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Abstract

Transplantation of human neural stem/progenitor cells (hNSPCs) is a promising method to regenerate tissue from
damage and recover function in various neurological diseases including brain ischemia. Galectin-1(Gal1) is a lectin
that is expressed in damaged brain areas after ischemia. Here, we characterized the detailed Gal1 expression
pattern in an animal model of brain ischemia. After brain ischemia, Gal1 was expressed in reactive astrocytes within
and around the infarcted region, and its expression diminished over time. Previously, we showed that infusion of
human Gal1 protein (hGal1) resulted in functional recovery after brain ischemia but failed to reduce the volume of
the ischemic region. This prompted us to examine whether the combination of hNSPCs-transplantation and stable
delivery of hGal1 around the ischemic region could reduce the ischemic volume and promote better functional
recovery after brain ischemia. In this study, we transplanted hNSPCs that stably overexpressed hGal1 (hGal1-
hNSPCs) in a model of unilateral focal brain ischemia using Mongolian gerbils. Indeed, we found that
transplantation of hGal1-hNSPCs both reduced the ischemic volume and improved deficits in motor function after
brain ischemia to a greater extent than the transplantation of hNSPCs alone. This study provides evidence for a
potential application of hGal1 with hNSPCs-transplantation in the treatment of brain ischemia.

Background
Stem cell-based therapies have been performed in var-
ious clinical settings, although many lack scientific evi-
dence of their effectiveness [1]. Among stem cell-based
therapies, transplantation of human neural stem/pro-
genitor cells (hNSPCs) is relatively well substantiated by
peer-reviewed literatures [2-8]. One reason underlying
the relative success of hNSPCs-transplantation is its low
occurrence of tumor formation, which is a clear advan-
tage compared with transplantation of embryonic
stem cells or their derivatives [9]. Therefore, we have
been examining hNSPCs-transplantation in various pre-
clinical animal models and have shown that hNSPCs-

transplantation enhances functional recovery following
brain ischemia [10] and spinal cord injury (SCI) [11].
Brain ischemia, which is caused by occlusion of a cer-

ebral artery, leads to focal tissue loss and death of multi-
ple neuronal cell types within and around the ischemic
region. Patients with brain ischemia exhibit persistent
motor, sensory or cognitive impairments, which have
devastating effects on their quality of life. Apart from
acute thrombolysis, which can be used in only a minor-
ity of cases, there is still no effective treatment to pro-
mote functional recovery after brain ischemia.
hNSPCs can generate all principle cell types (i.e., neu-

rons, astrocytes and oligodendrocytes) in the brain and
therefore have great therapeutic potential in severe neu-
rological diseases, including brain ischemia [6,12], which
induce death of various cell types [13,14]. hNSPCs can
be propagated in large quantities for long-term without

* Correspondence: hidokano@a2.keio.jp
† Contributed equally
1Department of Physiology, Keio University School of Medicine, Tokyo, Japan
Full list of author information is available at the end of the article

Yamane et al. Molecular Brain 2011, 4:35
http://www.molecularbrain.com/content/4/1/35

© 2011 Yamane et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

mailto:hidokano@a2.keio.jp
http://creativecommons.org/licenses/by/2.0


a notable loss of the ability to proliferate and differenti-
ate [15]. Therefore, cultured hNSPCs are a promising
cell source to treat brain diseases.
We previously showed that transplantation of cultured

hNSPCs reduced infarct volume and improved func-
tional prognosis in a rodent model of brain ischemia
[10]. In the damaged brains of the model animals,
hNSPCs differentiated into mature neurons within the
ischemic region, and some of those new-born neurons
were incorporated into the host neural circuitry [10]. In
SCI model mice, grafted hNSPCs differentiated into oli-
godendrocytes and contributed to re-myelination of host
neuronal axons [5]. Another possible mechanism of the
therapeutic effects of hNSPCs-transplantation is their
trophic actions. It has been suggested that grafted
hNSPCs release molecules which exert neuro-protective
roles or reduce inflammation [10].
Galectin-1(Gal1) is expressed around infarcted tissue

after brain ischemia [10,16]. Gal1 is a soluble lectin that
binds to lactosamine-rich carbohydrate moieties on var-
ious molecules [17]. Although its binding partner in the
mammalian brain seems relatively limited [18], Gal1 is
expressed in adult NSCs in the subventricular zone (SVZ)
of the lateral ventricles (LV) [19,20] and the dentate gyrus
(DG) of the hippocampus [21]. We showed that infusion
of human recombinant Gal-1 protein (hGal1) enhanced
functional recovery in a rodent model of brain ischemia
[20] but failed to reduce the volume of the infarcted area
[20]. Because hNSPCs-transplantation was effective in
reducing infarct volume after brain ischemia [10], we
hypothesized that the combination of hNSPCs-transplan-
tation and continuous delivery of Gal1 at the same time
would reduce the volume of the infarcted area and
improve functional recovery to a greater extent than
hNSPCs-transplantation alone. Indeed, we previously
showed that transplantation of hNSPCs overexpressing
hGal1 (hGal1-hNSPCs) led to a better functional outcome
than transplantation of hNSPCs alone in a non-human
primate model of SCI [22].
In the present study, we analyzed the time course of

intrinsic Gal1 expression after brain ischemia. Next, we
examined the therapeutic effect of transplantation of
hGal1-hNSPCs compared with hNSPCs alone, and
found that hGal1-hNSPCs reduced the infarct volume
and resulted in better functional recovery after brain
ischemia.

Methods
Culture of hNSPCs
This study was carried out in accordance with the prin-
ciples of the Helsinki Declaration, and the Japan Society
of Obstetrics and Gynecology. Approval to use human
fetal neural tissues was obtained from the ethical

committees of both Osaka National Hospital and Keio
University. Written informed consent was obtained from
all parents through routine legal terminations performed
at Osaka National Hospital.
hNSPCs (oh-NSC-3-fb) were isolated from fetal fore-

brain tissues (10 gestational weeks [GW]) and propa-
gated using a defined neural progenitor cell basal
medium (NPBM; Clonetics)-based medium supplement
with human recombinant (hr-) basic fibroblast growth
factors-2 (FGF-2, 20 ng/ml; R&D), hr-epidermal growth
factor (EGF, 20 ng/ml; R&D), hr-leukemia inhibitory
factor (LIF, 10 ng/ml; Chemicon), and GA-100 (5 μg/ml
gentamicin sulfate, 5 ng/ml amphotericin B; Clonetics)
as described previously [15,23].

Lentiviral transduction of hNSPCs
hNSPCs that had undergone more than 10 passages
were dissociated into single cells 2 hr before being
infected. The concentrated viruses were added to the
culture medium to infect the hNSPCs [multiplicity of
infection (MOI) = 5]. Two weeks later, neurospheres
were formed from the dissociated hNSPCs and were
passaged. The efficiency of the transduction was mea-
sured by GFP expression with a FACS Calibur (Beckton
Dickinson). hNSPCs with an transduction efficiency of
greater than 80% were used for transplantation. The
third-generation self-inactivating HIV-1-based lentiviral
vector pCSII-EF-MCS-IRES2-GFP [24] was used for the
transduction. Two types of lentivirus-transduced
hNSPCs were prepared: hGal1-hNSPCs, which were
hNSPCs infected with the human Gal1 IRES GFP virus;
and hNSPCs, which were hNSPCs infected with the
IRES GFP virus.

Animals
Animal experiments were approved by the Animal
Experiment Committee of Tokyo Medical and Dental
University. Thirty-six male Mongolian gerbils (aged 16-
22 weeks and weighing 60-72 g) were housed in groups
(3-4 per cage) and maintained on a 14:10-hr light:dark
cycle with unlimited access to food and water.

Focal Ischemic Surgery
To induce brain ischemia, animals were anesthetized
with 2% isoflurane. The left common carotid artery was
occluded with a mini vascular clip for 10 min, after
which animals were allowed to recover from anesthesia.
During the carotid artery occlusion, stroke symptoms
were evaluated using a stroke index (SI)[25]. Animals
manifesting a SI of more than 10 were selected as ‘post-
ischemic animals’ [25]. In post-ischemic animals, a sec-
ond 10-min period of ischemia was similarly induced
5 hr later.
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Transplantation Surgery
Four days after ischemic surgery, post-ischemic animals
were randomly assigned to hNSPCs and hGal1-hNSPCs
groups, and the hNSPCs-suspension was transplanted
into the caudate nucleus of the lesioned hemisphere.
Animals were anesthetized with 2% isoflurane and
placed in a stereotaxic frame. A hole was drilled in the
left side of the skull to allow the penetration of a 10 μL
Hamilton syringe at the following coordinates (mm)
relative to bregma: anterior 1.0 mm; lateral 3.0 mm; and
ventral 3.0 mm. A 3 μL aliquot of hNSPCs-suspension
(50,000 cells) was infused over 2 min, and the syringe
was left in place for an additional 2 min to allow diffu-
sion from the tip. All animals received cyclosporine A
(10 mg/kg intramuscularly; Wako) 24 hr before trans-
plantation and three times per week for 4 weeks
thereafter.

Histological Analyses
At the end of the observation period, animals were
anesthetized deeply with diethyl ether, sacrificed, and
fixed by perfusion with 4% paraformaldehyde. The post-
fixed brains were cut into 50-μm coronal sections using
a vibratome. The coronal sections were stained with
Nissl for detection and calculation of the ischemic injury
area. The area of infarction was measured using the
MCID system [22,26,27](InterFocus Imaging), using
automatic tiling and area size quantification options at
the same exposure time and threshold settings, and then
compared between hNSPCs- and hGal1-hNSPCs-trans-
planted groups. The total infarct area (indirect lesion
volume) of the ipsilateral hemisphere was calculated as
a percentage of the volume of the contralateral hemi-
sphere, as reported previously [28].
hNSPCs grafted into the injured brain were identified

using an anti-GFP antibody (1:200; MBL), and their phe-
notypes were examined by immunostaining for the cell-
type-specific markers anti-NeuN (1:100; Sigma) and
anti-GFAP (1:200; Dako). Grafted NSCs co-labeled with
GFP and cell-type-specific markers were detected with a
confocal microscope equipped with an argon-krypton
laser (LSM510; Zeiss) and a fluorescence microscope
(Axioskop 2 Plus; Zeiss).

BrdU labeling
To label S-phase cells, the thymidine analog 5-bromo-2’-
deoxyuridine-5’-monophosphate (BrdU) was adminis-
tered intraperitoneally (50 mg/kg; Sigma). On day 3
after the infarction, two injections (6 h apart) of BrdU
were given. 24 hours later, animals were euthanized by
transcardiac perfusion. This allowed us to measure the
number of cells that incorporated BrdU during a 24-h
period and provided an index of the rate of cell birth at
a specific time point after ischemia.

Behavioral Tests
Animals were subjected to a series of behavioral tests
within 30 days after focal ischemia. The researcher con-
ducting the behavioral testing and scoring was blind to
the experimental conditions. All animals were video-
taped during behavioral tests. The elevated body swing
test (EBST) was used to evaluate asymmetric motor
behavior [29]. Animals were held by the base of the tail
and elevated about 10 cm from the tabletop. The direc-
tion of body swing, defined as an upper body turn of 10
degrees to either side, was recorded for 1 min during
each of the three trials per day. The number of left and
right turns was counted, and the percentage of turns
made to the side contralateral to the damaged hemi-
sphere (% right-biased swing) was determined. The
bilateral asymmetry test (BAT) is a test of unilateral sen-
sory dysfunction [30]. Two small pieces of adhesive-
backed paper dots were used as bilateral tactile stimuli
occupying the distal-radial region on the wrist of each
forelimb. The time, to a maximum of 3 min, that it took
each animal to remove each stimulus from the forelimb
(removal time) was recorded in three trials per day. The
T-maze spontaneous alternation task is a method to test
spatial cognitive function [31]. Animals were allowed to
alternate between the left and right goal arms of a T-
shaped maze throughout a 15-trial continuous alterna-
tion session. Once they had entered a particular goal
arm, a door was lowered to block entry to the opposite
arm. The door was reopened only after animals returned
to the start arm, thus allowing a new alternation trial to
be started. Their behavior was traced with a video-track-
ing system (PanLab, Barcelona, Spain). The spontaneous
alternation rate was calculated as the ratio between the
alternating choices and total number of choices.

Statistical Analysis
Unpaired t-tests (for two groups) or repeated measures
ANOVAs were used to detect differences between
groups in behavioral analyses and histological
quantifications.

Results
Gal1 expression in brain after focal brain ischemia
To study the expression of Gal1 after brain ischemia, we
utilized an animal model of brain ischemia established
in our group [10,20,32,33]. Consistent with our previous
studies, induction of transient focal ischemia in Mongo-
lian gerbils resulted in widespread ischemic lesions in
the cerebral cortex, caudate nucleus, thalamus and hip-
pocampus (Additional file 1, Fig. S1). Sensorimotor and
cognitive dysfunctions were observed after the induction
of ischemia as previously reported [10,20,32,33].
To study the expression of Gal1 after ischemia, immu-

nohistochemical analyses were performed using Gal1-
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specific antibody which gave rise to no staining on brain
section from galectin-1 null mutant mice [19,21]. In the
normal adult Monglian gerbil brain, expression of Gal1
was rarely found outside of the SVZ of the LVs and the
DG of the hippocampus except in a few neurons and
blood vessels throughout the brain (Additional file 2,
Fig. S2), which is comparable to the pattern of Gal1
expression in the adult mouse brain [19,21]. Four days
after brain ischemia, Gal1 expression was widely
induced in the core and around the ischemic region
(Figure 1A, left 1B). At later time points, Gal1 expres-
sion was gradually diminished (Figure 1A, middle and
right). The vast majority of Gal1-positive cells were
GFAP-positive astrocytes in the core and around the
ischemic regions (Figure 1C), and no more than 1% of
Gal1 expressing cells were NeuN-positive neurons
(Additional file 3, Fig. S3). Interestingly, ischemia-
induced Gal1 expression was found mostly in BrdU-
positive proliferating reactive astrocytes outside the SVZ
(Figure 1D).

Transplantation of hGal1-hNSPCs enhanced the recovery
of tissue damage after brain ischemia
To examine the combinational effects of hNSPCs-trans-
plantation and hGal1 delivery, hGal1 was permanently
expressed in hNSPCs using a lentivirus vector (Figure
2A, Additional file 4 Fig. S4) as previously described
[22]. Since the amount of intrinsic Gal1 expression
peaked between 4 days and 2 weeks after brain ischemia
(Figure 1A), we hypothesized that the therapeutic effect
of hGal1 would be maximal around this time point.
Therefore, hGal1-hNSPCs were transplanted around the
ischemic region 4 days after brain ischemia. Substantial
numbers of transplanted cells survived in both hNSPCs
and hGal1-hNSPCs groups, similar to previous reports
[10]. NeuN, a nuclear marker of mature neurons, and
GFP, the marker of transplanted hNSPCs, were utilized
to examine the maturation of transplanted cells. Similar
ratios and distributions of NeuN/GFP-double positive
cells were detected after transplantation in both groups,
suggesting that some hNSPCs differentiated into mature

Figure 1 Characterization of Gal1 expression after brain ischemia. A: Diagram of intrinsic Gal1 expression before and after brain ischemia.
Two representative coordinates of coronal sections, where corresponding functional tests were performed later, were chosen for analysis. Gross
anatomy of each brain section was delineated. The density of purple dots corresponds to the intensity and extent of signals from
immunohistochemistry using a Gal1-specific antibody. As time passed following ischemia, intrinsic expression of Gal1 was temporarily elevated
and then gradually decreased (left to right). B. A representative image of Gal1-immunohistochemisty at day 4 after brain ischemia. (Scale bar: 100
μm). STR, striatum; CTX, cortex; PIA, pia mater. C. Gal1 (green) was expressed in GFAP-positive (purple) astrocytes in the SVZ. Note that Gal1 was
also expressed outside of the SVZ (arrowheads) after brain ischemia. (Scale bar: 25 μm). LV, lateral ventricle; CC, corpus callosum; DLC, dorso-
lateral corner. D. Most Gal1-positive (green) cells outside the SVZ were proliferating (BrdU-positive, red) astrocytes (GFAP-positive, purple). (Scale
bar: 10 μm). D’ and D”, z-stack images (image of the plane perpendicular to that shown in D).
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neurons after transplantation (Figure 2B). Although we
could not determine the exact number of surviving cells,
mainly because they were spread widely throughout the
brain, there was no apparent difference in the number
of transplanted cells between the hGal1-hNSPCs and
hNSPCs groups. Nissl staining was performed to analyze
the extent of tissue damage 30 days after transplanta-
tion. Interestingly, the volume of the ischemic region
was significantly reduced in the hGal1-hNSPCs group
compared to the hNSPCs group (Figure 2C, D, planned
comparison t(9) = 3, p = 0.01, also see additional file 5,
Figure S5). This suggests that the therapeutic effect of
hNSPCs-transplantation can be augmented by the over-
expression of hGal1.

Transplantation of hGal1-hNSPCs resulted in better
functional recovery
Finally, we compared the functional outcome of the
transplantation of hGal1-hNSPCs or hNSPCs. We carried
out 3 behavioral tests: the elevated body swing test
(EBST) for examining motor function, the bilateral asym-
metry test (BAT) for somatosensory function, and the
T-maze test for cognitive function. All of these tests have
previously been used to evaluate functional outcome
after ischemia, and we reproduced previous results across
the three different tests over the time period after brain
ischemia (Figure 3)[10,20,32,33]. In the T-maze test, both
groups showed recovery across the observation period,

with no difference between groups (Figure 3A, time ×
group ANOVA, interaction F(4, 44) = 0.52, p = 0.7, main
effect of time F(4, 44) = 137, p < 0.001). In the BAT, both
groups showed recovery after transplantation (Figure 3B,
time × group ANOVA, interaction F(4, 44) = 1.3, p = 0.3,
main effect of time F(4, 44) = 301, p < 0.001), with a ten-
dency toward greater improvement in the hGal1-hNSPCs
group compared to the hNSPCs group on day 30
(planned comparison, t(11) = 2, p = 0.06). This suggests
that hGal1-hNSPCs improve cognitive and sensory func-
tion to a similar extent as hNSPCs. Interestingly, in the
EBST, the hGal1-hNSPCs group showed better improve-
ment after transplantation compared to the hNSPCs
group (Figure 3C, time × group ANOVA, interaction F(4,
44) = 6.4, p = 0.05, main effect of time F(4, 44) = 141, p <
0.001, planned comparison on day 30 t(11) = 4, p =
0.002), suggesting that hGal1-hNSPCs-transplantation
results in better recovery of motor function after brain
ischemia.

Discussion
In this study, we showed that Gal1 expression was
induced in proliferating reactive astrocytes after brain
ischemia and gradually decreased over time. The trans-
plantation of hGal1-hNSPCs after brain ischemia
resulted in reduced infarcted volume and better recovery
of motor function compared to transplantation of
hNSPCs alone. These findings suggest a potential use of

Figure 2 Transplantation of hGal1-hNSPCs reduced infarct volume after brain ischemia to a greater extent than hNSPCs alone. A:
hNSPCs were cultured in vitro for more than 10 weeks (a, transmitted light image, b, GFP-filtered image under fluorescent light) and induced to
express hGal1 using lentivirus (c, transmitted light image, d, GFP-filtered image under fluorescent light). (Scale bar: 50 μm) B. After transplantation,
hNSPCs-derived cells (Green) survived, with some expressing a mature neuronal marker, NeuN (Red)(Arrows). (Scale bar: 10 μm). B’ and B”, z-stack
images. C. Representative images of Nissl staining of hNSPCs- or hGal1-hNSPCs-transplanted gerbil brains. (Scale bar: 500 μm). Ischemia was induced
unilaterally (on the left side). Note the enlargement of the LV and marked neuronal loss particularly evident in neuronal-dense areas such as the
hippocampus (arrow) in the hNSPCs group, which were recovered the in hGal1-hNSPCs group. LV, lateral ventricle. D. The volume of the ischemic area
was significantly reduced in the hGal1-hNSPCs group (n = 7) compared to the hNSPCs group (n = 6)(*p < 0.05).

Yamane et al. Molecular Brain 2011, 4:35
http://www.molecularbrain.com/content/4/1/35

Page 5 of 9



hGal1 in combination with transplantation of hNSPCs
in the treatment of brain ischemia.
Although transplantation of hGal1-hNSPCs reduced

ischemic volume and promoted functional recovery
from brain ischemia, the mechanisms underlying these
effects are unclear. It is reasonable to consider that the
extent of functional recovery is correlated to the size of
the infarcted region after brain ischemia as shown by
this study and others [10,34]. It is possible that the
reduced volume of ischemic region was caused by either
an increase in the number of transplanted cells after
transplantation or a preservation of the otherwise-dying
host tissue. Since i) our previous reports showed that
hGal1 overexpression neither promoted proliferation or
survival nor changed the direction of differentiation
(Appendix One) of human neurosphere-derived NSPCs
[22] and ii) we observed no apparent differences in the
survival of transplanted cells by overexpression of
hGal1, which agrees with previous studies [22], the
reduced volume of the ischemic region could a result
from preservation of the host tissue through two possi-
ble mechanisms.
First, trophic factors, which may be released from

hNSPCs, could preserve the damaged tissue [13,35].
Therefore, it is possible that hNSPCs might be induced
to express greater amounts and varieties of these trophic
factors (e.g., BDNF [16,36]), by the over-expression of
hGal1. This possibility could be further investigated, for
example, by microarray analysis in future experiments.
Second, prolonged expression of hGal-1 released from
hGal1-hNSPCs might have altered the proliferation and/
or migration of reactive astrocytes, thereby preventing

further tissue damage after brain ischemia. Considering
that i) reactive astrocytes could play a crucial role in
preventing the enlargement of the infarcted region after
brain ischemia [34,37], ii) reactive astrocytes express
Gal1 (Figure 1B) [16], iii) Gal1 regulates the prolifera-
tion of reactive astrocytes [16], iv) soluble Gal1 binds to
b1 integrin [18,38], which regulates the migration of
astrocytes [39,40], hGal-1 could influence the prolifera-
tion and/or migration of reactive astrocytes after brain
ischemia, resulting in a reduction in the size of the
ischemic region.
Furthermore, there may be other factors that promote

functional improvement independent of the volume of
the ischemic region. For these, it is important to con-
sider the function of hGal-1 in promoting neurite out-
growth [22,41], possibly through enhancing the binding
of neurites to b1 integrin [18,38]. After brain ischemia,
neurite outgrowth is prevented by inflammatory cyto-
kines and gliosis within and around the ischemic region
[42,43]. Indeed, after stroke, promotion of neurite out-
growth improved neurological outcome [44]. Also, in
our SCI model, it was suggested that the therapeutic
effect of the transplantation of hGal-1-hNSPCs was due
to increases in neurite outgrowth [22,41]. Thus, the
overexpression of hGal1 in hNSPCs might increase
neurite outgrowh of graft and/or host neurons in the
ischemic brain, which could contribute to better func-
tional recovery. These possibilities should be verified in
future studies.
Previously, we showed that infusion of hGal1 protein

improved recovery from motor and sensory (but not
from cognitive) deficits after brain ischemia [20]. In this

Figure 3 Transplantation of hGal1-hNSPCs promoted better functional recovery after brain ischemia than hNSPCs alone. A: Cognitive
function was analyzed by the T-maze test before and after the induction of ischemia. Before ischemia, gerbils showed around a 80% preference
for left choices (day - 4). After ischemia, both groups showed equivalent recovery. Black line: hNSPCs (n = 6), dotted line: hGal1-hNSPCs (n = 7).
B. Sensory function was examined using the BAT. Both group showed similar recovery across the observation period. The hGal1-hNSPCs group
(dotted line: n = 7) showed a tendency toward better recovery (reduced time to remove tape attached to forelimbs) on day 30 compared to
the hNSPCs group (black line: n = 6). C. EBST was performed to examine motor function. After brain ischemia, gerbils showed a tendency to
swing their bodies towards the non-ischemic side (day 0). Motor function gradually improved in both groups after transplantation. The hGal1-
hNSPCs group (dotted line: n = 7) showed better recovery overall compared to the hNSPCs group (black line: n = 6) (**p < 0.005).
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study, we did not see significant differences between the
hGal1-hNSPCs-transplanted group and the naïve
hNSPCs-transplanted group in the rate of recovery from
sensory deficits. This raises the possibility that trans-
plantation of hNSPCs alone is sufficient to promote
recovery from sensory deficits caused by ischemia [20]
and is not augmented by hGal1 overexpression. Indeed,
in the current study, the hGal1-hNSPCs group showed
only marginal improvement in the recovery from sen-
sory deficit compared with hNSPCs group (Figure 3B).
This underscores the observation that hGal1 has an
additional benefit in the recovery of motor function
beyond the effect of hNSPCs transplantation alone.
Considering that Gal1 is expressed endogenously in

damaged tissue of various neurological diseases, and
application of hGal1 improves symptoms of those dis-
eases [16,22,41,45-47], hGal1 is a promising therapeutic
agent. This study provides an alternative method to
apply hGal1 the treatment of brain ischemia with trans-
plantation of hNSPCs or alternative cells sources such
as Nestin-expressing hair follicle stem cells [48-51].

Appendix One
hGal1 overexpression did not change the direction of
differentiation into neurons and astrocytes
After 1 week of transduction of the external genes (i.e.,
GFP or hGal1/GFP), the neurospheres were dissociated
into single cells and cultured onto poly-L-lysine coated
coverglass. Seven days later, the cells were fixed and
immunostained using cell type specific markers GFAP
and Tuj-1 (a neuronal marker). The percentage of cells
positive for each marker were as follows (mean ± SEM):
GFAP-positive (hNSPCs, 22.3% ± 4.3, hGal1-hNSPCs,
24.6% ± 4.9), Tuj1-positive (hNSPCs, 36.9% ± 2.43,
hGal1-hNSPCs, 37.9% ± 1.3).

Additional material

Additional file 1: Figure S1. Reproducible focal brain ischemia model in
Mongolian gerbil. Photographic display of representative H&E-stained
coronal brain sections taken from gerbils 4 weeks after unilateral carotid
artery occlusion. Notice the enlargement of the LV and marked cell loss
(arrows) on the side of ischemia (left). (Scale bar: 500 μm). LV, lateral
ventricle.

Additional file 2: Figure S2. Intrinsic Gal1 expression in brain of normal
adult Mongolian gerbil. Gal1 was visualized by immunohistochemistry
using DAB in coronal sections from normal adult gerbils. The signal
(arrows) was detected around the SVZ (A, B: enlarged picture of the
boxed part of A) of the adult gerbil brain. A few Gal1-positive cells were
also detected outside the SVZ (arrowheads in B and C). (Scale bar: A, 50
μm, B, C, 15 μm). LV, lateral ventricle; Str, striatum; WM, white matter;
CTX, cortex.

Additional file 3: Figure S3. The vast majority of Gal1-positive cells
around the ischemic region were NeuN-negative. Representative image
of Gal1(Red) and NeuN (Green) double-immunostaining around the
ischemic region after brain ischemia (2 weeks after occlusion). (Scale bar:
25 μm).

Additional file 4: Figure S4. Gal1 is expressed in the supernatant of
hGal1-hNSPCs and hNSPCs cultures. The supernatant was isolated from
hGal1-hNSPCs and hNSPCs cultures (n = 3 each), condensed, and then
total volume of 300 μg protein from each culture was applied for
western blot analysis using anti-hGal1-specific antibody. hGal1 (14.5 kDa)
was detected in all of the supernatants. Note that the amount of hGal1
was increased in hGal1-hNSPCs culture compared with the hNSPCs
culture.

Additional file 5: Figure S5. Comparison of infarct area. Infarct area was
calculated in the brains of no-transplantation, hNSCs, hGal1-hNSCs and
intact groups.
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