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Abstract

Traditionally, cardiac image analysis is done manually. Automatic image processing can help with the repetitive tasks, and
also deal with huge amounts of data, a task which would be humanly tedious. This study aims to develop a spectrum-based
computer-aided tool to locate the left ventricle using images obtained via cardiac magnetic resonance imaging. Discrete
Fourier Transform was conducted pixelwise on the image sequence. Harmonic images of all frequencies were analyzed
visually and quantitatively to determine different patterns of the left and right ventricles on spectrum. The first and fifth
harmonic images were selected to perform an anisotropic weighted circle Hough detection. This tool was then tested in ten
volunteers. Our tool was able to locate the left ventricle in all cases and had a significantly higher cropping ratio of 0.165
than did earlier studies. In conclusion, a new spectrum-based computer aided tool has been proposed and developed for
automatic left ventricle localization. The development of this technique, which will enable the automatic location and
further segmentation of the left ventricle, will have a significant impact in research and in diagnostic settings. We envisage
that this automated method could be used by radiographers and cardiologists to diagnose and assess ventricular function
in patients with diverse heart diseases.
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Introduction

Cardiovascular Disease (CVD) is currently the leading cause of

death, killing 17.3 million people worldwide each year. This figure

represents one-third of total death, a proportion that is still

increasing. It is estimated that by 2030, CVD will kill 23.6 million

people annually [1]. For clinicians, the examination and analysis

of medical cardiac images is of great significance for diagnosis and

treatment. The reliability of quantitative assessment of cardiac

functions such as muscle deformation and ventricular ejection

fraction is dependent on the precision and correctness of the heart

chamber segmentation [2].

Usually, this segmentation task is performed manually via

software assistance, which is quite time-consuming. One trained

clinician can delineate one image in half a minute, and it would

take him/her more than two hours to finish the whole data set of

11 slices by 25 frames. Furthermore, the results often present a

high intra/inter clinician variability [3]. Over the past decade,

automation of this tedious yet significant procedure has received a

lot of attention from not only medical imaging but also the

computer vision community [4–9]. Of the four heart chambers,

the imaging of the left ventricle (LV) is of the greatest importance

and interest due to its physiological fatality. Of the 70 studies

surveyed in Petitjean and Dacher [3], 49 of them address the LV

segmentation problem exclusively, with 18 solving segmentation of

both ventricles.

One important stage in the automatic segmentation approach is

to locate the left ventricle in the whole image and limit the

computation domain within a vicinity of the left ventricle. The

localization procedure is sometimes referred to as region of interest

(ROI) identification. This procedure not only decreases the

computational load, but also provides an initial guess for

deformable segmentation approaches. Previously, it was preferred

that the ROI identification be done manually by selecting the

center of the ROI [10–12] or drawing a bounding contour. To

make the whole segmentation procedure automatic, it will be

necessary to automate LV localization as well.

The existing approaches for the automatic localization of the

LV can be generally categorized into two groups. One group is

pattern recognition approaches [13], which require a learning

stage. The desired ‘‘donut’’ pattern is decomposed into a multi-

dimensional feature vector, which is further modelled as a Markov

process. The system is trained using both positive and negative

examples identified manually. The trained system is utilized to

classify the image pixels as the LV boundary [14–17]. The whole

procedure is a specific application of pattern recognition, the

success of which is dependent on a proper training example series

as well as the relevancy between the training examples and the

studied cases.
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The other group is temporal dimensional approaches. These

methods are based on the fact that the heart is the only organ with

substantial motion in the field of view (FOV). In an ideal cine

sequence, the image is stationery aside from the heart. The

variance image is calculated from a 2 D+t original image

sequence. The high intensity in the variance image corresponds

to the vigorous movement in the original image, which usually

happens at the endocardium and epicardium of both ventricles as

well as at the septum. A circle Hough transform [18] is used to

detect the potential circle approximating the endo/epi-cardium of

the LV. Interested readers are referred to previous resources [19–

23]. One alternative approach based on Fourier analysis has

previously been proposed [24,25].Instead of using the variance

image to recognize the motion, the first Harmonic image is used.

The circle Hough detection procedure is identical to that of the

variance image approaches.

Compared to the pattern recognition methods, the temporal

approaches do not require a large training set, which is also a

tedious task. They also exploit the information in between the

frames. However, both the variance image approach and Fourier

analysis approach lack robustness and precision in locating the

LV. The LV is not the only moving chamber in the FOV. The

variance or the first harmonic image contains much more than

the LV boundary and this could hardly be extinguished. The

movement of the right ventricle (RV) would unavoidably lead

to imprecise or even incorrect circle detection and ROI

identification. A more detailed analysis and some examples are

provided in Section 2.

In this study, short axis cardiac images at the basal location were

prepared for ten normal volunteers. Harmonic images of all orders

were examined visually and quantitatively. Two observations were

seen regarding the LV and RV in Harmonic images as follows,

based on which had more information inferred from Harmonic

images of high order that could be utilized in a sophisticated way:

N In all Harmonic images except the zeroth one, the RV region

presents higher brightness than the LV region.

N As the Harmonic order increases, the superiority of the RV to

the LV increases.

Two Harmonic images were utilized, the first Harmonic image

(�uu1) and a higher-order Harmonic image (the fifth Harmonic

image (�uu5) in our study). A new circle detector was designed based

on the anisotropic weighted circle Hough transform. The �uu1 image

with the most substantial LV visibility was an input of the detector

with a positive weight, while �uu5 was the other input with a negative

weight to suppress the RV interruption. This dual input Hough

detector could largely eliminate the RV interruption, leading to a

robust and precise LV localization.

The remainder of this article is organized as follows. Section 2

gives a brief review on earlier methods and shows their relation to

Harmonic images. In Section 3, Harmonic images of all orders are

Figure 1. The imperfect detection.
doi:10.1371/journal.pone.0092382.g001

Figure 2. The variance image and the first harmonic image.
doi:10.1371/journal.pone.0092382.g002
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analysed and two facts concerning the LV and RV are presented.

An anisotropic weighted circle Hough detector is then proposed

for LV localization. Section 4 shows the experimental results of the

proposed localization method. Section 5 concludes the article.

Related Work on Harmonic Images of Cine
Magnetic Resonance Imaging

Several LV localization methods based on the variance image

have been developed [19–23]. A similar approach based on

Fourier analysis has been described [24,25]. In this section, we first

define the Harmonic images of a cine image sequence. We then

provide a brief review of those earlier studies and a reformulation

of them into the Harmonic image framework. At the end of the

section, we present their limitations and illustrate these using a

concrete example.

Discrete Fourier Transform and Harmonic Images
Given a 2 D+t cine Magnetic Resonance (MR) image u with the

resolution of M|N|T , each pixel position over time presents a

discrete time series, (i.e. u(m,n,t),0ƒmƒM{1,0ƒnƒN{1,t~
0,1, . . . ,T{1). For the rest of the discussion in this section, we

omit the spatial coordinates m,n for simplicity, (e.g., u(t),
t~0,1, . . . ,T{1).

Discrete Fourier transform (DFT) of u(t) is as follows.

U(k)~
XT{1

t~0

u(t)e
{j2p

k
T

t
, k~0, . . . ,T{1: ð1Þ

Inverse Discrete Fourier transform (IDFT) of U(k) is as follows.

u(t)~
1

T

XT{1

k~0

U(k)e
j2p

k
T

t
, t~0, . . . ,T{1: ð2Þ

U(k),k~0,1, . . . ,T{1 presents the decomposition of the time

sequence u(t) in term of frequency. We define the k-th harmonic

series of u as IDFT to the k-th frequency component separately as

follows,

Figure 3. All frames of a cine image.
doi:10.1371/journal.pone.0092382.g003

Figure 4. All Harmonic images of the cine image.
doi:10.1371/journal.pone.0092382.g004
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uk(t)~
1

T
U(k)e

j2p
k
T

t
, t~0, . . . ,T{1, k~0, . . . ,T{1: ð3Þ

The k-th Harmonic image is defined as the L2-norm of the k-th

harmonic series.

�uuk~
1

T

XT{1

t~0

Euk(t)E2 : ð4Þ

Earlier Methods on Harmonic Images
The LV localization for cine images could be dated to early this

century. Lin et al. and Jolly [24,25] used the first Harmonic image

�uu1 to detect LV. Others [19–23] provided similar detection

methods based on the variance image. We will first recall the

definition of the variance image and then show how it is related to

the Harmonic images. Let u(t) be the same as in Section 2.1. The

mean image and the variance image of u(t) are defined as follows.

�uu~
1

T

XT{1

t~0

u(t) ð5Þ

Varu~
1

T

XT{1

t~0

Eu(t){�uuE2 ð6Þ

The equivalence between the mean and the direct current (dc)

image, (i.e., the 0-th harmonic image) is also obvious:

u0(t)~
1

T
U(0)~

1

T

XT{1

t~0

u(t)~�uu ð7Þ

The relation between the variance image and other harmonic

images could be derived as well.

Figure 5. The variance image and the first harmonic image.
doi:10.1371/journal.pone.0092382.g005

Figure 6. Predefined RV and LV region as well as masked images.
doi:10.1371/journal.pone.0092382.g006
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Varu~
1

T

XT{1

t~0

Eu(t){�uuE2~
1

T

XT{1

t~0

E
XT{1

k~1

uk(t)E2

~
1

T

XT{1

t~0

XT{1

k~1

uk(t):
XT{1

k~1

u�k(t)

" #

~
1

T

XT{1

t~0

XT{1

k~1

Euk(t)E2z
1

T

XT{1

t~0

X
k=l

uk(t)u�l (t)

~
1

T

XT{1

t~0

XT{1

k~1

Euk(t)E2
XT{1

t~0

X
k=l

uk(t)u�l (t)~0

 !

~
XT{1

k~1

�uuk

As the above derivation shows, the variance image is the sum of

Harmonic images of all orders except the zeroth order (i.e., the dc

image or the mean image).

Most of the earlier methods based on Harmonic images have

one disadvantage, the RV interruption. The Harmonic images

reflect the organ motion pattern from the spectrum aspect.

Motions of both ventricles are present in he Harmonic images.

Hence, the precision of LV detection would be undermined by RV

interruption. Such a limitation could be observed in most of the

earlier studies that we mentioned [19–25]. Figure 1 shows an

imperfect detection using �uu1 and Varu.

To tackle the RV interruption, some earlier studies made the

assumption that the LV is located around the center of the FOV

[26,27]. Based on this assumption, a bell shaped or cone shaped

filter centered in the FOV is applied to the detection procedure.

Figure 2 shows several options regarding the filter shape.

However, the aforementioned assumption is strongly relevant to

the scanning operator or the participant. The variability of both

would cause the assumption to no longer hold. This limitation

motivates our study.

Figure 7. Histogram of RV and LV in �uu1 image.
doi:10.1371/journal.pone.0092382.g007

Figure 8. Surface plots of all harmonic images.
doi:10.1371/journal.pone.0092382.g008
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Methods

In this study, we tested algorithm on 10 healthy volunteers. This

study was approved by the Singhealth Centralised Institutional

Review Board (CIRB No: 2009/705/C) for human research. All

enrolled participants gave written informed consent. The MR data

are deposited in hospital and are available for research and

education purpose. Cardiac relating measurements for each

volunteer were give in Table 1.

Two Observations of the LV and RV in Harmonic Images
In this study, we developed a new LV localization method based

on Harmonic images and an anisotropic circle Hough transform.

First we examined the different patterns of the LV and RV in

Harmonic images. An example containing 20 frame cine MR

images is illustrated in Figure 3. The Harmonic images from the

zeroth to the ninth order were generated as shown in Figure 4. We

gave the first Harmonic image a close examination. The color-

rendered visualization of �uu1 and the surface plot are shown in

Figure 5(a) and (b), respectively. The LV and RV regions are

circled. We could observe that the left ‘‘peak’’ (RV region) was

higher than the right ‘‘peak’’ (LV region). The RV region had a

larger number of brighter pixels in �uu1.

We quantified the observed result beyond the observation and

visual analysis. The LV and RV regions were identified manually

in �uu1, see Figure 6(a). The masked RV and LV images are shown

in Figure 6(b) and (c), respectively. The statistics of these two

regions were computed. The histogram of each is shown in

Figure 7 along with a normalized version. From the histograms, it

could be observed that the LV region had fewer pixels with high

brightness. We present the first observation:

Observation 1. In the first Harmonic image, the RV region

presents higher brightness than the LV region.

This observation explains the limitation of earlier studies. If the

circle Hough detection is carried out upon the first Harmonic

image or the variance image, the brighter RV region would

interrupt the LV detection. This observation also implies that the

detected circle tends to shift toward the RV region (Figure 1).

The observation represents the superiority of the RV to the LV

in the first Harmonic image. We next inspected the existence of

such superiority in other Harmonic images. Surface plots are

shown in Figure 8 and the histograms are shown in Figure 9. The

superiority of the RV was evaluated in all Harmonic images except

Figure 9. Histograms of all harmonic images.
doi:10.1371/journal.pone.0092382.g009

Figure 10. ARLR of different thresh parameter.
doi:10.1371/journal.pone.0092382.g010
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the zeroth Harmonic image, i.e., �uu0. Observation 1 could then be

extended as follows:

Observation 1. In all Harmonic image except �uu0, the RV

region presents higher brightness than the LV region.

It could also be observed from Figure 8 that the LV peaks

diminish quickly as the Harmonic order increases. From the fourth

harmonic image, the LV could hardly be observed from either the

image or the surface plot. Meanwhile, RV peaks could be

observed in the first through the last harmonic images. This trend

could also be verified by the diminishing white bars in Figure 9.

To quantize this trend, we defined an index of Average RV to

LV ratio (ARLR) as follows. With the RV and LV regions, DRV

and DLV , as well as a threshold parameter thresh, the average of

all observable pixels (brighter than thresh) within DRV|DLV is

calculated. Then the pixels that had a higher intensity than this

average within the two regions were counted, respectively. The

ratio of the two count numbers was called ARLR. Mathematically,

this index is defined as follows:

ARLR~

P
x[DRV

1fxw�xxgP
x[DLV

1fxw�xxg
, ð8Þ

where

�xx~

P
x[DRV|DLV

x:1fxwthreshgP
x[DRV|DLV

1fxwthreshg
: ð9Þ

Figure 11. Two circle Hough transform.
doi:10.1371/journal.pone.0092382.g011

Figure 12. Edge maps e1 and e5 from xH1 and xH5 .
doi:10.1371/journal.pone.0092382.g012

Spectrum-Based Localization Tool of Left Ventricle

PLOS ONE | www.plosone.org 8 April 2014 | Volume 9 | Issue 4 | e92382



The plot of ratio against harmonic order is shown in Figure 10. A

rising trend could be found from the curve for different threshold

parameters. From this comes our second observation:

Observation 2. As the Harmonic order increases, the

superiority of the RV to the LV increases.

From the visualization and quantitative analysis in the previous

subsection, we could draw the conclusion that the RV motion

involves more high frequency motion than does the LV motion.

Regarding the observation for this special cardiac motion pattern,

we could provide the following explanation. Covered by the

supporting pericardium, the heart lies close to the middle of the

breast-bone. The heart position is oblique. The inferior wall of

the LV lies against the diaphragm, while the lateral wall and the

anterior wall of the LV lie against the left lung. In contrast, the RV

has less support. The superior and anterior position of the RV

relative to the LV results in less support from the diaphragm and

no support from the lungs. When pumping, the LV moves with the

everlasting resistance of the stationary lungs and diaphragm (when

the participant holds his/her breath). This causes the self-

oscillation frequency of the LV to decrease, thus lowering the

high frequency portion. In contrast, the RV motion contains more

high frequency motion due to it being relatively free of burden.

Anisotropic Weighted Circle Hough Transform
In this subsection, we first introduce the classic circle Hough

transform. We next present two modifications on the algorithm, as

well as their advantages.

Classic circle hough transform. Given an edge map

derived from an image containing potential circles, the classic

circle Hough transform is described as follows. A parameter space

is constructed at the same size as the original image. Each pixel in

the parameter space has an accumulator, all of which are

initialized to zero. Provided an estimate of the radius, R, and a

pixel x in the edge map, with an intensity larger than the

threshold, one is added to all accumulators that intersect with the

circle centered at x with a radius of R. After completing this voting

procedure with respect to every point on the edge map, the highest

accumulator is considered to be the center of the detected circle

with radius R.

When a good estimate of the radius R is not available, an

interval of possible radius is provided instead. There are usually

two options to adapt the circle Hough transform. 1) Repeat the

above voting procedure with respect to every R in the interval.

After all loops of voting, the final winning accumulators suggest

the circle center with the radius of the mean of the interval. 2)

Instead of a 2 D parameter space, the point x votes into a 3 D

Table 2. Anisotropic Weighted Circle Hough Transform.

Inputs

1. Edge map e1 from xH1 ;

2. Edge map e5 from xH5 ;

3. Gradient map +xH1 ;

4. Gradient map +xH5 ;

Algorithm

1 Initialize A to 0

2 For each (m,n) in e1

3 If e1(m,n)wthresh

4 For (p,q,r) in A, s.t. (p{m)2z(q{n)2{r2
�� ��ƒE

5
A(p,q,r)~A(p,q,r)z S (p{m,q{n)

(p{m,q{n)j j ,
+xH1 (m,n)

+xH1 (m,n)j jT
����

����
6 End For

7 End If

8 End If

9 For each (m,n) in e5

10 If e5(m,n)wthresh

11 For (p,q,r) in A, s.t. (p{m)2z(q{n)2{r2
�� ��ƒE

12
A(p,q,r)~A(p,q,r){ S (p{m,q{n)

(p{m,q{n)j j ,
+xH5 (m,n)

+xH5 (m,n)j jT
����

����
13 End For

14 End If

15 End If

Outputs
1. Parameter Space A

Abbreviations: xH1 , Harmonic image 1;

xH5 , Harmonic image 5;

A, 3D parameter space;

(m,n), spatial coordinates;

(p,q,r), parameter coordinates;

s:t:, such that;

thresh, threshold

doi:10.1371/journal.pone.0092382.t002

Figure 13. Better detection.
doi:10.1371/journal.pone.0092382.g013
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parameter space. The extra dimension is for the radius parameter

and the size is the length of the radius interval. The final winning

accumulator provides not only the center but also the radius of the

detected circle.

Anisotropic weighted circle hough transform. In the

classic circle Hough transform, the point x votes to all candidates

on the circle Bx,R, equally. This kind of circle Hough transform is

isotropic. See Figure 11(a), in which the diameters of the candidate

rings stand for the voting weights.

However, the probabilities of the target center falling into the

candidates on the circle are not the same. If the gradient map of

the original image is available as well, the gradient at x could

provide more precise voting if one imagines the gradient vector

points to the target center. The voting into the candidates is

weighted according to the extent the candidate deviates from the

direction the gradient vector points. In our study, we use cosine of

the deviation angle to determine the weight. If the candidate is

parallel to the gradient vector, the voting weight is maximized; if it

is orthogonal to the gradient, the voting weight is zero. See

Figure 11(b).

Considering the discussion on the increasing ARLR with the

harmonic order and our goal of identifying the LV, we use two

harmonic images, xH1 and xH5 to cooperate in the circle detection.

Both of these images are passed to the edge detector. Two edge

maps e1 and e5 are obtained, as are the gradient maps +xH1 and

+xH5 as the by-product. The e1 and e5 for the above case are

presented in Figure 12. Notice the smaller number of concentric

rings conforming to the LV in e5. These two edge-gradient pairs

are processed to vote into a unique parameter space, only with

different weights. Since ARLR is minimized in xH1 , suggesting

that the LV has the most influential impact relatively in xH1 , the

pair fe1,+xH1g votes with a positive weight, which is selected as 1

in our study. In the contrast, the pair fe5,+xH5g votes with a

negative weight ({1) due to the fact that ARLR is maximized in

xH5 . The candidates from fe5,+xH5g mostly deviate from the LV

center. Negative weights for them would largely suppress the

incorrect candidates such as the ones in Figure 1. The whole

algorithm is presented in Table 2.

After two voting rounds are completed, the highest accumulator

in the 3 D parameter space suggests the LV center as well as the

diameter of the LV cavity. We can see a much more precise

localization result in Figure 13(a). This could provide a better

initialization for edge-based or region-based segmentation ap-

proaches. Compared to the approach that counts on the LV-

centered assumption in [27], our method is intrinsically rotational

and translational invariant. The correct localization result for the

cropped cine image, in which LV is far away from the center of

FOV, is shown in Figure 13(c).

Results

After the circle detection, a 3 D parameter space A is obtained

with M|N|L accumulators. The highest accumulator Awin

corresponds to the detected circle centered at (Awin(1),Awin(2))
with radius Awin(3). Such a circle is plotted in Figure 13(a) and (c).

In practice, the region of interest is identified as the rectangle that

bounds this circle with some extension. Such a extended ROI is

also plotted in the same case, shown in Figure 13(b) with the

expanding ratio set to 1:5 in this study. The cropped images

through the whole cardiac cycle are shown in Figure 14. The cine

image contains 20 frames, the end-diastole frame of which is

shown in the first sub-figure.

The proposed method was tried in 10 volunteer participants, 5

males and 5 females, mean age 40.5, age range from 24 to 59

years. The cine MR images were acquired on a 1.5 T Siemens

scanner. The cine images was ECG gated. The slice thickness is

8 mm. The pixel spacing is from 1.25 mm to 1.87 mm, typically

1.71 mm. The TR/TE/flip angle is between 26:6{68:4=
1:13{3:39=300{700, typically 64:56=1:19=700. A cine image

slice contains typically 22 time frames over a cardiac cycle. The

algorithm was implemented by Matlab and applied on the basal

image sequence of each volunteer case. The computational time

Figure 14. Cropped images for all frames of Volunteer 1.
doi:10.1371/journal.pone.0092382.g014

Figure 15. Cropped images for end-diastole frames of ten volunteers.
doi:10.1371/journal.pone.0092382.g015
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for each case averaged 3.94 seconds. Generating Harmonic

images took 2.987 seconds, while LV detection took 0.956

seconds.

The cropped ROI of all cases contains the LV, which is visually

inspected. The size ratio of the cropped ROI to the whole image

ranges from 0.136 to 0.185, average is 0.165, which is a large

reduction for the computation load. The statistics of experiments

with all participants are shown in Table 3 and the cropped images

of the end-diastole frame of all participants are shown in Figure 15.

Discussion

A new spectrum-based computer-aided tool has been proposed

and developed for automatic LV localization.We found that the

RV presented higher brightness than the LV in all harmonic

images. The combination of the first and fifth harmonic images

selected for an anisotropic weighted circle Hough detector was

found to be the most robust for locating the LV. The development

of this technique, which enables the automated location and

further segmentation of the LV, will have a significant impact in

research and in diagnostic settings, since we envisage that the

automated method can be used by radiographers and cardiologists

who will perform the diagnosis and assessment of ventricular

function in patients with diverse heart diseases, like ischemic

dilated cardiomyopathy [28], repaired Tetralogy of Fallot [29],

heart failure before and after surgery [30], diastolic heart failure

[31,32].

Only the basal short-axis images were used for analysis in our

experiments. We selected the top basal images (i.e., the first slice

below the slice containing LV Outflow Tract). The purpose of the

automatic localization method proposed in our paper is to provide

an initialization for the segmentation. The propagation of a single

image segmentation result to other frames or other slices is quite

common in approaches for the whole LV segmentation. Hence

choosing the best starting slice and time frame is significant for

minimizing the propagation error. The top basal images are

chosen for the large dimension of both the LV and RV on such

slices. In contrast, the LV and RV occupy only small portion of the

image and contain a small number of pixels. Any noises would

affect the detection precision. A greater viability of harmonic

images at apical slices could introduce more difficulties for our

algorithm, while containing more pathological implication. Hence,

a future study interest of ours is the application of this method on

images that have more slice locations.

To clarify, we tested our algorithm on 10 healthy volunteers

without any cardiovascular pathology. These 10 subjects constitute

the study population used to demonstrate the proof-of-concept of

our method. It should be noted that this is the first study to develop

the described novel method for automated localization with the

aim to simplify segmentation of LV cine images, which might

represent a step forward in this field. Since the shape and motion

pattern of the left ventricle and right ventricle may vary between

patients, a validation study to test the approach in a bigger

population with and without pathologies would be a logical next

step.

In this study, we conducted the experiments in normal

participants. The methodology proposed is also from an image

analysis aspect. Furthermore, the relationship between harmonic

images and the heart atlas concerning anatomy and functions

would be more interesting for clinicians. The analysis of the

correlation between harmonic image patterns and pathologies

would be a powerful diagnosis aid tool, and this is a future research

interest of ours.
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