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Abstract: Nucleoli form around actively transcribed ribosomal RNA (rRNA) genes (rDNA), and the
morphology and location of nucleolus-associated genomic domains (NADs) are linked to the RNA
Polymerase I (Pol I) transcription status. The number of rDNA repeats (and the proportion of actively
transcribed rRNA genes) is variable between cell types, individuals and disease state. Substantial
changes in nucleolar morphology and size accompanied by concomitant changes in the Pol I tran-
scription rate have long been documented during normal cell cycle progression, development and
malignant transformation. This demonstrates how dynamic the nucleolar structure can be. Here,
we will discuss how the structure of the rDNA loci, the nucleolus and the rate of Pol I transcription
are important for dynamic regulation of global gene expression and genome stability, e.g., through
the modulation of long-range genomic interactions with the suppressive NAD environment. These
observations support an emerging paradigm whereby the rDNA repeats and the nucleolus play a key
regulatory role in cellular homeostasis during normal development as well as disease, independent
of their role in determining ribosome capacity and cellular growth rates.

Keywords: nucleolus; nucleolar associated domain (NAD); ribosomal genes; RNA polymerase I;
transcription; heterochromatin; genome architecture; cell fate; differentiation; cancer

1. Nucleoli and the rDNA Genes

Although genetic information is encoded in a linear DNA sequence, the transcription
of particular genes (or gene clusters) depends on the surrounding chromatin structure and
higher-order chromosomal interactions. Eukaryotic chromatin is tightly packed into the
nucleus with a portion compressed into subnuclear domains, one of which is the nucleolus.
Nucleoli form around ribosomal RNA (rRNA) genes (rDNA) and dictate the nucleolar
morphology and the positioning of nucleolar-associated chromatin domains (NADs) within
the nucleus. rRNA genes were first visualized in yeast in the late 1960s by Miller and Beatty
using Miller spreads, which provided structural details of actively transcribed rRNA genes,
specifically showing a single rDNA repeat transcribed by a multitude of RNA Polymerase
I (Pol I) complexes, which they described as the Christmas tree structure [1]. These
preparations further revealed that around 100 Pol I molecules simultaneously transcribe
one gene at a speed of approximately 95 nucleotides/second [2]. In higher eukaryotes,
the presence of histones in the transcribed region is a matter of debate, but it is widely
accepted that the transcribed region is deprived of fully assembled nucleosomes [2,3],
which are replaced by upstream binding factor (UBTF). The transcribed 47S precursor
rRNA (pre-rRNA) is rapidly processed into the mature 28S, 5.8S and 18S rRNA, which
assemble together with the 5S rRNA synthesized by RNA Polymerase III and approximately
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79 ribosomal proteins translated from mRNAs transcribed by RNA Polymerase II (Pol II)
into the 40S and 60S ribosomal subunits. While the process of ribosome biogenesis (RiBi)
has long been associated with the nucleolus, more recently other essential non-ribosomal
cellular functions have been attributed to this nuclear subdomain. The nucleolus is now
recognized as a plurifunctional hub coordinating the nucleolar surveillance pathway in
response to cellular stress [4–8], a modulator of genome architecture [9–11] and a phase-
separated compartment for protein quality control [12].

2. Canonical and Non-Canonical rDNA Repeats

In humans, the rDNA genes are arranged in a head-to-tail orientation forming repeat
arrays organized in the nucleolar organizer regions (NOR) at the short arm of the 5 acro-
centric chromosomes. The precise organization and exact number of repeats is species, cell
type and age dependent [13,14]. Canonical repeats in human cells are 43–45 kb in length
and composed of a core and spacer promoter, a transcribed region containing both a 5′ and
3′ external transcribed spacer region (ETS), two internal transcribed spacer regions (ITS)
and the 18S, 5.8S and 28S rRNA coding regions, with each individual repeat separated
by a non-coding intergenic spacer (IGS; ~30 kb) [15] (Figure 1). In higher eukaryotes,
the core promoter dictates transcription of the pre-47S rRNA [16,17], whereas the spacer
promoter [18–21] mediates transcription of non-coding RNAs (see below). Transcription
termination factor 1 (TTF-1) binds to the transcription terminator sites downstream of the
28S coding region and blocks Pol I elongation [22–24].
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chromosomes. Organization of a single rDNA gene: enhancer, upstream control element (UCE), core
promoter (CORE), 5′/3′ external transcribed spacer (ETS), 18S, 5.8S, 28S, internal transcribed spacer
(ITS1/2), and transcription terminator factor 1 (TTF-1) site.

The upstream transcription enhancer elements (UTEEs), also known as the spacer
promoter enhancer repeat, are another regulatory element located in the IGS [25]. This is
the site of the formation of an enhancer boundary complex formed by CCCTC-binding
factor (CTCF) and cohesion [24].

Upstream the enhancer boundary complex is flanked by nucleosomes, while down-
stream various components of the Pol I basal transcription apparatus were found, including
Pol I, selectively factor -1 (SL-1), UBTF, RRN3, and TTF-1. The functional significance of
these components is unclear as they are not involved in transcription. This is probably an
artefact caused by the spatial proximity of the enhancer boundary complex and the core
promoter, which leads to cross-linking of factors associated with the core promoter and
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the UTEE. It has been proposed that the enhancer boundary complex forms and serves as
entry points for chromatin remodelling [24].

Traditionally, with exception of the IGS, which mainly contains repetitive sequences
and transposable elements, the rRNA genes are believed to be highly conserved among
species; however, increasing evidence suggest that not all rRNA genes are identical and
instead exist in several variants [26–28]. The first report of a non-canonical rDNA repeat
was by Caburet et al. in 2005, describing palindromic sequences arranged as mosaics with
canonical repeats in human NORs [29].

The concept of heterogeneous rDNA repeats and copy number variation was further
strengthened by two recent studies (Parks et al. and Wang and Lemos), which analysed
whole genome sequencing data from the 1000 genome project [14] and different cancer
types [13]. Parks and colleagues revealed that rDNA copy numbers varied greatly (about
tenfold) between individuals within a human population and discovered pervasive inter-
and intra-individual rDNA sequence variability. Interestingly, rRNA sequence variations
are often associated with functionally important sites. For example, rRNA variations
affecting inter-subunit bridge elements that establish the binding interface, linking the
small and large ribosomal subunits impact on translation [14]. The same study described
tissue-specific expression of rRNA variants in mice [14].

Analysis of over 700 tumours and corresponding normal tissues revealed a coupling
of 5S rDNA array expansion with a loss of 45S repeats, which was most prevalent in TP53
mutant cancers. However, these variations were considered within the limits of natural
variability and did not mediate an overall decrease in rDNA transcriptional output per cell.
Two studies (Wang et al. and Ida et al.) hypothesized that loss of copies of 45S rDNA may
be caused by replicative stress, as a result of rapid replication and high rDNA transcription
rates affecting sister chromatid cohesion. They suggested that this loss would be beneficial
for cancer cells as excessive 45S rDNA copy numbers are believed to promote genomic
stability by facilitating recombinational repair [13,30]. The same study discussed the
concept that loss of 45S copy numbers may be compensated for by epigenetic mechanisms
controlling rDNA transcription. Thus, it is not surprising that loss of chromatin remodeller
ATRX (α thalassemia/mental retardation X-linked), a member of the SWI/SNF family of
helicase/ATPases, causes a substantial reduction in rDNA copy number [31].

In conclusion, genome-wide sequencing analysis [13,14] and genetic studies [31]
suggest that the once considered conserved rDNA arrays are in fact one of the most
variable regions of the genome.

3. Pol I Transcription Machinery

Three key “basal” Pol I transcription factors have thus far been identified; these are SL-
1, Pol I associated regulatory factor RRN3 (also called TIFIA) and UBTF (also called UBF).

SL-1 is a complex of the TATA-binding protein (TBP) and 4 TATA-binding protein-
associated factors (TAF), TAFI48 (TAF1A), TAFI63 (TAF1B), TAFI110 (TAF1C) and TAFI41
(TAF1D) [21,32]. SL-1 is responsible for promoter recognition [33] and together with UBTF,
a high-mobility group (HMG) box protein (UBTF1 and UBTF2), drives the initial steps
of pre-initiation complex (PIC) formation [34]. SL-1 binding to the CORE of the rDNA
promoter is followed by binding of UBTF homodimers to both the CORE and upstream
core element (UCE), which initiates rDNA promoter looping, bringing both regions into
close proximity and thus stabilizing SL-1 [35–37]. How UBTF is recruited remains unclear;
however, one study by van de Noebelen et al. suggested that CTCF may facilitate this
process [38].

RRN3 has a unique HEAT repeat fold and regulatory serine phosphorylation sites [39].
RRN3 interacts with SL-1 to recruit the Pol I complex, the “core” Pol I subunits and
auxiliary factors [40] to the promoter, thereby completing the formation of the PIC. After
transcription initiation, RRN3 is released coinciding with the dissociation of the Pol I
complex from promoter-bound initiation factors (promoter escape) [36,41–43].
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UBTF not only acts as an archetypal transcription activator but also facilitates post-
initiation events [36] via a variety of reported mechanisms. UBTF interacts with a het-
erodimer of two Pol I subunits, polymerase associated factor (PAF) 53 and CD3ε-associated
signal transducer (CAST, also known as PAF49) to facilitate promoter escape [44]. In
addition, UBTF regulates the elongation rate of Pol I by binding within the transcribed
region of the rDNA where it forms so-called enhanceosomes, although this is still a matter
of debate and awaits definitive structural analysis of UBTF on the rDNA [35]. In addition,
UBTF binding affinity to the rDNA is regulated by differential phosphorylation [45–48].

More globally, UBTF1 has been reported to remodel chromatin, such as converting
inactive rRNA genes into active chromatin by displacing linker histone 1 histones [24,49,50],
as their binding is mutually exclusive, while UBTF2 exhibits no chromatin remodelling
activity. Thus, UBTF1 is critical for the topological organization of the rDNA repeats. UBTF
is also critical during mitosis as it remains constitutively bound to the rDNA pausing
transcription; thus, it is thought to ‘bookmark’ active genes to facilitate re-initiation of
transcription when cells enter the interphase [51]. This mitotic bookmarking enables UBTF
to play a central role in the formation of NORs and maintaining secondary constrictions at
active NORs [52,53]. Based on the UBTFs’ extensive binding across active genes and their
absence in the IGS (except for the enhancer and promoter regions), it is considered a mark
of euchromatic rDNA.

Around two decades ago, two distinct Pol I subcomplexes were identified initially in
yeast and later in humans (Pol Iα and Pol Iβ) [40,41]. Both subcomplexes were catalytically
active, but only one representing a small proportion of total cellular Pol I (2–10%) was
competent to initiate transcription from the rDNA promoter. The competence to initiate
transcription was determined by the presence of RRN3. The subcomplexes consist of
12–13 so-called “core” subunits but associate with a different set of auxiliary factors that
further determine the functionality of these complexes. For example Pol Iα, which is the
elongating form of Pol I, contains histone chaperone FACT (facilitates ATP-independent nu-
cleosome remodelling) [54], whereas Pol Iβ, which is the initiating form of Pol I, is defined
by the presence of RRN3, DNA topoisomerase (Top) IIα and casein kinase II [40,55–59].
As Pol I starts transcribing, the resultant nascent rRNA immediately associates with the
pre-RNA processing machinery, tightly coupling rRNA synthesis and maturation [60]. In
addition to the above “core” components of the Pol I transcription machinery, a multitude
of other factors, such as nucleolin, nucleophosmin, Top I/II and chromatin-remodelling
complexes [58,61,62], have been implicated in the regulation of Pol I loading and elongation.
Finally, as mentioned above, termination of Pol I elongation and its dissociation is mediated
by TTF-1 binding to the terminator elements [63].

4. Regulation of Ribosomal Gene Transcription

Pol I transcription is regulated in response to extracellular (e.g., environmental stimuli,
stresses) or intracellular (e.g., cell cycle, cell growth) stimuli by a number of mutually non-
exclusive mechanisms, including post-translational modification of the Pol I machinery,
alterations in rDNA topology, changes in rDNA chromatin structure and through non-
coding RNAs [64].

In response to environmental stimuli (e.g., growth factors) and various stresses (e.g.,
DNA damage), components of the Pol I transcription machinery are targeted by a number
of signalling pathways, including PI3K-mTOR, RAF-MEK-ERK, AMPK and AKT signalling,
which often converge, forming a complex signalling network [65–73]. Importantly, the
severity and duration of cellular stresses (e.g., starvation, DNA damage, heat shock)
induce differential activation of these pathways and alter the epigenetic landscape of the
rDNA via chromatin modifiers and remodellers, leading to the changes in chromatin
accessibility [74–77]. Apart from Pol I-specific transcription factors (TF), a range of other
TF’s and oncogenes, previously only associated with Pol II-dependent transcription, have
now been reported to also modulate rRNA synthesis. For example, acute myeloid leukemia
(AML) 1-ETO, an AML-specific fusion-protein, has been reported to bind to human rRNA
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genes and promote Pol I transcription in malignant myeloid cells [78], while AML1 (Runx1)
downregulates Pol I transcription [78].

In general, DNA topology is affected by transcription and replication. Top are a family
of enzymes that release torsional stress at transcribed and replicated DNA loci. Two types
of Top, Type I and Type II, relax supercoiled DNA by catalysing either single-strand or
double-strand DNA breaks, facilitating DNA rotation or the passage of one DNA strand
and re-ligation.

Experiments in yeast showed that Top I is involved in alleviation of the negative
superhelical density formed behind elongating Pol I, whereas Top II is required for resolving
positive supercoiling formed ahead of the transcription complex [79].

More recently, Denissov et al. revealed that regulatory elements, including the pro-
moter, upstream region and terminator of actively transcribed genes, spatially interact
throughout the cell cycle, forming so-called core–helix structures and Top I plays an essen-
tial role in maintaining this topology [80]. This rDNA loop formation brings the initiation
and termination sites into close proximity, which was suggested as a means to facilitate the
‘recycling’ of Pol I complexes. A number of factors, including TTF-1 and c-Myc, have also
been identified as being involved in this loop formation. Direct evidence of active rDNA
looping was recently presented by Maiser and colleagues [81]. Ray et al. showed that, in
human cells, Top IIα altered the rDNA topology at the rRNA core promoter and this was
required for the assembly of functional PICs [58].

Non-coding RNAs were first described as regulators of rDNA transcription over a
decade ago [82], specifically as being critical for rDNA silencing by facilitating the interac-
tion between the nucleolar remodelling complex (NoRC) subunit TTF-1 interacting protein
(Tip5) and TTF-1 [27,83]. These non-coding RNAs are proposed to promote heterochro-
matin formation at the rDNA and other chromosomal repeats [84,85] (for recent reviews,
see [86,87]).

Interestingly, Abraham et al. proposed recently that Pol II-driven production of anti-
sense transcripts originated from the rDNA IGS facilitated the formation of DNA–RNA
hybrid structures, known as R-loops, at the boundaries of the IGS and coding rDNA regions.
R-loops prevented Pol I-driven transcription of the IGS and also the production of sense
intergenic noncoding RNAs (sincRNAs) that can negatively affect rRNA transcription [88].
These findings provide a potential direct mechanism that couples both Pol II and Pol I
transcription activities.

5. rDNA Chromatin Dynamics

It is well established that chromatin undergoes extensive and dynamic remodelling in
order to modulate gene transcription. While repositioning and remodelling of nucleosomes,
plus modifications of histones at specific sites (e.g., promoters), are central to the control of
gene transcription, earlier studies in yeast and Drosophila oocytes suggested that actively
transcribed rRNA genes were nucleosome depleted [89,90]. However, this view was
challenged by another chromatin study in yeast revealing that active rRNA genes were
indeed associated with histones and nucleosomes [91]. Currently, there is no consensus as
to whether in higher eukaryotes actively transcribed rDNA are associated with functional
nucleosomes or core histones, such as those typically located on Pol II-transcribed genes.
A number of studies have demonstrated that histones H3 and H4 are associated with
transcribed rDNA in human cells [74,92], while other studies disagree [24,87].

Integrative genomic analysis of human and mouse embryonic stem cells (ESCs) re-
vealed similarities in the enrichment of euchromatic and heterochromatic histone marks
~2 kb upstream of the rDNA core promoter, while the other regions within the rDNA were
markedly different [93,94]. A recent study by Herdman and colleagues reported active
histone marks (H3K4me2/3, H2A.Z/ac, H3K9ac, H3K27ac and H3K36me3) exclusively
in the enhancer region but not within the transcribed region or the IGS upstream of the
enhancer boundary complex [24]. Interestingly, in nutrient-starved cells, histone H3 was
found associated with the transcribed regions of active rDNA repeats, but this was rapidly



Genes 2021, 12, 763 6 of 17

removed when the cells recovered from starvation [74], highlighting the dynamic nature of
rDNA chromatin.

A landmark study in 2008 presented evidence that, in fact, the rDNA repeats exist
in three distinct chromatin configurations: (i) transcriptionally active rDNA repeats that
are hypo-CpG methylated at the promoter-specific CpG, enriched for euchromatin histone
marks and bound by UBTF; (ii) pseudo-silent/poised rDNA repeats that are hypo-CpG
methylated at the promoter, bear repressive histone modifications, but are not bound by
UBTF, and thus exist in a closed chromatin conformation; and (iii) silent rDNA repeats that
are promoter hyper-CpG methylated and associated with heterochromatic histone marks
adopting a highly compact chromatin state [50]. The silencing of the rDNA repeats is
promoted by NoRC, a complex which recruits histone and DNA modifiers such as histone
deacetylases 1 (HDAC1) and DNA methyltransferase 1/3a (DNMT1/3a) to the rDNA [76].

In contrast to the promoter-associated CpG methylation, the presence of CpG methy-
lation within the rDNA coding region and its association with active transcription is still a
matter of debate and complicated by their repetitive multi-copy nature. A recent study by
Wang and Lemos reported that the rDNA CpG hypermethylation strongly correlated with
aging, thus serving as an evolutionarily conserved biological clock [95]. However, no link
between age-mediated methylation and the level of rRNA transcription has been reported.

The transcriptional pseudo-silent/poised rDNA chromatin conformation is estab-
lished by nucleosome remodelling by deacetylation complexes (e.g., NuRD [96] and
eNoSc [75]). While these poised rDNA promoters are unmethylated and have nucleo-
somes positioned to prevent transcriptional initiation, they are often characterized by
either bivalent histone modifications (e.g., H3K4me3 and H3K27me3) or fully repressive
histone marks (e.g., H3K4me1/2 and H3K9me3). Re-activation of transcription in this
case will depend on the re-positioning of a nucleosome at the rDNA promoter by the
DNA-dependent ATPase Cockayne syndrome protein B (CSB) [96] and histone modifica-
tions by the coordinated actions of histone methyltransferases (e.g., MLL1–2 [97]), histone
demethylases (e.g., PHF8 [98], KDM4A [74] and G9a [99]) and histone acetyltransferases
(e.g., PCAF [100]). It is feasible to propose that these enzymes are not acting alone but are
in fact part of a large activating complex. This idea is supported by data showing that
many chromatin modifiers involved in the activation of rDNA transcription interact with
the scaffold protein WD repeat-containing protein (WDR)5 [101,102].

Despite acknowledged species-specific differences in nucleosome occupancy at ac-
tively transcribed ribosomal genes, this remains a “hot-topic” of discussion. To add to the
epigenetic complexity of rDNA chromatin, a number of non-canonical histone variants
have been identified that bind to the rDNA. For example, histone H3.3, a variant previ-
ously described to be involved in transcriptional activation as well as gene silencing, was
recently demonstrated to bind to the rDNA [31]. Other histone variants, e.g., H2AZ, was
located on the IGS region of the rDNA and incorporated into the rDNA under high glucose
conditions [103,104]. Interestingly, phosphorylated H1.2 and H1.4 variants of histone H1,
which are commonly associated with inactive rDNA chromatin, were found to promote
transcription of the rDNA genes [103,105].

In addition to histones and Pol I-specific TFs, there are ubiquitous DNA-binding
proteins, such as CTCF, and structural maintenance of chromosome (SMC) complexes, such
as cohesin and condensin [38,106,107], which can bind and modulate the epigenetic state
of the rDNA genes. CTCF binds upstream of the rDNA spacer promoter and interacts with
UBTF and other Pol I complex components, suggesting it is a regulator of Pol I transcription
and rDNA chromatin. This was further supported by the finding that CTCF depletion
reduced UBTF and Pol I binding near the spacer promoter [38]. Although these proteins
are not considered components of the core transcription machinery, they are integral to the
structure of rDNA chromatin [24,87,108].

Overall, regulation of rDNA chromatin structure plays a pivotal role in maintaining
the balance between actively transcribed, pseudo-silenced and silenced rDNA repeats, and
thus is crucial for controlled responses to, e.g., stress, development, aging and genomic
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instability. Despite the identification of a number of key players, our understanding of
these complex mechanisms, and in particular the crosstalk between them, is still limited,
and the focus of ongoing research.

6. Role of the Nucleolus in Spatial Genome Organization and Pol II Transcription

The overall three-dimensional (3D) organization of the genome highly depends on the
formation of chromatin contacts within and/or between each chromosome and the nuclear
domain. These types of interactions include: (i) chromatin loop formation that bypass long
genomic distances and connect distant genomic regions, such as enhancers and promoters;
(ii) the formation of topologically associated domains (TADs) that are local-interacting
DNA neighbourhoods; and (iii) regions where genomic loci interaction is driven by their
transcriptional activity.

Several studies have demonstrated a direct role for the nucleolus in genome organi-
zation and as a global modulator of all transcription (Pol I, II and III) [9–11,109–111]. The
nucleolar periphery contains satellite DNA repeats that form a perinucleolar heterochro-
matic dense shell. Specific genomic regions located in the perinucleolar region are called
nucleolus-associated domains (NADs) (for a recent review, see [110]), whereas those asso-
ciated with nuclear lamina are called LADs; however, in humans, a proportion of NADs
and LADs overlap (Figure 2). NADs were first described in 2010 by two groups, van Kon-
ingsbruggen et al. and Nemeth et al., who demonstrated that specific genomic sequences
interact with the nucleolus (around 4% of the genome) [9,11]. Using complementary ap-
proaches of fluorescence in situ hybridization (FISH) and DNA sequencing, they described
the NAD-interacting genomic domains as being generally located in gene-poor regions but
did identify a number of specific gene families, including zinc-finger, olfactory receptor and
defensin genes, as well as satellite pericentromeric and centromeric repetitive sequences,
regions of the inactive X-chromosome (Xi), as being enriched with NADs. Further, some
tissue-specific expressed gene clusters were reported as associated with NADs, including
two immunoglobulin clusters and T-cell receptor genes [9,11]. Analysis of RNA coding
genes revealed an enrichment of Pol III-dependent 5S and transfer RNA genes in NADs,
suggesting that their spatial organization within the nucleus may play a key role in their
transcriptional regulation. This idea was further supported by the finding that NADs are
enriched in repressive histone marks, such as H3K27me3, H3K9me3 and H4K20me3, while
active marks are excluded, which correlated with a decrease in global gene expression of
NAD-associated loci [9]. In fact, NADs are nuclear territories with their proposed primary
function being the maintenance of heterochromatin at interacting regions. For example,
the Xi continuously revisits the nucleolus during cell cycle progression through S phase to
maintain its heterochromatic state [112].

However, NADs are not solely enriched on transcriptionally silenced genes; a number
of highly transcribed Pol III-dependent RNA genes are also NAD associated. The dynamic
regulation of the NAD interactions with genomic loci still requires intensive study. Com-
parative Hi-C analysis of NAD interactions in human embryonic fibroblasts revealed that
surprisingly most of these interactions remained unchanged when comparing proliferating
and senescent cells, with the exception of specific satellite sequence clusters that segregate
from the nucleoli after cells underwent replicative senescence [113]. To shed more light onto
the dynamic nature of NAD interactions and whether those interactions may contribute
to disease development, Diesch and colleagues mapped genomic loci interacting with the
nucleolus during malignant transformation [10]. Remarkably, the study demonstrated that
Myc-driven malignant transformation of B-cells is associated with a significant increase
and reorganization of rDNA-NAD contacts due to activation of previously silent rDNA
genes (rDNA class switching). This spatial rearrangement correlated with gene expres-
sion changes at associated genomic loci, impacting the Pol II-transcribed gene ontologies,
including B-cell differentiation, cell growth and metabolism, changes that contribute to
malignant cell fitness [10]. Moreover, these studies support, for the first time, a model
where structural changes in rDNA chromatin and subsequent rDNA-NAD reorganization
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promote gene expression changes at associated loci, which influence clonal selection of a
malignant cell population (Figure 2).
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Interestingly, most of the developmental Hox gene clusters rarely associated with
the rDNA, supporting the idea of a highly coordinated framework of spatially and tem-
porally defined genomic interactions [114]. A recent study by Vertii et al. revealed an
even more complex situation, describing two functionally distinct classes of NADs in
mouse embryonic fibroblasts. Heterochromatic Type I NADs were associated with low
transcriptional activity and late DNA replication, and linked with both the nucleolar pe-
riphery and nuclear lamina. In contrast, Type II NADs exhibit higher Pol II-dependent
gene transcription regulating genes important for development, earlier replication and
were exclusively localized to the nucleoli and not the nuclear lamina [109]. The discovery
of distinct types of NADs was further supported by a recent study that identified two NAD
subtypes in mouse ESCs [115]. Although earlier studies suggested a stochastic recruitment
of heterochromatic loci to either the nuclear lamina or nucleolar periphery, the dynamic
nature and trans-acting factors, such as lamin B receptor and chromatin assembly factor 1
subunit p150, which modulate LAD and NAD localization, suggests that at least some loci
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are specifically recruited to one or the other [116,117]. The underlying mechanism of how
NADs are recruited to the nucleolar periphery and how these interactions are dynamically
regulated is still unknown; however, several studies imply that phase separation plays an
important role [118].

Therefore, the number and size of nucleoli, which depends on the rate of Pol I tran-
scription, can drive changes in the spatial organization of the genome, which directly
modulates the global transcriptome. These findings indicate another layer of 3D transcrip-
tional regulation, potentially playing an important role during normal cellular processes
such as differentiation and aging, but may also, if dysregulated, be associated with malig-
nant transformation.

7. Pol I Transcription in Differentiation and Development

The first link between Pol I transcription and differentiation dates back to the 1940s
where high levels of rRNA synthesis and large nucleoli were observed in stem cells while
rates attenuated as cells differentiated. These observations were further confirmed by
subsequent studies, e.g., Altmann and Leblond revealed that nucleolar morphology and
size changes were associated with a loss in rRNA synthesis when columnar cells matured
and migrated from the crypt to the villus in rats [119]. Consistent with the decline in Pol
I transcription, the level and/or activity of SL-1, UBTF and other RiBi-associated factors
decrease upon differentiation, accompanied with changes in rDNA chromatin [120–129].

Another line of evidence supporting the notion that rDNA transcription is directly
involved in the regulation/maintenance of pluripotency and differentiation is the fact
that canonical pluripotency factors, such as Oct3–4/POU5F1, Nanog and Klf4, bind to the
regulatory and transcribed regions of rDNA in mouse ESC, and this was also confirmed
for Oct3–4/POU5F1 [94] in human ESC. In parallel to the loss of pluripotency TF binding
at the rDNA, lineage commitment factors C/EBPbeta, MyoD and Mng TFs are recruited to
the rDNA and suppress rDNA transcription during differentiation [130].

Thus, for many years, the decrease in the level of rRNA synthesis was regarded as a
consequence of differentiation due to reduced metabolic requirements rather than being
a driver. This view is now challenged by an increasing number of studies showing that
inhibition of Pol I transcription can drive cell differentiation. A study by Hein et al. revealed
that pharmacological inhibition of Pol I in murine models of AML and human AML cell
lines led to an increase in apoptotic cell death, a delay in cell cycle progression and the
induction of myeloid differentiation in leukemic blasts [131]. In line with these findings,
Hayashi et al. showed that knockdown of TIF-1A (RRN3) induces differentiation in normal
mouse haematopoietic stem cells (HSC). Interestingly, mouse HSC have moderate levels of
rRNA transcription that progressively increases in lineage-committed progenitors while
rRNA transcription levels are low in terminally differentiated cells [132].

Prakesh et al. described the dynamic regulation of rRNA transcription during
epithelial–mesenchymal transition (EMT) in breast cancer. While rRNA transcription
and processing as well as RiBi-associated factors, including UBTF, RRN3 and nucleolin,
are transiently increased during EMT, mesenchymal cells have reduced Pol I transcription.
The elevation of rRNA transcription observed during EMT resulted from previously si-
lenced rDNA repeats being activated by the release of TIP5 from the rDNA promoter, a
decrease in rDNA promoter methylation and increase in H3Kme3 and H3K27ac. Interest-
ingly, Snail1, a key regulator of EMT, is also recruited to the rDNA while cells undergo
EMT [133]. Pharmaceutical inhibition of Pol I transcription halts EMT and induces tumour
cell differentiation to a non-invasive, luminal phenotype in MMTV PyMT mice [133]. Other
compelling evidence were observed in Drosophila ovarian germline stem cells (GSCs). GSCs
are enriched for RiBi factors and display high levels of Pol I transcription compared to
their differentiating daughter cell. Depletion of the Drosophila SL-1-like complex subunits
under-developed (Udd) and TAF1B, resulted in reduced GSC proliferation and GSC loss.
In contrast, overexpression of TIF-IA (RRN3) increased rRNA synthesis and impaired GSC
differentiation [127].
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Understanding how Pol I transcription and differentiation are mechanically linked is
critical, as both are inherently important for normal development but are frequently (but not
universally) altered in cancer. The observation that Pol I transcription inhibition induces
differentiation gives rise to the speculation that elevated rates of rRNA transcription
may cause an opposite effect and induce (or at least contribute) the differentiation defect
observed in malignancies. Further, it would explain why inhibition of Pol I restores a
cancer cell’s ability to undergo differentiation. How the rate of rRNA synthesis affects
cell fate requires further investigation. A possible mechanism may involve changes in
long-range rDNA–NAD interactions caused by changes in the rate of Pol I transcription.
As the level of transcription determines nucleolar size and morphology, and thus the sub-
nucleolar organization of rRNA genes, changes in the rate of Pol I transcription will alter
these and subsequently reorganize the rDNA–NAD interactome, potentially changing Pol
II-dependent gene expression programs associated with pluripotency and differentiation.

Collectively, these findings provide strong evidence that rRNA synthesis is critical for
stem cell maintenance, and its downregulation can drive differentiation.

8. How the Nucleolus and Ribosomal Genes Maintain Genome Stability

Over the last decade, our concept of the nucleolus has emerged from being simply the
site of RiBi to a multifunctional hub. Studies of the nucleolar proteome provided the first
evidence by revealing that, of the total number of ~4500 proteins sequestered in the nucleo-
lus, a large percentage was not associated with RiBi. For example, a significant number of
DNA-damage response (DDR) proteins, including ~130 DNA repair proteins [134–136],
are enriched in the nucleolus. Whether the nucleolus is their site of action or it primarily
serves as a deposition site remains under investigation; it is clear, however, that in response
to DNA damage some nucleolar proteins and importantly the rDNA relocates to specific
sub-nucleolar domains, e.g., nucleolar caps, promoting the idea that the nucleolus may
coordinate the DDR. Interestingly a number of studies have also now revealed that some
DNA repair proteins, including APEX1, BLM, HUWE1, RPS27A/eS31 and BRCA1, have
additional functional roles in RiBi [134,137]. In addition, some RiBi factors are also involved
in DNA repair, such as the nucleolar protein Treacher Collins syndrome protein 1 (TCOF1),
which regulates Pol I transcription and is mutated in Treacher Collins syndrome [138]. A
role for TCOF1 in DDR has been reported by two groups, Larsen et al. and Ciccia et al.,
demonstrating that the Nijmegen breakage syndrome protein 1 (NBS1)-TCOF1 complex
mediates silencing of ribosomal gene transcription and also transiently binds to DNA
double-stranded breaks (DSB) [139,140]. Interestingly, NBS1-dependent recruitment of
DNA Top II-binding protein 1 (TOPBP1) is mediated via the ATM/ATR signalling pathway
targeting the nucleolar phosphoprotein Treacle. This triggers inhibition of rRNA synthesis
and nucleolar segregation in response to rDNA breaks [141]. Furthermore, the histone
demethylase JMJD6, which is rapidly recruited to nucleolar DNA damage sites, interacts
with Treacle and modulates its interaction with NBS1. JMJD6 is dispensable for rDNA
transcription, but is crucial for the relocalization of rDNA to the nucleolar caps [142]. Thus,
cooperation between the DNA repair machinery and RiBi factors is likely to underpin the
cellular response to DNA damage, thus demonstrating a role for the nucleoli in maintaining
genomic stability.

rDNA genes are considered genomic hotspots of recombination; their repetitive nature
and high transcription rate make these repeats highly susceptible to replicative stress and
replication fork stalling, causing DNA DSBs [143]. As mentioned above, ATRX-depletion in
mouse ESC drives the selective loss of rDNA copies and thus is proposed to contribute to
tumorigenesis through rDNA instability [31]. Interestingly, studies investigating the effect
of rDNA copy variation in Saccharomyces cerevisiae revealed that loss of rDNA copies leads
to a disequilibrium between active and inactive rRNA genes. Consistent with the findings
in Saccharomyces cerevisiae, loss of mammalian Sir2-homolog SIRT7 induces excision and
loss of rDNA copies, promoting rDNA instability and subsequent cellular senescence in
primary human cells [144]. The NAD+-dependent protein deacetylase SIRT7, a chromatin-
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silencing factor, is required for the stabilization of components of the NoRC to the rDNA
and therefore is crucial for heterochromatin formation [144]. Alternatively, silent rRNA
genes are thought to be important for DNA recombination repair, NAD formation and, as
a result, rDNA stability.

Not only do rDNA copy number variations impact genome stability, a number
of rDNA-associated factors have been reported to play a role in the maintenance of
rDNA/genome integrity. Recent findings revealed that UBTF depletion leads to DNA
damage, abnormal mitotic progression and formation of micronuclei. However, these
effects on genome stability are not simply mediated by a reduction in rDNA synthesis since
knockdown of RRN3 equally reduced Pol I transcription but failed to induce micronuclei
formation [145]. Another rDNA-specific factor indispensable for the orderly coordination of
ribosomal gene transcription and rDNA replication is TTF-1. Recent evidence suggests that
TTF-1 not only stops the elongating polymerase but also serves as a replication fork barrier
protein, preventing the transcription and replication machineries from colliding [146].

Another structure thought to threaten genome stability is the R-loop. R-loops are
RNA:DNA hybrids that form naturally when genes are actively transcribed, such as the
ribosomal genes that have high rates of transcription and are GC-rich regions, both of
which favour their formation [147]. R-loops can substantially impact genome integrity and
can be a curse as well as a blessing, as these hybrid structures are proposed to regulate
gene expression and facilitate homologous recombination (HR), which supports rDNA
stability/integrity [148,149]. On the other hand, R-loops are suspected to pose an impedi-
ment to the DNA replication machinery during S-phase with deleterious consequences for
genome fidelity. R-loops are discussed as being a major factor responsible for transcription–
replication collision causing DNA breaks and subsequent genome instability. A number
of human neurological disorders, such as Huntington and myotonic dystrophy type 1,
have been linked to mutations in genes related to R-loop formation/metabolism, e.g.,
R-loop induced DNA damage at the rDNA [147]. Other higher-order structures linked to
genomic instability and biological process, such as replication, transcription, translation
and epigenetic regulation, are G-quadruplexes (G4), where four-stranded guanine-rich
structures form in DNA and RNA, including the rDNA repeats. Aberrant G4 formation
within the genome is implicated in human diseases such as cancer and receives in this
context increasing interest as a druggable target [150].

Overall, it is conceivable that relocalization of rDNA to nucleolar caps as a result of
DNA damage and/or Pol I inhibition, or alteration in rDNA copy numbers as a result
of loss/mutation of some proteins, may affect the number and distribution of NADs.
Such alterations of the NADs can lead to changes in the cellular transcriptome, which
provides an explicit link between the role of rDNA loci in maintaining genomic integrity
and controlling cell fate.

9. Conclusions

The discovery of the plurifunctional nature of the nucleolus about two decades ago
was rightly regarded by the scientific community as a paradigm shift, and since then our
knowledge of the functions of the nucleolus and our understanding of the underlying
molecular mechanisms have expanded significantly. It has become clear that the nucleolus
plays a key role in various cellular processes, such as carcinogenesis, development, differ-
entiation and aging. Recent studies indicate that the rDNA loci and Pol I transcription are
important for the dynamic regulation of global gene expression via modulating long-range
genomic interactions with the suppressive NAD environment. Research also demonstrates
a role for the rDNA chromatin structure in the spatial organization of the genome and
genome stability. However, there are many gaps in our understanding of the functions
and structure of the nucleolus. Questions about how heterogeneous the rDNA is, whether
rDNA heterogeneity manifests in heterogeneous ribosomes, what is the mechanism for
selecting the rDNA copy number, and how is the ratio between active and inactive repeats
selected and maintained, are just a few still to be satisfactory answered. Moreover, despite
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our new understanding of a range of functions, to which the nucleolus is pivotal; a picture
as to how these functions are interrelated is still unclear. It is evident that further inten-
sification of research aimed at a comprehensive understanding of the role of rDNA and
the nucleolus, including its impact on cell fate is required. In more practical terms, it is
tempting to speculate that, given the plurifunctionality of the nucleolus and its dependence
on ongoing rDNA transcription, the efficiency of the recently described Pol I inhibitors
to treat cancer may be mediated in part through their effect to disrupt the non-ribosomal
functions of the nucleolus.
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