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Abstract

Proteins are the core and the engine of every process in cells thus the study of mechanisms that

drive the regulation of protein expression, is essential. Transcription factors play a central role in

this extremely complex task and they synergically co-operate in order to provide a fine tuning of

protein expressions. In the present study, we designed a mathematically well-founded procedure

to investigate the mutual positioning of transcription factors binding sites related to a given cou-

ple of transcription factors in order to evaluate the possible association between them. We

obtained a list of highly related transcription factors couples, whose binding site occurrences

significantly group together for a given set of gene promoters, identifying the biological contexts

in which the couples are involved in and the processes they should contribute to regulate.
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1. Introduction

The regulation of gene expression is a fundamental mechanism driving
biological processes. Transcriptional regulation rules the access of pol-
ymerase complex to the gene, activating or repressing the transcription
process. Transcription Factors (TF) play a central role in this context;
they are proteins able to bind specific DNA regions recognizing a short
sequence of nucleotides called Transcription Factor Binding Sites
(TFBS). There is a vast literature concerning TFs, starting from seminal
and general papers1,2 to the most specific ranging from the study of
the mechanism that allows TFs to efficiently and rapidly find the target
along the DNA helix,3,4 to the study of the roles that specific TFs play
in given biological tasks and how they influence the regulation of the
transcription of their target genes.5 TFBS occurrences along a DNA
sequence can be statistically determined via a Position-specific Weight
Matrix (PWM), that is essentially a matrix reporting the frequency of

nucleotides for each position of the experimentally found binding sites.
Several databases based on experimental evidences were designed col-
lecting information about TFs and the corresponding TFBSs,
TRANSFAC6,7 and JASPAR8 are often used as a reference for
Eukariotes. In the review9 different algorithmic approaches to predict
TFBSs, starting from PWMs, are presented and compared. Despite the
large number of genes in higher animals (�30,000 genes) the number
of known TFs is one order of magnitude smaller, indicating a neces-
sary interplay between different TFs in order to regulate the activity of
all genes. TFBSs are often clustered in peculiar families and patterns
made of several TFBSs can be found in the promoter region, i.e. thou-
sands bases upstream the Transcription Starting Site (TSS), or also
very far from the TSS in the Cis-regulatory modules (CRM). The inter-
ested reader can find in Ref. 10 (see also references therein) a compre-
hensive review of the update knowledge about CRM. In this work, we
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will focus on the synergism of different TFs in the promoter region,
trying to identify those TFs couples able to co-operate, and to discover
the context in which those couples are involved in. The synergism
between TFs in human DNA has been investigated by several studies
focused on the analysis of mutual positioning of TFBSs along the
DNA regions. Some studies, taking into consideration cross-species
sequence comparison trying to identify possible regulatory modules in
human DNA.11–13 Other works focus on a specific class of TFs14 or
on a single TF15 trying to identify the regulatory modules to which the
considered TF belongs to. Finally in Ref. 16, the whole human genome
has been investigated in order to reveal the couples of TFs that synergi-
cally act in the transcription regulation. In the present work, we devel-
oped a new computational method able to predict the possible
interaction between couples of TFs analysing the statistical properties
of the distribution of couples of TFBSs in the promoter region of
human DNA, and comparing them with a random distribution of
TFBSs. We obtained a list of highly related TFs couples, whose TFBSs
occurrences significantly group together for a given set of promoter
genes, identifying the biological context in which the couples are
involved in and the process they should contribute to regulate.

2. Materials and methods

2.1. Extracting TFBSs of human genes

The list of all human genes was extracted from the Genome Browser
(UCSC)17 and all the associated 104,178 transcript sequences (genome
version hg38) were retrieved by a proper R library18 querying the UCSC
data repository. For each transcript a promoter region, made of a
sequence of 2,000 bp upstream the TSS, was extracted. In order to
remove redundant information, the set of all promoter sequences was
processed filtering out redundant overlapped transcripts, reducing their
number (and the related promoter sequences) to 36,830. In this study,
we used a set of 194 most studied and experimentally validated Human
Transcription Factors according to MAPPER.19 We associated to each
TF the corresponding Position-specific Weight Matrix (PWM), i.e. the
matrix reporting the frequency of nucleotides for each position of the
experimentally validated binding sites. It is worth noting that a TF can
be associated to different PWMs and, on the other hand, a PWM can be
associated to more than one TF. A total number of 192 PWMs was con-
sidered in this work and each of them was associated in a biunivocal
relation to one TF with only a few exceptions. For the sake of simplicity
and readability, we refer to PWM models as TFs and vice versa. The
PWMs matrices were retrieved from an open access repository available
at the following address http://cistrome.org/�jian/motif_collection/data
bases/Transfac/pwm/ (12 October 2017, date last accessed). We applied
the matchPWM() function, a sequence-based transcription factor bind-
ing site search algorithm, integrated into the Biostrings R library,20 to
extract and collect the positions list of all binding sites for both all con-
sidered transcripts and PWMs. For our purposes, we have considered
an acceptance threshold probability of 0.9. The described procedure is
clearly summarized in the workflow in Fig. 1.

2.2. Transcription factor co-localization and deviation

from randomness

In this Subsection, we present the indicator we have developed in order
to determine whether two different TFs are linked with respect to a
given promoter. Let P ¼ x1x2 . . . xLf jxi 2 A;C;G;Tgf be the pro-
moter region of a given transcript, i.e. the set of L¼2,000 bases
upstream the TSS of that transcript. Using PWMi and PWMj, i.e. the
matrices associated to two different transcription factors TFi and TFj,

we select, in the promoter P, all the TFBSs for TFi and TFj (see the pre-
vious Subsection for details) and we collect them in two sets, {TFBSi}
and {TFBSj}, respectively. The idea is to compare the number of couples
of elements from {TFBSi} and {TFBSj} whose distance is closer than ‘—
where we set ‘ ¼ 80 bp—with the expected number of couples
obtained by setting at random the occurrences of {TFBSi} and {TFBSj}.
As first we consider the case of random distribution of elements in
{TFBSi} and {TFBSj} and we compute the expected number of joined
occurrences within a distance ‘. If there is just one binding site for fac-
tors TFi and TFj (i.e. there is just an element x 2 fTFBSig and
y 2 fTFBSjg) put at random in a promoter of length L, the probability
that their distance is exactly ‘ is

P x� yj j ¼ ‘ð Þ ¼ 2
L� ‘

LðL� 1Þ (1)

A simple computation gives the probability that their distance is
less than or equal to ‘

P x� yj j � ‘ð Þ ¼ 2L� 1ð Þ‘� ‘2

LðL� 1Þ (2)

Going further, the probability that one element in {TFBSi} and sev-
eral element {TFBSj}, say nj, put at random in a promoter of length L,
have a distance less than or equal to ‘ is well-approximated by consid-
ering the probability of a single matching P x� yj j � ‘ð Þ ¼ p as a
Bernoulli event, and the probability of having k elements of {TFBSj} in
an interval of size ‘ around the element x 2 fTFBSig is

P k; x� yj j � ‘ð Þ ¼
nj

k

 !
pkð1� pÞnj�k (3)

Finally, if there is more than one element in {TFBSi}, say ni, the
expected number of occurrences of couple of elements in {TFBSi} and
{TFBSj} within a distance ‘ can be approximated by

n TFi;TFj
� �

¼ ni

Xnj

k¼0

kP k; TFBSi � TFBSj

�� �� � ‘
� �

¼

¼ ninjp ¼ ninj
2L� 1ð Þ‘� ‘2

LðL� 1Þ
(4)

while its variance is

r2 TFi;TFj
� �

¼ ni

Xnj

k¼0

k2P k; TFBSi � TFBSj

�� �� � ‘
� �

� n TFi;TFj
� �2

" #

¼ ninjp 1� pð Þ ¼ ninj
2L� 1ð Þ‘� ‘2� �

½ L� ‘ð Þ2 � L� ‘ð Þ�
L2ðL� 1Þ2

(5)

The Bernoulli approximations in Equations (4) and (5) are valid
when ni and nj are small with respect to ‘ and ‘ is small with respect

Figure 1. Workflow for the extraction of human TFBSs.
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to L. By computing the actual number of couples (x, y), say
�ðTFi;TFjÞ, with x 2 fTFBSig and y 2 fTFBSjg such that x and y are
closer than ‘, and using Equations (4) and (5) we build an indicator
evaluating the deviation from randomness of the actual number of
join occurrences

z TFi;TFj
� �

¼
� TFi;TFj
� �

� nðTFi;TFjÞ
rðTFi;TFjÞ

(6)

The above z-score function, measuring how many standard devia-
tions the actual number of couples is far from the expected number
of couples in the case of a random distribution, provides a reason-
able value of the association between TFBSi and TFBSj. Significantly,
high values of z TFi;TFj

� �
suggest that the two considered TFs are

associated, i.e. their TFBSs have a probability to occur as neighbours
higher than the one expected for a random distribution. On the con-
trary when z TFi;TFj

� �
is negative, with a high absolute value, ele-

ments in the two TFBSs occur as neighbours less frequently than
expected in a random distribution, so that in this case the TFs are
disassociated. In the following, in order to identify the synergy
between transcription factors, we will focus on the case of high posi-
tive values of z TFi;TFj

� �
.

2.3. Computing similarity score of PWMs

The prediction algorithm of TFBSs is based on the PWMs obtained
by experimental analysis. Since we are interested in identifying cou-
ples of TFs whose TFBSs occur together in a window of a given size,
we have to be sure that the two corresponding models are enough
different since if two models are very similar they are likely to share
binding sites or a significant portion of them. We used two different
approaches to evaluate models similarity. The former is a direct
approach aiming to provide a similarity pairwise score of two models
based on the comparison of nucleotide frequencies of the PWMs.
The latter approach can be defined as ‘a posteriori’, since we evaluate
the closeness of models by computing the number of overlapped
binding sites with respect to the total number of couples whose dis-
tance is closer than ‘. Using a linear combination of the above
described similarity scores we determine if two models are ‘structur-
ally’ far from each other and we can significantly evaluate the associ-
ation between two truly different models according to the algorithm
described in the previous section.

2.4. PWMs distance based on Jensen-Shannon

divergence

The Jensen-Shannon divergence (JS) is a symmetrized and smoothed
version of the Kullback-Leibler divergence and it is often used to tell
how two frequency distributions are close to each other.21 Here, we
use Jensen-Shannon divergence to identify similar PWMs using the
nucleotide frequencies as probability distribution. The Jensen-
Shannon divergence of two frequency distributions, P and Q, can be
computed using the Shannon entropy according to the following
equation:

JS P;Qð Þ ¼ H
1
2

Pþ 1
2

Q
� �

� 1
2

H Pð Þ � 1
2

H Qð Þ (7)

where H(X) is the Shannon entropy of the distribution X

H Xð Þ ¼ �
XN
k¼1

xklogðxkÞ

Given a couple of models, PWM1 and PWM2, we indicate with
Pi

k and Qj
k the frequency of the nucleotide k (the index k ranges from

1 to 4 indicating the four nucleotides A, C, G, T) in the position i of
the model PWM1 (the index i ranges from 1 to I, where I is the length
of the model PWM1) and position j of the model PWM2 (the index j
ranges from 1 to J, where J is the length of the model PWM2), respec-
tively. For example, P1

4 is the frequency of the nucleotide T in posi-
tion 1 of the first model while Q2

3 is the frequency of the nucleotide
G in position 2 of the second model. The Jensen-Shannon divergence
of the nucleotide distributions at position i of the first model and at
position j of the second model is defined as

JS P;Q; i; jð Þ ¼ �
X4

k¼1

Pi
k þQj

k

2
log

Pi
k þQj

k

2

þ 1
2

X4

k¼1

Pi
klogPi

k þ
X4

k¼1

Qj
klogQj

k (8)

We measure the similarity of two models with respect to a given
alignment by summing up the Jensen-Shannon divergences as in
Equation (8)) of each couple of distributions corresponding to the
aligned positions (empty boxes in the overlapping area, see Fig. 2) (i,
iþ a), where a is the offset between the starting positions of model 1
and 2 in that alignment, plus a penalty score for the non overlapped
positions (“p” marked boxes in the penalty area, see Fig. 2):

JS P;Q; að Þ ¼
X
i2I

JS P;Q; i; iþ að Þ þ Kno (9)

where I is the set of overlapped positions in the given alignment and
no is the number of non overlapped positions of the shortest model.
The penalty K for each of non overlapped positions is determined by
computing the probability distribution of the Jensen-Shannon diver-
gence in the case of two random nucleotide distributions. The value
K ’ 0:23 is obtained by summing up 2 S.D. to the mean value of the
random-nucleotide Jensen-Shannon divergence distributions. Finally,
the model similarity score of two models JSD(P, Q) is defined as the
smallest score JS(P, Q; a) out of all the possible alignments:

JSD P;Qð Þ ¼ min
a2AL
fJSðP;Q; aÞg (10)

where AL is the set of all possible alignments with a non-empty
superposition. The need of a ‘strong’’ non-overlapping penalty comes
out in order to select alignment with a significant overlapping
between the two models (i.e. to avoid bias due to a good affinity
between too small part of the two models).

2.5. PWMs distance based on TFBS overlapping

Here, we introduce a different similarity function between pairs of
TFs based on the percentage of overlapped binding sites they share.
First of all, we consider two TFBSs to be overlapped if their distance
is smaller than the half of the size of the smaller PWM,
i.e. TFBSi � TFBSj

�� �� < minfPWM1 ; PWM2g
2 . If the TFBSs of two TSs

are often overlapped it is likely that they result to be associated,
according to our algorithm, showing a high Z-score. They are indeed
often close because the TFs recognize the same binding sites (or a
large portion of them). Given a couple of TFs, TFi and TFj, the per-
centage of all overlapping occurrences of TFBSs with respect to all
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the joined occurrences in a radius ‘ in all the transcript promoter
sequences, namely OVD(TFi, TFj), is defined as follows:

OVD TFi;TFj
� �

¼ lTotðTFi;TFjÞ
�TotðTFi;TFjÞ

(11)

where �TotðTFi;TFjÞ is the total number of the TFBSs couples (one
from TFi and the other from TFj) falling together in the considered
radius of size ‘ and lTotðTFi;TFjÞ is the total number of TFBSs over-
lapped couples (one from TFi and the other from TFj), for all the
transcript promoter sequences. In the next section (as reported in
Fig. 3), OVD scores are plotted against JSD scores in order to select
significant couples.

2.6. Protein-protein interaction network analysis

In order to validate the synergy of TFs couples identified by the algo-
rithm here presented we analysed Protein-Protein Interaction net-
work (PPI) to test the interaction of this couples in the network by
using shortest path.

Protein-Protein Interaction network was downloaded from
STRING database.22 We considered all the possible interaction sour-
ces between proteins giving a score threshold of 0.7 (high confidence
interaction). The obtained network is made of 719,288 edges (inter-
actions) and 14,932 nodes (proteins). The iGraph R package (https://
cran.r-project.org/web/packages/igraph/index.html (12 October
2017, date last accessed)) was used to compute the shortest path
from the adjacency matrix of the graph.

3. Results and discussion

3.1. Selecting significant TF couples

In the previous Section, Equation (6) has been derived in order to
provide a measure of association between each couple of transcrip-
tion factors (TFi, TFj) with respect to a given transcript TRk. Our
goal is to find out couples of TFs that are significantly related in
gene-regulation mechanism. As previously mentioned, the higher the

value of zðTFi;TFj; TRkÞ, the higher the association between TFi and
TFj in the transcript promoter TRk sequence will be. Since for each
transcript, we have to test a considerably large number of couples
(TFi, TFj) and we test the association between couples in a large
number of transcripts, we select only those couples for which the
value of zðTFi;TFj; TRkÞ is higher than 5 (meaning that the number
of occurrence of couples TFi TFj in a radius ‘ is far from that
expected by chance more than 5 S.D.) and we indicate with NZ5ðTFi

;TFjÞ the number of transcripts TRk for which the couple (TFi, TFj)
has a z-score greater than 5. Given a couple (TFi, TFj) it is reasonable
to expect that a large value of NZ5ðTFi;TFjÞ indicates that the two
models TFi, TFj are functionally associated. However, a high value
of NZ5ðTFi;TFjÞ could refer to a couple of models with a high simi-
larity score rather than a functional association between TFi and TFj.
Therefore, to correctly identify relevant associated transcription

Figure 2. Scheme of the algorithm for computing similarity score of models.
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factors, we will use the overlapping score OVD(TFi, TFj) and the
similarity score JSD(TFi, TFj). In Fig. 3, OVD(TFi, TFj) and JSD(TFi,
TFj) values are shown for all the TF couples which have
NZ5 TFi;TFj

� �
> 20. Since the higher the value of JSD the lower the

similarity between two models is, while the higher the values of
OVD the higher the similarity between binding sites is, as selection
criterion to identify significant couples we used the inequality
JSD>OVD. In such a way, the plane (OVD, JSD) is divided into
two regions: the upper-left sector, where models are not similar and
the overlapping is low (selected couples), while in the lower-right sec-
tor, where models are similar and the overlapping is high (discarded
couples). It is worth remarking that even if measures JSD and OVD
could appear redundant, Fig. 3 clearly stated that the two measures
are quite different: there are couples with similar JSD and very differ-
ent OVD and vice versa. In fact JSD measure only depends on the
related PWM while OVD measure depends on the considered data-
set, e.g. two models can bind the same sequence even if they are dif-
ferent. Considering a combination of both measures we obtain a
more robust selection criterion.

In Fig. 4 (panel A) is sketched the procedure we use to select the
547 couples identifying pairs of transcription factors that are likely
to synergistically regulate gene transcription. In the following sec-
tions, we will analyse the set of selected couples in order to associate
to them a biological task and to find the most relevant associated
couples according to their statistical features (see Fig. 4 panel B).

3.2. Enrichment analysis and validation

In order to evaluate the biological significance of the obtained TF
couples, we performed hypergeometric enrichment tests.23 Given a
couple of models, we want to test whether the set of genes potentially
regulated by the synergy of the corresponding two TFs, is enriched in
a particular category-term. We wondered whether those genes are
linked in a given biological task in order to associate the TF couple
to a given biological process. We selected a list of categories and
related terms, reported in Table 1, that identify different biological
tasks and contexts. We then performed for each identified TF couple
hypergeometric enrichment tests related to all the considered terms.

For each TF couple we obtained a list of P-values linked to the corre-
sponding terms. The enrichment results were then compared with those
of ten random sets of genes. Each set was generated preserving the same
number of sample couples (i.e. 547) and the same number of genes for
each couple. The results are reported in Fig. 5 where solid plot represents
the enrichment of couples identified by our algorithm and dashed plots
show enrichment of random sets. Each point of the plots shows in log-
scale the number of TF couples (y-axis) with at least one term whose P-
value falls in the corresponding P-value interval (x-axis). For example in

the black plot, there is only one couple (M00106—M00967) having a
term [ubiquitinyl hydrolase activity (GO: 0036459)] enriched with a
P-value smaller than 10�18 (3.63E–19), another couple (M00739—
M00799) for P-value smaller than 10�14 and three different couples for
P-value smaller than 10�13 and so on (see Table 2 where all the enriched
terms are ordered according to their P-values). It is worth noting that
some couples have more than one term with a significant P-value, for
example couple (M00106—M00967) shows several terms with a
remarkable enrichment: GO Molecular function—ubiquitinyl hydrolase
activity (GO: 0036459)—P-value 3.63E–19, Go Molecular function—
cysteine-type peptidase activity (GO: 0008234)—P-value 4.56E–17, Go
Biological Process—Ubiquitin-dependent protein catabolic process (GO:
0006511), and so on. The comparison of enrichment P-values, related
to couples identified by our algorithm (black plot), with those related to
random sets (ten coloured plots) clearly highlights the significance and
consistency of our analysis, since none of the random sets shows P-val-
ues smaller than 10�7. Also analysing the plots for larger P-values inter-
vals the number of enriched couples is significantly higher than all the
corresponding numbers of random sets (taking into account the log-
scale units in y-axis).

3.3. Analysis of relevant transcription factor couples

In this section, we analyse the most significant couples identified by
our algorithm. Among the 547 selected couples, we consider as partic-
ularly relevant those couples with the smallest enrichment P-value or

Figure 4. Workflow for the analysis of TF couples. In panel A, the procedure

for the selection of relevant couples is depicted. In panel B, the analysis of

significant couples is described both in terms of enrichment tests and sort-

ing of best couples.

Table 1. Categories and terms for the enrichment analysis

Category Number
of terms

Number
of genes

OMIM expanded 187 2,178
Tissue protein expression

from proteomicsDB
207 62,307

KEGG 2015 179 3,800
OMIM disease 90 1,759
GO molecular function 1,136 12,753
GO cellular component 641 13,236
GO biological process 5,192 14,264
Chromosome location 386 32,740
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Figure 5. Number of couples enriched in at least one term as a function of

their smallest P-value. Solid plot shows the enrichment of the couples identi-

fied by our algorithm, dashed plots show the enrichment of random couples

for comparison.
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with the best associated parameters (highest number of transcripts,
smallest OVD and highest JSD) as reported in Fig. 4 panel B. The list
of couples with the smallest P-values (smaller than 10�7) is reported
in Table 2. The analysis of the couples reported in the table suggests
several observations, providing and/or confirming evidence of the syn-
ergism of several TF couples and the related biological contexts they
are involved in. The smallest P-values are reported for the couple
CDP (also known as Cutl1) (M00106)–HNF4 (M00967), as already
mentioned above. The related enriched terms are mainly associated (4
out of 6) with catabolic processes while the other two terms are ubiq-
uitinyl hydrolase activity and cysteine-type peptidase activity.
Concerning the couple Myc (M00799)–E2F (M00803) (and its cluster
E2F–1 and E2F–4) it can be observed that it appears several times in
the table associated to different terms. These terms can be grouped
into main activities/contexts regarding: (1) gonadal mesoderm devel-
opment and mesenchyme development, (2) Nucleosome assembly and
organization, Protein-DNA complex assembly and Protein-DNA
Complex Subunit Organization and (3) Protein
Autophosphorylation. It is worth noting that in literature there are
many references associated to the couple Myc–E2F. In Ref. 24, it has
been shown how the two TFs are linked via mSin3A, a core compo-
nent of a large multiprotein co-repressor complex with associated

histone deacetylase (HDAC) enzymatic activity. As reported in Ref.
25, it has been identified a subunit of the complex NuA4 as the prod-
uct of TRA1, an ATM-related gene homologous to human TRRAP,
an essential cofactor for c-Myc- and E2F-mediated oncogenic trans-
formation. A further link between Myc and E2F was studied in Ref.
26 highlighting their relationships with chromatin structure and
stability. It is remarkable and can be source of further investigations
the association of the couple AREB (M00415)–TFII-I (M00706) (also
known as GTF2I) with KEGG pathway Valine leucine and isoleucine
biosynthesis (the couple showing a P-value of 4.10E–8). Interestingly,
transcription factors of STAT family (STAT—M00777, STATx—
M00223 and STAT5A–M00457) strongly interact with TBP
(M00980) in the promoters of genes belonging to the region of
chr5q13, that is known to be associated with various neurological dis-
orders and pathologies such as Spinal Muscular Atrophy, Hairy Cell
Leukemia and it is also connected to Alcohol Dependence.27–29

Finally, it could deserve attention the couple Areb6 (M00414)–E2F
(M00803) associated to the term Mental retardation, even if not
reported in Table 2, it shows a remarkable P-value (6�10�6). Areb6
belongs to the Zeb transcription factor family that has been shown to
be involved in mental retardation syndromes.30 In Table 3, the best
couples, in terms of association, are reported ordered by the number

Table 3. The PWM model IDs and the corresponding TF names are reported in columns 1–4 for each couple; Column 5 reports the number

of transcripts whose Z-scores, related to the couple, are higher than 5; the average Z-score of all the significant (Z> 5) transcripts is

reported in column 6; Overlapping and Similarity Scores are reported in columns 7 and 8, respectively

Model 1 TF 1 Model 2 TF 2 Number of transcripts Average Z-score Overlapping score Similarity score

M00083 MZF1 M00649 MAZ 1,014 7, 77 0, 19 0, 21
M00083 MZF1 M00803 E2F 456 6, 77 0, 09 0, 21
M00803 E2F M00976 AhR Arnt HIF-1 338 6, 63 0, 03 0, 21
M00706 TFII-I M00971 Ets 317 7, 71 0, 16 0, 24
M00799 Myc M00803 E2F 293 7, 16 0, 00 0, 23
M00706 TFII-I M00803 E2F 275 6, 61 0, 00 0, 27
M00148 SRY M00747 IRF-1 254 7, 77 0, 00 0, 20
M00148 SRY M00471 TBP 239 6, 78 0, 02 0, 21
M00148 SRY M00980 TBP 203 6, 45 0, 00 0, 23
M00698 HEB M00803 E2F 196 6, 35 0, 02 0, 29
M00649 MAZ M00658 PU.1 187 7, 49 0, 03 0, 22
M00649 MAZ M00799 Myc 184 6, 85 0, 00 0, 33
M00799 Myc M00933 Sp1 182 7, 06 0, 01 0, 28
M00462 GATA-6 M00471 TBP 182 6, 47 0, 08 0, 21
M00799 Myc M00931 Sp1 167 6, 97 0, 00 0, 30
M00803 E2F M00927 AP-4 160 6, 29 0, 01 0, 24
M00801 CREB M00803 E2F 153 6, 43 0, 00 0, 28
M00706 TFII-I M00931 Sp1 141 6, 58 0, 04 0, 22
M00649 MAZ M00971 Ets 132 7, 32 0, 00 0, 23
M00933 Sp1 M00976 AhR Arnt HIF-1 127 6, 65 0, 02 0, 21
M00803 E2F M00981 CREB ATF 127 6, 72 0, 00 0, 23
M00799 Myc M00932 Sp1 121 7, 17 0, 00 0, 28
M00148 SRY M00706 TFII-I 120 8, 58 0, 00 0, 31
M00931 Sp1 M00976 AhR Arnt HIF-1 117 6, 47 0, 01 0, 20
M00803 E2F M00917 CREB 115 6, 81 0, 00 0, 25
M00008 Sp1 M00706 TFII-I 114 6, 36 0, 02 0, 21
M00791 HNF3 M00975 RFX 107 6, 58 0, 00 0, 20
M00471 TBP M00747 IRF-1 107 6, 32 0, 02 0, 25
M00649 MAZ M00976 AhR Arnt HIF-1 106 6, 28 0, 00 0, 26
M00148 SRY M00962 AR 106 6, 04 0, 00 0, 20
M00148 SRY M00789 GATA 106 6, 08 0, 00 0, 23
M00148 SRY M00975 RFX 104 6, 20 0, 00 0, 21
M00008 Sp1 M00799 Myc 102 6, 77 0, 00 0, 29
M00775 NF-Y M00803 E2F 101 6, 24 0, 03 0, 20

The couple Myc, E2F is reported in bold to highlight it is also included in Table 2.

109F. Cumbo et al.



of significant Transcripts. We selected those couples with a number of
significant transcripts (Z-score higher than 5) higher than 100, with
an Overlapping score (OVD) smaller than 0.2 and a Similarity score
(JSD) higher than 0.2 (it is also reported in the fifth column the aver-
age Z-Score). The couple MZF1 (M00083)—MAZ (M00649) shows
a Z-score higher than 5 in 1,014 transcript promoter sequences (with
an average z-score of 7.77—more than 7 S.D. far from the expected
average value). Myc-associated zinc finger protein (MAZ) and
Myeloid zinc finger 1 (MZF1) are both transcription factors charac-
terized by a zinc finger small protein structural motif. The associated
PWMs show a similar common sub-motif characterized by a GGGA
sequence. Nevertheless the PWMs have different length (6 and 8) and
the correspondent similarity score, JSD, results to be 0.21 meaning
that the two PWMs are similar but globally not so close to each other.
Significantly, the OVD overlapping score is quite low 0.188 meaning
that, on average, among all the identified TFBSs couple (both in a
window of 80 bp) of the two TFs, less than 1 out of 5 couples are
overlapped. This is why we included this couple in the selected set of
TFs couples. The surprisingly high number of transcripts for which
the two TFs co-occur should deserve deeper investigations. The cou-
ple MZF1 (M00083)–E2F (M00803) shows 456 transcripts with a Z-
score higher than 5 (with an average z-score of 6, 77, OVD¼0.09
and JSD¼0.21). Interestingly they are involved in several diseases, in
particular, as reported in Ref. 31, they are both potential key regula-
tors of PKD1 and PKD2 whose mutations are linked with autosomal
dominant polycystic kidney disease (ADPKD). We found one tran-
script of PKD1 uc002cos.1 with a Z-score for the couple equal to 2
and two transcripts of PKD2 uc003hre.3 and uc011cdg.2 with Z-
score equal to 5.80 and 3.42, respectively. It is interesting that a
minor groove binding protein SRY (M00148) is associated to both
the models of TBP (M00471 and M00980) with a number of signifi-
cant transcripts equal to 239 and 203, respectively, a very small OVD
close to 0 for both and JSD 0.21 and 0.23, respectively. It is worth
noting that the couple Myc (M00799)–E2F (M00803) (also included
in Table 2) shows a number of significant transcripts equal to 293,
meaning that, besides a clear association with given biological con-
texts, as discussed in the previous section, there is a strong synergism
between the two TFs confirmed by the values reported in the table.
Concerning the couple Maz (M00649)–Pu.1 (M00658) (number of
significant transcripts equal to 187) it has been shown that three tran-
scription factors Maz, PU.1 and ARNT show significant recognition
elements among similarly up or down-regulated genes involved in
hematopoietic differentiation or leukemogenesis.32 We note that also
the couple Maz (M00649)–ARNT (M00976) is included in the table
with a number of significant transcripts equal to 106.

In order to further validate and provide significance to obtained
results, we computed the shortest paths between couples of TFs
related to the Protein-Protein Interaction (PPI) network downloaded

from String database.22 We found a significant overall difference
between shortest path distribution of the set of couples selected by
our method and the set of all TFs couples. In Table 4, we report the
percentages of couples as a function of the Shortest Path (SP) distan-
ces for three classes of protein couples: (i) the selected 547 TF cou-
ples (namely BEST, first row), (ii) all the couples of TFs (namely
ALL, second row) and (iii) 10 random sample sets made of 547 ran-
domly picked protein couples from the whole PPI (namely
RANDOM, mean and standard deviation in the third and fourth
row, respectively). The majority of couples (around 50%) related to
TFs shows a SP equal to 2 both for couples obtained by our algo-
rithm and for all TF couples, while only around 6% of protein ran-
dom couples has a SP distance equal to 2. The most relevant result is
in the difference of the frequency for SP¼1 (indicating a direct inter-
action) that is �0.12 for our best couples and �0.057 for all TF cou-
ples (i.e. the ratio is greater than 2), and also for SP¼3 (�0.28 our
best couples versus �0.37 for all TF couples). The distribution for
the random protein data shows, not surprisingly, a complete differ-
ent pattern (the most part of couples having SP equal to 3 and 4).
Even considering the limitations of this kind of analysis—a PPI is a
global representation of potential interactions between proteins (and
consequently TFs) that not always (referring to time and space) is an
actual interaction and, moreover, the results depend on the threshold
chosen to select significant interactions—it reveals that TFs couples
selected by our method show an overall stronger relationship than
those in the set of all TFs couples. In particular, we chose a quite
strict threshold of 0.7 (as reported in the Material and methods sec-
tion), so the significance of results has to be found in the ratio
between the number of our selected couples and all TFs couples at SP
1 (ratio equal to 2) rather than in the percentages (12% and 6%,
approximately) that could significantly change since they depend on
the threshold.

4. Conclusions

A better understanding of the mechanisms driving the regulation of pro-
tein expression is an essential requisite to shed light on the behaviour of
cells. Transcription factors play a central role in this extremely complex
task and it has been shown that they synergically co-operate in order to
provide a fine tuning of protein expressions. Among the different meth-
ods able to detect and identify TFs interplay, a very important resource
is the computational methods to which our work mainly refers. In this
work, we present a mathematically well-founded procedure able to
identify TFs couples that act together, inferring for several of those cou-
ples the biological context they are involved in. We introduced a new
and robust statistical method based on the use of a good Bernoulli
approximation and on a z-score measures able to discriminate between
random and non-random co-occurrences of couple of TFs. We

Table 4. Frequencies of couples as a function of the shortest path (SP) distance for three classes of protein couples: (i) the selected 547 TF

couples (namely BEST, first row), (ii) all the couples of TFs (namely ALL, second row) and iii) 10 random sample sets made of 547

randomly picked protein couples from the whole PPI (namely RANDOM, mean and standard deviation in the third and fourth row,

respectively)

SP 1 SP 2 SP 3 SP 4 SP 5 SP 6 SP 7

BEST 0.117318 0.478585 0.284916 0.10987 0.009311 0 0
ALL 0.056789 0.463694 0.376242 0.084080 0.014167 0.004661 0.000368
RANDOM (mean) 0.003291 0.065601 0.377048 0.385820 0.134512 0.027972 0.005346
RANDOM (stdv) 0.000943 0.006363 0.016408 0.008298 0.009771 0.003329 0.002414
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extended previous methods based on randomize sequences as in Refs.
15 and 16. In order to avoid biases due to the structural similarity of
different models Overlapping and Similarity scores were designed to
select TF couples that are significant for the analysis. We used such a
method to find pairs of associated transcription factors in the set of all
human promoter sequences (selected with a careful analysis from all
human transcripts) and we also performed enrichment analysis on the
set of genes regulated by identified couples. This analysis provides con-
sistence to our results but also provides a biological context to be asso-
ciated to the couples. Moreover, we also performed network analysis
showing that TFs couples identified by the algorithm here presented are
closer than expected in the protein-protein interaction network in terms
of shortest path.

To our knowledge this is the only work concerning synergy of
Transcription Factors taking into account all those features. Some of
the couples emerging in this study are already known to be linked in
several biological contexts (such as Myc–E2F,24–26 while in other
cases our results can lead to hypothesize links between TFs couples
and diseases (as for the STAT family that strongly interact with TBM
in the promoters of genes belonging to the region of chr5q13
involved in several diseases.27–29 Finally, some other couples were
not previously identified (such as the couple MZF1–MAZ) that
would deserves further investigation.

According to our algorithm two TFs could be associated in differ-
ent ways, for example they could be co-operative in a strict sense or
concurrent in the sense that the presence of one of the two impedes
the presence of the other. A small size window, as the one we use,
leads us to hypothesize that two transcription factor proteins that
could bind sites within the window, either are sufficiently close to
each other to physically interact, or only one of the two is able to
bind its TFBS because of the steric hindrance.

This work represents a step in the direction of designing complex
gene regulatory networks, and it provides information on TFs associ-
ation that could be useful in this context. The identification of signifi-
cant TFs couples could be of help in the view of artificially altering
the regulation of genes by inhibiting the interaction between given
TFs couples.
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