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Abstract. Septic shock is induced by an uncontrolled inflam-
matory immune response to pathogens and the survival rate 
of patients with pediatric septic shock (PSS) is particularly 
low, with a mortality rate of 25‑50%. The present study 
explored the mechanisms of PSS using four microarray data-
sets (GSe26378, GSe26440, GSe13904 and GSe4607) that 
were obtained from the Gene Expression Omnibus database. 
Based on the MetaDE package, the consistently differentially 
expressed genes (DEGs) in the four datasets were screened. 
Using the WGCNA package, the disease‑associated modules 
and genes were identified. Subsequently, the optimal feature 
genes were further selected using the caret package. Finally, a 
support vector machine (SVM) classifier based on the optimal 
feature genes was built using the e1071 package. Initially, there 
were 2,699 consistent DEGs across the four datasets. From 
the 10 significantly stable modules across the datasets, four 
stable modules (including the magenta, purple, turquoise and 
yellow modules), in which the consistent DEGs were signifi-
cantly enriched (P<0.05), were further screened. Subsequently, 
six optimal feature genes (including cysteine rich transmem-
brane module containing 1, S100 calcium binding protein A9, 
solute carrier family 2 member 14, stomatin, uridine phos-
phorylase 1 and utrophin) were selected from the genes in the 
four stable modules. Additionally, an effective SVM classifier 
was constructed based on the six optimal genes. The SVM 
classifier based on the six optimal genes has the potential to 
be applied for PSS diagnosis. This may improve the accuracy 
of early PSS diagnosis and suggest possible molecular targets 
for interventions.

Introduction

Septic shock (SS) is caused by an uncontrolled inflamma-
tory immune response to pathogens (for example, bacteria, 
fungi, parasites and viruses) and occurs when sepsis results 
in dangerous hypotension and abnormal cellular metabo-
lism (1). SS can lead to multiple organ failure and death, and 
in 2018 the mortality rate of SS was 25‑50% (2). Innate and 
adaptive immune responses of hosts of different ages have 
various effects against sepsis (3,4), with the survival rate of 
pediatric septic shock (PSS) being particularly low compared 
with other age groups (5). PSS is one of the main causes 
of mortality in critically ill children in pediatric intensive 
care units worldwide (6). Adult and pediatric septic shock 
differ in terms of pathophysiology, clinical presentation and 
therapeutic approaches (7). Hyperdynamic shock syndrome or 
warm shock occurs in ~90% of adult patients, while severe 
hypovolemia often characterizes PSS (7). Activated protein C 
is the preferred treatment for adult patients, whereas plasma 
exchange is preferred for the treatment of pediatric patients 
with thrombocytopenia‑associated multiple organ failure (7). 
The therapy regimens widely used in adults with SS have 
been shown to have little therapeutic effect on children (8). 
Therefore, investigation into the molecular mechanisms of 
PSS for the diagnosis and therapeutic management of patients 
with PSS is required.

nuclear factor erythroid 2-related factor 2 (nrf2)-linked 
genes are dysregulated in PSS and may affect fatty acid metab-
olism, peroxisome proliferator‑activated receptors (PPARs) 
and retinoic acid receptor-α families, which are related to 
intermediary metabolism and oxidative stress in PSS (9). 
A recent study revealed a list of differentially expressed 
genes (DEGs) that are important for SS diagnosis and are 
implicated in the immune response, chemokine‑mediated 
signaling, neutrophil chemotaxis and chemokine activity (10). 
Olfactomedin‑4 controls sepsis heterogeneity and may be a 
biomarker of a pathogenic neutrophil subset associated with 
organ failure and mortality caused by PSS (11). Moreover, 
there is evidence that serum propionic acid has diagnostic 
value for septic shock (12). Despite the aforementioned 
findings, the mechanisms contributing to PSS are largely 
unknown.

Support vector machine (SVM) classifiers are gaining 
significance as a robust classification tool in cancer 
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genomics (13) and have been used for the diagnosis of various 
diseases, including chronic kidney disease (14) and acute coro-
nary syndrome (15). In the present study, it was hypothesized 
that an SVM classifier based on optimal feature genes of PSS 
could facilitate the diagnosis of the disease. The present study 
aimed to accurately identify the key genes in PSS from DEGs 
between PSS and control samples, and constructed a SVM 
classifier for distinguishing patients with PSS from normal 
controls. The results from the present study could aid the 
development of appropriate treatment strategies for PSS.

Materials and methods

Data source and pre‑processing. Using the Gene Expression 
Omnibus (GEO; www.ncbi.nlm.nih.gov/geo) database, 
‘septic shock’ and ‘pediatric’ were used as keywords to 
search for relevant datasets. The criteria for eligible datasets 
were as follows: i) Included gene expression data of blood 
samples; ii) age information was available to ensure that the 
subjects were children; iii) there were both PSS samples and 
normal control samples; and iv) the total number of samples 
was ≥100 and the number of samples that could be used for 
analysis was ≥50. Finally, four microarray datasets based 
on the GPL570 (HG‑U133_Plus_2) Affymetrix Human 
Genome U133 Plus 2.0 Array, including GSE26378 (9), 
GSe26440 (16), GSe13904 (17) and GSe4607 (18), were 
selected (Table I). The GSE13904 and GSE4607 datasets 
contained other samples, therefore, only the control and 
septic shock samples were extracted for analysis in the 
present study.

For pre‑processing the raw data in the four datasets, 
data formats were converted using the oligo package (19) 
(version 1.40.2; www. bioconductor.org/packages/oligo.
html) in R and normalization of gene expression values was 
performed using the unit‑scale normalization algorithm (20).

Meta‑analysis to identify the consistent DEGs in the four 
datasets. The four datasets included in the present study 
involved experimental tests of samples from different patients 
and thus they may have displayed different degrees of bias. 
To resolve this issue, the MetaQC package (21) (version 0.1.13; 
www.cran.r‑project.org/web/packages/MetaQC/index.html) in 
R was adopted to perform quality control on the datasets. The 
quality control standards in the MetaQC package contained 
accuracy quality control (AQC) g and AQCp, external quality 
control, consistency quality control (CQC) g and CQCp and 
internal quality control. Combined with the two‑dimensional 
diagram of the principal component analysis (PCA) and the 
standardized mean rank, these datasets were further assessed 
and screened.

Following the quality control analysis, DEGs between PSS 
and normal control samples were analyzed using the MetaDE.
ES method in the MetaDE package (22) (version 1.0.5; www.
cran.r‑project.org/web/packages/MetaDE). To ensure that 
gene expression was consistent across the four datasets, 
homogeneity test parameters were set as tau2=0 and Qpval 
>0.05. A false discovery rate (FDR)<0.05 was selected as the 
significance threshold for screening of the DEGs. Moreover, 
the genes with log2 fold‑change (FC)>0.5 in at least one of the 
datasets were used for analysis.

Weighted gene co‑expression network analysis (WGCNA). 
WGCNA is an algorithm based on high‑throughput expression 
data, which is utilized for the construction of a co‑expression 
network (23). In WGCNA, the GSE26440 dataset, which 
contained a relatively large number of samples, was taken as 
the main analysis dataset and the other three datasets were 
considered as the secondary analysis datasets. Using the 
WGCNA package (23) (version 1.61; www.cran.r‑project. 
org/web/packages/WGCNA/) in R, all genes in the GSE26440 
dataset were analyzed and screened for disease‑associated 
modules and genes. The requirements were: Number of module 
genes ≥80, cutHeight=0.995 and P<0.05. Combined with the 
three secondary analysis datasets, significantly stable modules 
across the four datasets were screened. Module preserva-
tion across the four datasets was analyzed using the module 
preservation function of the WGCNA package. Using clinical 
information of the samples in the GSE26440 dataset, the corre-
lations between each significantly stable module and clinical 
information were calculated using the WGCNA cor function 
(version 1.68; 127.0.0.1:13239/library/WGCNA/html/cor.
html) and WGCNA corPvalueStudent function (version 1.68; 
127.0.0.1:13239/library/WGCNA/html/corPvalueStudent.html).

The consistent DEGs were mapped into the significantly 
stable modules. Significant enrichment parameters of target 
genes in the modules were calculated using the hypergeometric 
algorithm (24): f(k,N,M,n)=C(k,M)xC(n‑k,N‑M)/C(n,N), 
where N stands for the number of total genes participating in 
WGCNA network analysis, M stands for the number of genes 
included in each module, n stands for the number of genes 
identified by the MetaDE method and k stands for the number 
of DEGs mapped to a module.

The thresholds of significant enrichment distribution 
were selected as P<0.05 and fold enrichment >1. For the 
consistent DEGs included in the significantly stable modules, 
Gene Ontology (GO; www.geneontology.org) and Kyoto 
Encyclopedia of Genes and Genomes (KEGG; www.genome.
jp/kegg) enrichment analyses were conducted based on 
the Database for Annotation, Visualization and Integrated 
Discovery tool (25) (version 6.8; ww.david.ncifcrf.gov). P<0.05 
was selected as the screening threshold.

Selection of the optimal gene combination and construction 
of the SVM classifier. in order to further narrow down the 
range of SS‑related genes and accurately identify important 
feature genes, the GSE26440 dataset was used as the training 
dataset and the other three datasets were taken as the vali-
dation datasets to optimize the previously identified DEGs. 
Recursive feature elimination (RFE) is an integrated machine 
learning method, which regards the selection of subsets as an 
optimization problem and evaluates gene combinations (26). 
From the training dataset GSE26440, the combination of 
optimal feature genes were selected using the RFE method in 
the R caret package (27) (version 6.0‑76; www.cran.r‑project.
org/web/packages/caret). In 10‑fold cross validation, the gene 
combination with the highest accuracy and the lowest Root 
Mean Square Error (RMSE) was selected as the optimal gene 
combination.

SVM is a supervised classification algorithm for 
machine learning, which uses the eigenvalues of features in 
each sample to discriminate sample types and estimate the 
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probability that a sample belongs to a certain class (28). Using 
the SVM method in the e1071 package (28) (version 1.6‑8; 
www.cran.r‑project.org/web/packages/e1071) in R, the 
SVM classifier (Core; Sigmoid Kernel; Cross; 100‑fold 
Cross validation) based on the optimal gene combination 
was built. Based on the pROC package (29) (version 1.12.1; 
www.cran.r‑project.org/web/packages/pROC/index.html) 
in R, the area under the receiver operating characteristic 
(AUROC) was used to evaluate the efficiency of the SVM 
classifier in the training and validation datasets. Values of 
AUROC were distributed between 0.5 and 1, and the closer 
the AUROC value was to 1, the higher the efficiency of the 
classifier.

Results

Meta‑analysis to identify the consistent DEGs across four 
datasets. The expression data in the four datasets were stan-
dardized; the curves before and after standardization are 
shown in Fig. 1A and B, respectively. After standardization, 
the gene expression levels of each dataset were distributed 
between ‑1 and 1, and the peak expression level was ~0, which 
was uniform (Fig. 1B). The results of the quality control 
analysis (Table II) and the PCA diagram (Fig. 1C) suggested 
that the distributions of the four datasets were balanced and all 
indexes met the quality test standards. Therefore, all datasets 
could be included in the subsequent analyses.

Figure 1. Distribution curves and a two‑dimensional diagram of the PCA for the four datasets. Distribution curves (A) before and (B) after normalization. 
(C) Two‑dimensional diagram of the PCA. Distribution curves for the GSE4607, GSE13904, GSE26378 and GSE26440 datasets are represented in black, 
green, red and blue, respectively. PCA, principal component analysis; IQC, internal quality control; EQC, external quality control; CQCg, consistency quality 
control gene; CQCp, consistency quality control pathway; AQCg, accuracy quality control gene; AQCp, accuracy quality control pathway.

Table I. Information of the four microarray datasets.

    Septic
Dataset Platform Samples (n) Control shock

GSE26378 GPL570 (HG‑U133_Plus_2) Affymetrix Human Genome U133 Plus 2.0 Array 103 21 82
GSE26440 GPL570 (HG‑U133_Plus_2) Affymetrix Human Genome U133 Plus 2.0 Array 130 32 98
GSe13904a GPL570 (HG‑U133_Plus_2) Affymetrix Human Genome U133 Plus 2.0 Array 227 18 67
GSe4607a GPL570 (HG‑U133_Plus_2) Affymetrix Human Genome U133 Plus 2.0 Array 123 15 42

aThese datasets contained other samples; only the control and septic shock samples were extracted from these datasets for analysis in the present 
study.

Table II. Results of quality control analysis of the four microarray datasets.

Dataset IQC EQC CQCg CQCp AQCg AQCp SMR

GSE26378 5.350 4.453 237.678 107.220 41.268 114.658 2.839
GSE26440 6.089 3.784 246.767 102.538 33.131 94.224 3.561
GSE13904 6.448 4.579 74.753 76.039 37.205 106.445 4.101
GSE4607 6.649 3.141 127.552 114.078 24.009 74.664 4.202

IQC, internal quality control; EQC, external quality control; CQCg, consistency quality control gene; CQCp, consistency quality control 
pathway; AQCg, accuracy quality control gene; AQCp, accuracy quality control pathway; SMR, standardized mean rank.
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Figure 2. Heat map of the 2,699 consistent differentially expressed genes. Black and white sample strips represent pediatric septic shock and control samples, 
respectively. Red, green and black dots represent upregulated, downregulated and unchanged genes, respectively. CTRL, control; SS, septic shock.

Figure 3. Selection graph of the weighting parameter ‘power’ and schematic diagram of mean connectivity. (A) Selection graph of the weighting parameter 
‘power’. The red line is the standard line when the square of the correlation coefficient reaches 0.9. (B) Schematic diagram of the mean RNA connectivity under 
different power parameters; when the power=28, the mean connectivity is 1.
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Figure 4. Tree diagrams for the partitioning modules. Tree diagram for (A) GSE26440, (B) GSE26378, (C) GSE13904 and (D) GSE4607. Each color represents 
a different module.

Table III. Preservation and enrichment information of the 11 modules and the module genes.

 Preservation 
 information Enrichment information
 ------------------------------------------- ------------------------------------------------------------------------------
Module ID Color Module size Z‑score P‑value DEGs (n) Enrichment fold (95% CI) Phyper

Module 1 Black 95 11.823 1.78x10-4 0 - -
Module 2 Blue 139 9.292 1.18x10-2 1 0.157 (0.004‑0.898) 3.13x10-2

Module 3 Brown 137 20.037 1.80x10-3 1 0.159 (0.004‑0.912) 3.09x10-2

Module 4 Green 115 21.756 1.57x10-10 3 0.569 (0.115‑1.727) 4.90x10-1

Module 5 Grey 3,907 8.083 1.00x10-200 55 0.307 (0.224‑0.415) 2.20x10-16

Module 6 Magenta 85 14.990 3.17x10-6 12 3.079 (1.509‑5.766) 1.30x10-3

Module 7 Pink 91 20.320 1.10x10-10 2 0.479 (0.057‑1.803) 4.40x10-1

Module 8 Purple 82 22.134 6.00x10-4 26 6.915 (4.186‑11.103) 2.67x10-12

Module 9 Red 105 21.649 1.57x10-6 8 1.662 (0.691‑3.452) 1.64x10-1

Module 10 Turquoise 288 36.143 7.00x10-38 67 5.074 (3.714‑6.868) 2.20x10-16

Module 11 Yellow 128 23.321 3.20x10-34 62 10.559 (7.458‑14.849) 2.20x10-16

The higher the stability parameter (Z‑score), the higher the stability of the module. In general, 5<Z<10 indicates stability and Z>10 indicates 
high stability. Phyper, P‑value calculated by the hypergeometric algorithm; DEGs, differentially expressed genes; CI, confidence interval; 
‑, not applicable.
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Through comprehensive analysis using the MetaDE 
package, the P, FDR, tau2, Q pval and Q values for each gene, 
as well as the log2FC value in each dataset, were calculated. 
According to the pre‑set thresholds, a total of 2,699 consistent 
DEGs were identified from the four datasets. The heat map 
suggested that the differential expression patterns of the 2,699 
DEGs were consistent in the four datasets (Fig. 2).

WGCNA. To ensure that the gene expression levels in each 
dataset were comparable, all gene expression values in the four 
datasets were analyzed for expression level consistency. The 
expression level and connection level correlations between all 
combinations of pairs within the four datasets were positive 
and the P‑values were significant (P<1x10-200), indicating that 
the datasets were comparable (Fig. S1).

WGCNA needed to satisfy the pre‑condition of scale‑free 
network distribution. Therefore, the value of the weighting 
parameter ‘power’ was firstly explored. Based on the GSE26440 
dataset, the square values of the correlation coefficients 
between log(k) and log[p(k)] corresponding to different power 
values were calculated. Finally, the ‘power’ value was selected 
to be 28 when the square value of the correlation coefficient 
reached 0.9 (Fig. 3A). Under the parameter of ‘power’=28, the 
mean gene connectivity was statistically analyzed. The mean 
connectivity was 1, which confirmed the small‑world property 
of the scale‑free connection network (Fig. 3B).

After the co‑expression network was constructed using 
the GSE26440 dataset as the main analysis dataset, a total 
of 11 modules were selected (Fig. 4A). The other three 
datasets including GSE26378 (Fig. 4B), GSE13904 (Fig. 4C) 

and GSE4607 (Fig. 4D) were also constructed with module 
partition. Meanwhile, module stability was evaluated and 
10 significantly stable modules across the datasets were 
obtained (Table III). The number of genes present in each 
significantly stable module are shown in Fig. 5A. Using 
clinical information of the samples in the GSE26440 dataset, 
the correlations between each significantly stable module and 
clinical information were calculated using the WGCNA cor 
and corPvalueStudent packages (Fig. 5B).

The consistent DEGs were compared to the genes within the 
significantly stable modules, resulting in the identification of 
237 overlapping genes. Enrichment and distribution situations 
of the overlapping genes in each significantly stable module 
are presented in Table III. The consistent DEGs were signifi-
cantly enriched in four stable modules, including the magenta, 
purple, turquoise, and yellow modules, which contained 12, 
26, 67 and 62 genes, respectively (P<0.05). Afterwards, enrich-
ment analysis for the genes involved in the four stable modules 
was performed and 18 GO biological process terms, including 
‘translational elongation’ (P=6.45x10-16) and ‘translation’ 
(P=2.16x10-13), as well as nine KEGG pathways, including 
‘ribosome’ (P=1.55x10 -14) and ‘Fc gamma R‑mediated 
phagocytosis’ (P=1.89x10-3) were acquired (Table IV).

Selection of the optimal gene combination and construction 
of SVM classifier. With the GSE26440 dataset as the training 
dataset, the optimal feature genes were further identified 
from the genes involved in the four stable modules. Under 
the optimal parameters (min RMSE=0.0849 and max 
accuracy=0.9262), six optimal feature genes [cysteine rich 

Figure 5. Pie chart and clinical information correlation heat map of significantly stable modules. (A) Pie chart displaying the number of genes contained 
in each of the 10 significantly stable modules. (B) Correlation heat map between each significantly stable module and the clinical information of patients, 
including age, disease status and outcome. The data are presented as the correlation coefficient (P‑value). Correlations were calculated using WGCNA cor and 
corPvalueStudent packages. The color from blue to orange indicates the correlation from ‑1 to 1, respectively.
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transmembrane module containing 1 (CYSTM1), S100 calcium 
binding protein A9 (S100A9), solute carrier family 2 member 

14 (SLC2A14), stomatin (STOM), uridine phosphorylase 1 
(uPP1) and utrophin (UTRN)] were selected.

Table IV. GO biological process terms and KEGG pathways enriched for the genes involved in the four stable modules.

a, Go analysis

Biological process term Count P‑value

GO:0006414: Translational elongation 17 6.45x10-16

GO:0006412: Translation 23 2.16x10-13

GO:0030029: Actin filament‑based process 10 3.51x10-4

GO:0030036: Actin cytoskeleton organization 9 1.06x10-3

GO:0046907: Intracellular transport 15 2.55x10-3

GO:0042254: Ribosome biogenesis 6 5.09x10-3

GO:0022613: Ribonucleoprotein complex biogenesis 7 6.01x10-3

GO:0006413: Translational initiation 4 7.88x10-3

GO:0006928: Cell motion 11 1.13x10-2

GO:0016192: Vesicle‑mediated transport 12 1.58x10-2

GO:0034621: Cellular macromolecular complex subunit organization 9 1.62x10-2

GO:0007010: Cytoskeleton organization 10 1.80x10-2

GO:0006886: Intracellular protein transport 9 2.08x10-2

GO:0034613: Cellular protein localization 9 3.39x10-2

GO:0070727: Cellular macromolecule localization 9 3.52x10-2

GO:0015031: Protein transport 13 4.44x10-2

GO:0001667: Ameboidal cell migration 3 4.44x10-2

GO:0045184: Establishment of protein localization 13 4.70x10-2

B, KEGG analysis

Pathway Count P‑value

hsa03010: Ribosome 15 1.55x10-14

hsa04666: Fc gamma R‑mediated phagocytosis 5 1.89x10-3

hsa04810: Regulation of actin cytoskeleton 6 8.13x10-3

hsa05110: Vibrio cholerae infection 3 1.22x10-2

hsa04062: Chemokine signaling pathway 4 3.30x10-2

hsa04130: SNARE interactions in vesicular transport 2 3.40x10-2

hsa04670: Leukocyte transendothelial migration 3 3.66x10-2

hsa04360: Axon guidance 3 4.09x10-2

hsa00190: Oxidative phosphorylation 3 4.13x10-2

GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes.

Table V. Indexes for assessing the efficiency of the support vector machine classifier in the training and validation datasets.

Dataset Precision rate Sensitivity Specificity PPV NPV AUROC

GSE26440 0.977 0.989 0.939 0.979 0.969 0.994
GSE26378 0.961 1.000 0.840 0.951 1.000 0.990
GSE13904 0.976 1.000 0.900 0.970 1.000 0.983
GSE4607 0.947 0.976 0.875 0.952 0.933 0.951

Precision rate was calculated as follows: True positive/(true positive + false positive). PPV, positive predictive value; NPV, negative predictive 
value; AUROC, area under receiver operating characteristic.
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Based on the six optimal feature genes, an SVM classifier 
was constructed within the GSE26440 dataset. Subsequently, 

the efficiency of the SVM classifier in the training and valida-
tion datasets was assessed. All the precision rates, calculated 

Figure 7. Expression of the six optimal genes in the four datasets. Column chart for (A) GSE26440, (B) GSE26378, (C) GSE13904 and (D) GSE4607. 
***P<0.005 vs. the control group. SS, septic shock; CTRL, control; CYSTM1, cysteine rich transmembrane module containing 1; S100A9, S100 calcium binding 
protein A9; SLC2A14, solute carrier family 2 member 14; STOM, stomatin; UPP1, uridine phosphorylase 1; UTRN, utrophin.

Figure 6. ROC curves based on the six optimal feature genes. ROC curves for GSE26440, GSE26378, GSE13904 and GSE4607 are displayed in black, red, 
blue and green, respectively. ROC, receiver operating characteristic.
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as true positive/(true positive + false positive), (Table V) and 
AUROC values (Fig. 6) were >0.9, suggested that the SVM 
classifier could accurately discriminate PSS samples from 
control samples. In addition, the expression of the six optimal 
genes in the four datasets was analyzed. The results suggested 
that the expression differences of the six optimal genes were 
consistent in the four datasets. The UTRN gene was signifi-
cantly downregulated in the PSS samples (P<0.005), whereas 
the other five genes were significantly upregulated in the PSS 
samples (P<0.005; Fig. 7).

Discussion

in the present study, 2,699 consistent deGs were screened 
from four datasets and 10 significantly stable modules across 
the datasets were obtained, based on WGCNA. Subsequently, 
the consistent deGs were found to be enriched in the four 
stable modules, including the magenta, purple, turquoise, and 
yellow modules, which contained 12, 26, 67 and 62 genes, 
respectively. Moreover, six optimal feature genes (CYSTM1, 
S100a9, Slc2a14, SToM, uPP1 and uTrn) were identi-
fied from the genes included in the four stable modules. 
Additionally, an effective SVM classifier based on the six 
optimal genes was constructed. The results from the ROC 
curve analysis showed that the SVM classifier had high sensi-
tivity and specificity in discriminating patients with PSS 
from normal subjects. To the best of our knowledge, an SVM 
classifier for SS diagnosis has not been reported previously. 
Therefore, the SVM classifier of six optimal genes developed 
in the present study may aid in the early identification of 
patients with PSS in clinical practice.

S100A9, constitutively expressed in neutrophils, is 
a member of the alarmins family, and exhibits several 
immune functions, including immunological defense and 
homeostasis (30). Upregulation of S100a9 at the mRNA 
level in SS is related to the occurrence of hospital‑acquired 
infections following SS and may contribute to the early iden-
tification of patients at high risk of infection (31). Moreover, 
S100A8/S100A9 alarmins compromise the suppression of 
the immune system by myeloid‑derived suppressor cells, a 
specific inflammatory monocyte population, by repressing 
their expansion, thus preventing the development of SS in 
neonates (32). Endotoxin tolerance (ET) is a critical immune 
dysfunction related to SS (33). Elevated S100A8 and S100A9 
expression has been shown to be induced in ex vivo models 
of ET, suggesting that these two genes may serve as prom-
ising biomarkers of ET and therefore providing valuable 
information for immunotherapy of patients with SS (34). 
The present study suggested that S100A9 is closely related 
to the development and diagnosis of PSS. CYSTM1 confers 
tolerance and stress responses to heavy metals (35) and is 
a novel biomarker in Huntington's disease (36). The role of 
CYSTM1 in PSS is not completely understood. The results 
of the present study indicated that CYSTM1 might have a 
role in the mechanisms of PSS by interacting with other 
genes in the stable modules.

Previous studies have revealed that genetic variations in 
Slc2a14 are involved in the development and progression 
of chronic diseases, including inflammatory bowel disease 
(IBD) and Alzheimer's disease (37‑39). The facilitated glucose 

transporter 14 encoded by SLC2A14 promotes the develop-
ment of IBD and may be applied for precision intervention of 
IBD (38). SLP‑2 belongs to the stomatin protein family, plays 
a critical role in T cell activation and is a candidate target for 
immunomodulation (40). STOM expression is dysregulated 
between septic children and healthy controls and may be a 
diagnostic marker for pediatric sepsis (41). The present study 
revealed that SLC2A14 and STOM might be involved in the 
pathogenesis of PSS by mediating the inflammatory immune 
response.

UPP1 functions in the homeostatic regulation of 
intracellular uridine concentrations and the activation of 
fluoropyrimidine nucleoside chemotherapeutic agents (42). 
Uridine displays anti‑inflammatory action during lung 
inflammation (43). UTRN upregulation is implicated in the 
immune reaction in Duchenne muscular dystrophy mouse 
models (44). UTRN upregulation induced by proinflam-
matory factor‑associated post‑transcriptional mechanisms 
exhibits an antidystrophic effect (45). Therefore, the present 
study suggested that UPP1 and UTRN might act in the devel-
opment and progression of PSS by affecting inflammation 
and immune reactions as well.

To the best of our knowledge, the present study is the first 
to report the diagnostic value of the aforementioned six genes 
for PSS. The six genes may be useful biomarkers for the early 
detection of PSS. However, in the present study the genes were 
not confirmed experimentally, therefore, further investigation 
is required to validate the results of the present study.

In conclusion, 2,699 consistent DEGs from four GEO 
datasets were analyzed in the present study. Furthermore, a 
SVM classifier based on six optimal genes was constructed for 
the accurate diagnosis of PSS, which may assist in the early 
identification of PSS and provide useful guidance for clinical 
interventions.
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