table S2 Table of the parameter estimates generated by the

covariate adjusted ROC analysis (using non-parametric bootstrap

AUC estimation and a linear correction model). The associated

corrected area under the ROC curve (AUC) was 0.93 (95% CI:

0.81–0.99); this was not signifiacntly different to the uncorrected

ROC curve. T-tests estimating the contribution of each clinical

variable to the linear correction model also indicate that each

clinical variable had no significant `influence on the corrected

ROC curve. Thus we conclude that these potential confounders

had neither a significant positive nor negative impact on the

metabolite biomarker signature.

(DOC)
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