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Simple Summary: Ovarian cancer is the most fatal gynecological disease. Intraperitoneal metastasis
contributes to complications from the disease. As such, it is important to clarify the molecular
mechanisms that underlie ovarian cancer metastasis. We identified that collagen-receptor, DDR2, is
an upstream regulator of periostin in cancer-associated fibroblasts and that this interaction promotes
tumor metastasis.

Abstract: Ovarian cancer has the highest mortality of all gynecologic malignancies. As such, there is
a need to identify molecular mechanisms that underlie tumor metastasis in ovarian cancer. Increased
expression of receptor tyrosine kinase, DDR2, has been associated with worse patient survival. Iden-
tifying downstream targets of DDR2 may allow specific modulation of ovarian cancer metastatic
pathways. Additionally, stromal cells play a critical role in metastasis. The crosstalk between tumor
and stromal cells can lead to tumor progression. We first identified that tumor cells co-cultured
with DDR2-expressing fibroblasts had lower periostin expression when compared to tumor cells
co-cultured with DDR2-depleted fibroblasts. We confirmed that DDR2 regulates POSTN expression
in ovarian cancer-associated fibroblasts (CAFs). We found that mesothelial cell clearance and in-
vasion by tumor cells were enhanced three-fold when DDR2 and POSTN-expressing CAFs were
present compared to DDR2 and POSTN-depleted CAFs. Furthermore, DDR2-depleted and POSTN-
overexpressing CAFs co-injected with ovarian tumor cells had increased tumor burden compared
to mice injected with tumor cells and DDR2 and POSTN-depleted CAFs. Furthermore, we demon-
strated that DDR2 regulates periostin expression through integrin B1 (ITGB1). Stromal DDR2 is
highly correlated with stromal POSTN expression in ovarian cancer patient tumors. Thus, DDR2
expression in CAFs regulates the steps of ovarian cancer metastasis through periostin.

Keywords: invasion; metastasis; ovarian cancer

1. Introduction

Ovarian cancer is the deadliest gynecological malignancy. Patients with advanced dis-
ease have low five-year survival rates [1]. Ovarian cancer metastasizes through peritoneal
dissemination [2] in which cancer cells attach to and clear the mesothelial cell layer in order
to invade the basement membrane to form metastatic nodules [3]. In addition, the interac-
tion between tumor cells and the surrounding stroma is crucial for tumor progression and
metastasis [4–6]. In fact, extracellular remodeling by stromal cells, including fibroblasts, in
the tumor microenvironment (TME) can contribute to metastatic signaling [7]. Deciphering
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molecular networks that are involved in the steps of metastasis is important for cancer
therapeutic development.

The process of tumor metastasis can be studied in vitro using 2D and 3D cultures [8].
Tumor spheroids model the process of collective migration that occurs during metastasis
in vivo [9]. Tumor spheroid branching and invasion can also be used to identify pro or
anti-metastatic pathways or targets [10–12]. In addition, the use of basement membrane
gels containing collagens and laminins can further recapitulate the steps of metastasis in
3D culture [13].

Signaling networks involving tyrosine kinases have been shown to play a critical role
in tumor progression. Discoidin Domain Receptor-2 (DDR2) is a receptor tyrosine kinase
whose ligand is fibrillar collagen [14,15]. High expression of DDR2 leads to increased metas-
tasis in various cancers [16–22]. Fibrillar collagen is more abundant in the stroma of ovarian
cancer patients compared to ovaries of healthy controls [23]. DDR2 is overexpressed in ep-
ithelial cancer cells as they acquire an invasive phenotype [24]. Epithelial-to-Mesenchymal
transition (EMT) factor, TWIST1, induces expression of DDR2 [25]. In addition, DDR2
stabilizes SNAIL and upregulates activity of matrix metalloproteinases (MMP) in ovarian
cancer [19,21,25,26]. Given the role of DDR2 in cancer metastasis, studying the downstream
networks that are regulated by this tyrosine kinase in tumor and stroma is important.

The metastatic potential of tumor cells is also influenced by matricellular proteins like
periostin (POSTN) [27]. POSTN expression is dysregulated in inflammatory states and in
malignant cells [28]. POSTN signals through the PI3K/Akt and FAK/Src pathways [29,30].
In addition, interaction between POSTN and various integrins (αv, β1, and β3) has been
identified but direct binding has not been shown [31–33]. In ovarian and colorectal cancer,
others have shown that overexpression of POSTN in tumor and stromal cells has been
associated with poor survival, chemoresistance, tumor proliferation, and inhibition of
immune cell activity [29,30,34–36]. However, the upstream regulatory network of POSTN
in ovarian cancer is largely unknown.

In this study, we demonstrate that DDR2 regulates POSTN expression. Using patient-
derived omentum cancer-associated fibroblasts from high-grade serous ovarian cancers
(Om-CAFs), we show that DDR2-depletion leads to decreased expression of POSTN. Ad-
ditionally, OmCAFs with high DDR2 and POSTN expression induce tumor cell invasion
and in vivo tumor implantation. As such, pathways modulated by DDR2 and POSTN can
represent therapeutic targets in ovarian cancer.

2. Materials (or Subjects) and Methods
2.1. Cell Culture

COV362 (Sigma-Aldrich, Burlington, MA, USA) was maintained in DMEM Medium
(Gibco, Waltham, MA, USA) supplemented with 10% heat inactivated fetal bovine serum
and 1% penicillin and streptomycin. ES2 cells were obtained from NCI and maintained in
McCoy’s 5A (modified) medium (Life Technologies, Carlsbad, CA, USA) supplemented
with 10% heat inactivated fetal bovine serum and 1% penicillin and streptomycin.
OVCAR3-TPMES cells were isolated from mouse mesentery tumor nodules in an
OVCAR3TP intraperitoneal model [37]. The OVCAR3TP cells were a generous gift from
Branimir I. Sikic [38]. A2780 was purchased from ATCC (Manassas, VA, USA). Cell lines
were maintained at 37 ◦C in a 5% CO2 incubator. STR profiling was performed by IDEXX
Bioresearch to authenticate cell lines. Mycoplasma testing was performed using MycoAlert
Mycoplasma Detection Kit prior to performing experiments (Lonza, Durham, NC, USA).

2.2. Primary Cancer-Associated Fibroblast Cell Culture

Tumor omentum from patients with ovarian cancer was obtained at the time of tumor-
debulking surgery. Cancer-associated fibroblasts were isolated as previously published [39]
and cultured in DMEM with 20% FBS, 1% pen-strep, 1% MEM Non-Essential Amino
Acids (Gibco, Waltham, MA, USA), and 2% MEM Vitamins (Gibco, Waltham, MA, USA).
After 7–14 days, attached and proliferating cells were passaged and used for experiments.



Cancers 2022, 14, 3482 3 of 18

CAF 43, 68, 94, and 106 were all obtained from patients with advanced stage, high-grade
serous ovarian or fallopian tube cancer. All the patients who participated in this study
provided written informed consent for the collection and research use of their materials,
and the use of these samples was approved by the Washington University Institutional
Review Board (IRB 201309050).

2.3. Secretome Protein Analysis

Patient-derived normal omental fibroblasts expressing DDR2 (NOF siCTRL) and
fibroblasts with DDR2 knockdown (NOF siDDR2) were used. 24 h conditioned media
from NOF siCTRL and NOF siDDR2 cells was collected for analysis. In addition, 24 h
conditioned media from NOF siCTRL and NOF siDDR2 cells was used as chemoattractant
in an invasion assay with serum starved ES2 cells plated on Matrigel in the Boyden chamber.
After 24 h invasion assay, NOF siCTRL + ES2 media and NOF siDDR2 + ES2 media were
also collected for mass spectrometry analysis by MS Bioworks (Ann Arbor, MI, USA). Fold
change in protein expression was calculated as the ratio of protein expression (normalized
spectral abundance factor) in control condition to protein expression in DDR2-depleted
condition. p-value < 0.05 and Fold change 2.0 or 0.5 were used as cutoff values.

2.4. Genetic Knockdown and Overexpression

The oligos for human DDR2 shRNA, 5′-GCCAGATTTGTCCGGTTCATT-3′ and
5′-GCCAAGTGATTCTAGCATGTT-3′, and control, 5′-CCTAAGGTTAAGTCGCCCTCGCTC-3′,
were cloned into the pLKO vector and infected cells were selected in puromycin (Sigma,
St. Louis, MO, USA). The following siRNAs were used: siControl-ON-TARGETplus Non-
targeting pool (Dharmacon, Lafayette, CO, USA), siDDR2-human ON-TARGETplus DDR2
siRNA SMARTpool (Dharmacon, Lafayette, CO, USA) and siPOSTN-ON-TARGETplus
Human POSTN siRNA SMARTpool (Dharmacon, Lafayette, CO, USA). To overexpress
POSTN, we used Periostin (POSTN) (NM_001135935) Human Tagged ORF Clone (Origene
Technologies, Rockville, MD, USA) and pCMV6-Entry Empty Mammalian Expression
Vector (Origene Technologies, Rockville, MD, USA). For all genetic knockdown and overex-
pression experiments, polyclonal populations were tested for decreased DDR2 expression
levels by immunoblot analysis.

2.5. Tumor Cell Spreading

CAFs were embedded in 1 mg/mL Matrigel (Corning, Corning, NY, USA) with
30 µg/mL collagen or 0.5 mg/mL polymerized collagen and incubated at 37 ◦C, 5% CO2
for 24–48 h. For all experiments, we polymerized collagen at pH 7 and temperature 37 ◦C.
Tumor spheroids were formed with 300 ES2 cells/well and 10 µg/mL fibronectin (Corning)
and incubated in ultra-low attachment plates (Corning, Corning, NY, USA) at 37 ◦C, 5%
CO2 overnight. On the day of the experiment, the tumor spheroids were transferred onto
the CAF-embedded gel. Time zero, 24 h, and 48 h tumor spreading pictures were acquired
and sprout area was measured using the WIMASIS WimSprout analysis platform. Sprout
area ratio was calculated by the final sprout area divided by initial sprout area.

2.6. 3D Collagen Invasion

Similar to previously published literature [26,40], 50,000 ES2 tumor cells were embed-
ded in a collagen plug (1 mg/mL concentration) and incubated on a 24-well plate coated
with 3D collagen type 1. Upon polymerization of the cell-containing collagen plug, another
layer of collagen was added to encapsulate the cell plug. Images were taken on a brightfield
microscope with 4× objective at time zero, and every 24 h for a total of 7 days. Invasion
area was measured as the total area of cell invasion from the original boundary using
ImageJ. Conditioned media from CAFs was used to form all 3D collagen, including the cell
plug. Conditioned media was also added atop the gels after polymerization of the topmost
collagen layer.
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2.7. Mesothelial Cell Clearance

Human primary mesothelial cells (HPMCs) were cultured in 6-well plates (Techno
Plastic Products, Trasadingen, Switzerland) until >80% confluence was reached. HPMC and
CAFs (1:1 ratio) were labeled with CMFDA-green (Molecular Probes, Eugene, OR, USA),
washed with PBS, and incubated with fresh cell culture media. Spheroids were prepared as
described above but ES2 cells were labelled with CMTPX-red (Molecular Probes) prior to
plating in the ultra-low attachment plates. Plates containing labelled cells were incubated at
37 ◦C, 5% CO2 overnight. Spheroids were added onto the HPMC and CAF monolayer at the
microscope and time lapse images were acquired from time zero until 20 h. Clearance ratio
was determined by measuring the total area cleared by the spheroid in ImageJ, divided by
the size of the spheroid at time zero.

2.8. Attachment Assay

HPMCs and CAFs (1:1 ratio) were plated in a 96 well plate, 5 × 105 cells/well total
and incubated overnight at 37 ◦C, 5% CO2. ES2 cells were stained with CMFDA-green.
HPMC and CAFs were washed with PBS, and 100 µL of the labeled ES2 cell suspension
(5 × 104 cells) were added to each well and incubated at 37◦C for 1 h. After the incubation,
the total fluorescence at Ex/Em = 494/517 nm was measured using an Infinite M200Pro
plate reader (Tecan, Männedorf, Switzerland). Wells were washed with PBS twice to remove
non-adherent cancer cells. PBS was added to the wells and fluorescence was measured
again. Percent attachment was determined by dividing the corrected (background sub-
tracted) fluorescence of adherent cells by the total corrected fluorescence of cells added to
each microplate well and multiplying by 100.

2.9. Transwell Invasion Assay

1 mg/mL Matrigel (Corning) was plated in Boyden chambers (Corning) and allowed
to polymerize. 24 h conditioned media from CAFs was used as a chemoattractant in
invasion assay. 10,000 ES2 cells were plated in 100 µL media atop the polymerized gel. ES2
cells were allowed to invade for 48 h. Matrigel was removed from the chambers using
a cotton swab. The membrane was fixed, stained, and imaged. Cells were quantified by
counting number of invaded cells per high powered field at 20×.

2.10. Wound Healing Assay

ES2 cells were plated at 5 × 105 cells/well in a 12-well plate (Techno Plastic Products)
and incubated at 37 ◦C, 5% CO2 overnight. A vertical scratch was made on the ES2
monolayer cells using a toothpick. Cells were rinsed with PBS to remove dislodged cells
and 24 h conditioned media from CAFs was added to the ES2 cells. The plate was then
incubated at 37 ◦C, 5% CO2 for 24 h. Time zero and 24 h pictures were taken using a
microscope at 4×. Migration area was determined using the wound healing size tool
plugin in ImageJ. Percent migration was calculated as the percent change in wound healing
area over 24 h.

2.11. Statistical Analysis

Graphpad Prism 9 was used for statistical analysis. All statistical tests were performed
using the Student’s t-test with p-values of < 0.05 considered statistically significant.

2.12. Western Blot Analysis

Protein lysates, collected in 9 mol/L urea and 0.075 mol/L Tris, pH 7.6, were quan-
tified using a Bradford protein quantification assay. Samples were normalized for pro-
tein concentration. Protein visualization was performed using a Jess Automated Protein
Analysis system (BioTechne, Minneapolis, MN, USA). Antibody dilutions were as fol-
lows: DDR2 (1:50, Cell Signaling Technology, Danvers, MA, USA), POSTN (1:200 Adipo-
gen, San Diego, CA, USA), pAKT (1:50, Cell Signaling Technology, Danvers, MA, USA),
pSrc (1:50, Cell Signaling Technology, Danvers, MA, USA), ITGB1 (1:50, Thermofisher,
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Waltham, MA, USA), Actin (1:200, Sigma-Aldrich, Burlington, MA, USA). For signaling
pathway analysis, CAFs were embedded in 1 mg/mL polymerized collagen 1 overnight
prior to collecting protein lysates.

2.13. Co-Immunoprecipitation Assay

CAFs were transfected with Flag-tagged constructs (Origene Technologies, Rockville,
MD, USA) using TransIT-LT1 reagent (Mirus Bio, Madison, WI, USA). Cells were collected
36 h after transfection, lysed, and protein quantification was performed using Bradford.
Protein concentration was normalized between samples and equilibrated FLAG beads (Sigma
Aldrich, Burlington, MA, USA) was added for overnight incubation at 4 ◦C. Pulldown assay
was performed according to manufacturer’s protocol (Sigma Aldrich, Burlington, MA, USA).
Interacting proteins were eluted using SDS-PAGE sample buffer, and immunoblot for ITGB1
was performed.

2.14. cDNA Preparation and Quantitative Real-Time PCR

To isolate total cellular RNA, the RNAEasy plus mini kit (Qiagen, Germantown, MD, USA)
was used. 1 µg of the RNA was used to make cDNA. Real-time PCR reactions were done
using the SYBR Green PCR Master Mix (Applied Biosystems, Waltham, MA, USA) in the
ABI detection system (Applied Biosystems). The experiments were carried out in triplicate
for each data point. Gene expression was quantified using the 2−∆∆Ct method. RT-PCR
primers used were as follows: DDR2 (Fwd 5′-TCA CCC AGA CCC ATG AAT AC-3′, Rev
5′-GGG AAG GAA ATG GCA TTA GG-3′), POSTN (Fwd 5′-GAT GGA GTG CCT GTG
GAA ATA-3′, Rev 5′-GTT TCT CCA CCT CCA GTA GAA AT-3′).

2.15. Xenograft Model of Ovarian Cancer

All procedures involving animals and their care were performed in accordance with
the guidelines of the American Association for Accreditation for Laboratory Animal Care
and the U.S. Public Health Service Policy on Human Care and Use of Laboratory Animals.
All animal studies were also approved and supervised by the Washington University Insti-
tutional Animal Care and Use Committee in accordance with the Animal Welfare Act, the
Guide for the Care and Use of Laboratory Animals and NIH guidelines (Protocol 20-0378).
For genetic studies, CAF68hT shSCRM + ES2, CAF68hT shDDR2 + ES2, CAF68hT shDDR2
POSTN OE + ES2, CAF68hT shDDR2 Empty Vector + ES2, ES2 alone or CAF68hT shSCRM
alone were injected intraperitoneally (i.p.) at ratio 1:1 CAF:tumor amount with a total
of 5 × 106 cells in 0.2 mL of PBS into female 6- to 8-week old (n = 4–5 per group) NCr
nude mice (Taconic). Mice were monitored for adverse events and sacrificed with CO2
exposure and cervical dislocation at 15 days after i.p. injection. Necropsy with tumor
burden assessment was performed. At the completion of the experiment, aggregate tumor
weight was recorded for each group.

2.16. Immunohistochemistry and Tumor Microarray

Ovarian human tissue microarrays were obtained from US Biomax (208) (Rockville,
MD, USA) which contained normal, primary, and metastatic tumors. Slides were deparaf-
finized with xylene, then rehydrated and unmasked following standard immunohistochem-
ical methods. Antibodies used were DDR2 1:500 (R&D systems, Minneapolis, MN USA)
and POSTN 1:200 (Abcam, Cambridge MA, USA). Antigen–antibody complexes were visu-
alized using the VECTASTAIN ABC system (Vector Laboratories, Newark, CA, USA) and
DAB Substrate Kit for Peroxidase (Vector Laboratories, Newark, CA, USA) following the
manufacturer’s protocol. Slides were counterstained in hematoxylin. DDR2 and POSTN
staining in the stroma was scored microscopically according to the percentage of cells
positive for DDR2 or POSTN expression both by intensity and percentage of cells with
expression (0 for absent, 1–1.99 for 1–40%, 2–2.99 for 40–60%, and 3–3.99 for >60%). For
each protein, two cores were stained for each patient and the average score was used for
the correlation studies. There were two blinded, independent scores obtained for DDR2
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and POSTN. Correlation was performed in Graphpad prism and Spearman rho coefficient
and p-value were reported.

2.17. TCGA RNA Co-Expression

Using cbioportal.org, we accessed The Cancer Genome Atlas. We used TCGA Firehose
Legacy cohort for ovarian cancer for our analyses. A total of 606 ovarian cancer samples
were included in this study. Gene co-expression was analyzed for POSTN. Spearman rho
coefficient and p-value were reported.

3. Results
3.1. CAFs Promotes Ovarian Tumor Spheroid Branching through DDR2

During metastasis, tumor cells must undergo attachment, clearance, and invasion
of the basement membrane [41,42]. A critical component that spans multiple steps of
metastasis is the ability for ovarian tumor spheroids to branch in order to migrate. To
determine whether CAFs would enhance tumor spheroid branching, we placed tumor
spheroids above CAFs mixed in basement membrane gels or above basement membrane
gels without CAFs. We monitored spheroid branching over 24 h and found that the ovarian
tumor spheroids branch more in CAF-containing basement membrane gels compared to
gels without CAFs (Supplementary Materials Figure S1A–C).

We had previously identified that tumor DDR2 regulates metastasis in ovarian can-
cer [25]. We next asked whether the action of DDR2 in OmCAFs can contribute to tumor
metastasis [17]. Since fibrillar collagen, such as collagen 1, is a ligand for DDR2 [14], we
placed DDR2-expressing ES2 spheroids on CAF-containing collagen type 1 gels. Spheroids
cultured with DDR2-expressing CAFs had increased sprout area compared to spheroids
cultured with DDR2-depleted CAFs (Figure 1A). Increased sprout area was also observed
in spheroids cultured with DDR2-expressing CAFs in Matrigel which contains collagen IV
and laminin (Figure 1B, Supplementary Materials Figure S1D). DDR2 knockdown in CAFs
was confirmed by immunoblotting (Figure 1C).
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3.2. Fibroblast DDR2 Expression Regulates Periostin (POSTN) Levels

Given we identified that DDR2 expression in CAFs can further promote metastasis
through regulation of tumor spheroid branching, we asked whether there were particular
secreted proteins that contributed to fibroblast regulation of metastasis. Specifically, we
were interested in the proteins secreted by tissue-resident fibroblasts that were induced by
exposure to tumor cells. Upon exposure to tumor cells, these tissue-resident fibroblasts can
transition to CAFs in vivo [43]. Thus, we collected media from tissue-resident fibroblasts
cultured from normal omentum that we will refer to as normal omental fibroblasts (NOFs).
We characterized our NOF and CAFs using immunoblotting for established fibroblast mark-
ers, fibroblast activated protein, and FSP/S100a4 (Supplementary Materials Figure S2A).
These NOFs were co-cultured with ovarian cancer tumor cells using the same conditions for
an invasion assay. Specifically, ES2 cells were placed on top of Matrigel with conditioned
media from NOF siCTRL or NOF siDDR2 as the chemoattractant. After 24 h of invasion,
there was less tumor cell invasion when conditioned media from NOFsiDDR2 was used as
the chemoattractant. The post-invasion chemoattractant media (NOF siCTRL + ES2 and
NOF siDDR2 + ES2), as well as conditioned media from NOFs alone, was sent for mass
spectrometry analysis for differential expression of secreted factors.

From the mass spectrometry analysis, 45 secreted proteins were identified. Of partic-
ular interest was periostin (POSTN), which was found to have a significantly higher ex-
pression in DDR2-expressing NOFs co-cultured with ES2 tumor cells (NOF siCTRL + ES2)
compared to DDR2-depleted NOFs co-cultured with tumor cells (NOF siDDR2 + ES2)
(Fold change = 2.0, p = 0.03) (Figure 2A). Of note, from this analysis, POSTN was not
secreted at baseline in ES2 tumor cells as seen in Figure 2A. These findings are compared
to DDR2-expressing NOFs that had a small decrease in POSTN secretion compared to
DDR2-depleted NOFs (Fold change of 0.68, p = 0.03, data not shown). This was below our
fold change cutoff and thus not considered significant.

We identified that ES2 tumor cells do not express POSTN (Figure 2B) and this is
consistent with the lack of secreted POSTN (Figure 2A) from ES2 cells. We identified that
POSTN had significantly higher expression in the DDR2-expressing NOFs co-cultured
with ES2 tumor cells compared to conditioned media of NOF alone or DDR2-depleted
NOFs co-cultured with ES2 tumor cells. Next, we asked whether there was a functional
significance for POSTN in DDR2-expressing CAFs. To determine if DDR2 expression in
CAFs regulates POSTN levels, we examined POSTN levels in DDR2-depleted CAFs by
immunoblotting and quantitative PCR.

Using a collection of patient-derived CAFs and multiple short hairpin RNA (shRNA)
targeting DDR2, we showed that DDR2-depleted CAFs had lower POSTN expression levels
(Figure 2C, Supplementary Materials Figure S2B). DDR2-depleted CAFs co-cultured with
ES2 tumor cells had further reduction in POSTN levels compared to DDR2-expressing
CAFs co-cultured with ES2 cells (Figure 2D, Supplementary Materials Figure S2C). This
effect is likely CAF-specific given that ES2 cells do not express POSTN (Figure 2B). We
aimed to identify if DDR2 expression in tumor cells regulates POSTN expression, so we
performed immunoblotting on a panel of DDR2-expressing and DDR2-depleted cells.
DDR2 expression in tumor cells did not correlate with POSTN expression (Supplementary
Materials Figure S2D). These data show that DDR2 regulates POSTN expression in CAFs
but that there is no correlation between DDR2 and POSTN expression in tumor cells.

We used the tumor spheroid assays to determine whether POSTN expression in CAFs
influences tumor spheroid branching. We cultured ES2 spheroids on POSTN-expressing
CAF-containing gels or POSTN-deficient CAF-containing gels. Spheroids cultured on
POSTN-expressing CAF-containing gels had increased sprout area compared to spheroids
cultured with POSTN-depleted CAF-containing gels (Figure 2E). POSTN knockdown
was confirmed by immunoblotting (Figure 2F). This result indicates that tumor spheroid
branching is decreased on POSTN-deficient CAF-containing gels.



Cancers 2022, 14, 3482 8 of 18Cancers 2022, 14, x FOR PEER REVIEW 9 of 19 
 

 

 

Figure 2. Periostin is decreased in DDR2-depleted fibroblasts co-cultured with tumor cells. (A) Mass 

spectrometry secretome analysis of DDR2-expressing and DDR2-depleted fibroblasts exposed to 

tumor cells. (B) Western blot showing that periostin is not expressed in ES2 tumor cells. (C) Western 

blot validation showing decreased periostin levels in DDR2-depleted CAFs. (D) DDR2-dependent 

decrease in periostin levels is more pronounced when CAFs are co-cultured with tumor cells. (E) 

Decreased tumor spheroid spreading observed upon depletion of POSTN in CAFs and (F) Western 

blot showing POSTN knockdown. **** p < 0.0001. 

  

Figure 2. Periostin is decreased in DDR2-depleted fibroblasts co-cultured with tumor cells. (A) Mass
spectrometry secretome analysis of DDR2-expressing and DDR2-depleted fibroblasts exposed to
tumor cells. (B) Western blot showing that periostin is not expressed in ES2 tumor cells. (C) Western
blot validation showing decreased periostin levels in DDR2-depleted CAFs. (D) DDR2-dependent
decrease in periostin levels is more pronounced when CAFs are co-cultured with tumor cells.
(E) Decreased tumor spheroid spreading observed upon depletion of POSTN in CAFs and (F) Western
blot showing POSTN knockdown. **** p < 0.0001.
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3.3. Regulation of Periostin by DDR2 Promotes the Steps of Tumor Metastasis in
Cell-Based Assays

Tumor attachment, clearance, and invasion through the basement membrane is nec-
essary for metastasis [41,42]. To determine if DDR2′s regulation of periostin in CAFs
influences tumor metastasis in cell-based assays, we performed attachment, clearance, and
invasion assays. In order to test the effect of DDR2 and POSTN on tumor metastasis, we
used DDR2-expressing (CAF shSCRM) and DDR2-depleted CAFs (CAF shDDR2) as well
as DDR2-depleted, periostin-overexpressing (CAF shDDR2 POSTN OE), and transfection
control (CAF shDDR2 Empty Vector) CAFs. (Figure 3A,B).
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Figure 3. DDR2 and POSTN promote tumor metastasis in cell-based assays. (A) Western blot showing
increase in pSrc and pAKT in POSTN overexpression in DDR2-depleted CAFs. (B) Western blot
showing POSTN overexpression in DDR2-depleted CAF106. (C) Mesothelial and CAF clearance by
tumor cells using DDR2 knockdown and POSTN overexpression CAFs. (D) Analysis of assay in (C).
(E) Matrigel transwell tumor invasion assay with ES2 cells using conditioned media from DDR2
knockdown and POSTN overexpression CAFs. (F) 3D Collagen tumor cell migration assay using
conditioned media from DDR2 knockdown and POSTN overexpression CAFs. (G) Analysis of assay
in (E,H) Analysis of assay in (F). ** p < 0.01, *** p < 0.001, **** p < 0.0001.

Tumor cell attachment is the initial step of peritoneal metastasis in ovarian cancer [3].
We aimed to study the effect of DDR2′s modulation of POSTN in CAFs on tumor cell
attachment. For the attachment assay, we cultured human primary mesothelial cells
(HPMC) with DDR2-expressing (CAF shSCRM), DDR2-depleted (CAF shDDR2), DDR2-
depleted + periostin-overexpressing (CAF shDDR2 POSTN OE), or DDR2-depleted + empty
vector (CAF shDDR2 Empty Vector) CAFs. Fluorescent-labeled ES2 cells were allowed
to attach for 1 h after which unattached cells were removed. We observed a decrease in
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tumor cell attachment in DDR2-depleted CAF condition compared to DDR2-expressing
CAF condition, however these differences were not statistically significant (Supplementary
Materials Figure S3A). This data suggests that DDR2 and POSTN expression in CAFs may
not play a critical role in tumor cell attachment.

Upon attachment to the mesothelial cells, tumor cells must clear through mesothelial
cells in order to invade into the underlying stroma [3,6]. We aimed to define the role of
DDR2′s modulation of POSTN in CAFs on tumor cell clearance of HPMCs. For the clearance
assay, we cultured CAFs with HPMCs, added ES2 spheroids and monitored clearance
by tumor cells for 20 h. We observed decreased clearance for spheroids cultured with
DDR2-depleted CAFs compared to those with DDR2-expressing CAFs (Figure 3C). POSTN
overexpression in DDR2-depleted CAFs led to an increase in clearance ratio compared
to DDR2-depleted CAFs alone (Figure 3D). This data suggests that DDR2 and POSTN
expression in CAFs promote tumor cell clearance of mesothelial cells.

After clearance of the mesothelial cells, tumor cells can invade into the underly-
ing basement membrane and migrate within the collagen-rich extracellular matrix. We
aimed to define the role of DDR2′s modulation of POSTN in CAFs on tumor cell in-
vasion into the basement membrane and ECM migration. For the Matrigel transwell
invasion assay, we used conditioned media from DDR2-expressing, DDR2-depleted, and
DDR2-depleted + POSTN-overexpressing CAFs as chemoattractant for tumor cell invasion.
ES2 cells were allowed to invade through a Matrigel plug. Since collagen 1 is a ligand
of DDR2, we also studied the effect of DDR2′s modulation of POSTN on tumor cell mi-
gration through a 3D collagen extracellular matrix (ECM). In both the Matrigel transwell
invasion and 3D collagen migration assays, we observed decreased tumor cell invasion
in the DDR2-depleted CAF condition compared to DDR2-expressing CAFs (Figure 3E,F).
In addition, overexpressing POSTN in DDR2-depleted CAFs led to an increase in tumor
cell invasion (Figure 3G,H). These data indicate that DDR2 signaling through POSTN is
important for tumor cell invasion through the basement membrane as well as migration
through the ECM.

3.4. Regulation of Periostin by DDR2 Increases Tumor Spreading and Proliferation

The ability of a tumor to proliferate and spread is necessary for its metastatic potential.
In order to determine the role of DDR2′s modulation of POSTN on tumor cell spreading
and proliferation, we performed spheroid spreading and wound healing assays. The tumor
spreading assay was performed on polymerized collagen 1. Spheroids cultured with DDR2-
depleted CAFs had decreased sprout area ratio, as observed before (Figures 1A and 4A).
However, overexpression of POSTN in DDR2-depleted CAFs led to an increase in tumor
spreading as measured by sprout area ratio (Figure 4A,B). Similar findings were observed
when Matrigel was used for the tumor spreading assay (Figure 4C,D, Supplementary
Materials Figure S4A,B).

Tumor cell invasion through the basement membrane is in part influenced by its
ability to migrate. To determine the effect of DDR2′s modulation of POSTN on tumor cell
migration and proliferation, we performed wound healing assays with ES2 tumor cells
and CAF conditioned media. A small scratch was introduced in ES2 cells cultured in a
monolayer. Dislodged cells were removed and CAF conditioned media was added to the
ES2 cells. Conditioned media from DDR2-depleted CAFs showed decreased ability to
induce ES2 tumor cell migration and proliferation (Figure 4E,F). Overexpression of POSTN
in DDR2-depleted CAFs led to an increased ability to promote tumor cell migration and
proliferation (Figure 4E–H). These data indicate that DDR2 function through POSTN is
important for tumor migration and proliferation.
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Figure 4. DDR2 and POSTN promote tumor migration and spreading. (A) Increased tumor spheroid
spreading with POSTN overexpression in DDR2-depleted CAF68hT in collagen 1 gel. (B) Analysis of
assay in (A). (C) Increased tumor spheroid spreading with POSTN overexpression in DDR2-depleted
CAF106 in Matrigel. (D) Analysis of assay in (C). (E) Increased tumor migration and wound healing
with POSTN overexpression in DDR2-depleted CAF68hT. (F) Analysis of assay in (E). (G) Increased
tumor migration and wound healing with POSTN overexpression in DDR2-depleted CAF106, and
(H) Analysis of assay in (G). * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001.

3.5. Regulation of POSTN by DDR2 Influences PI3K/Akt and Src Pathways

POSTN has been shown to signal through the PI3K/Akt and Src pathways in various
cancers [29,35]. PI3K/Akt and Src pathways are also downstream of DDR2 signaling [26].
To determine if DDR2′s regulation of POSTN modulates the PI3K/Akt and Src pathways,
we depleted DDR2 in patient-derived CAFs. We also overexpressed POSTN in DDR2-
depleted CAFs to test the effects POSTN expression in a DDR2-dependent manner. We
cultured these CAFs on plastic or polymerized collagen 1 and performed immunoblotting
for pAKT and pSrc. DDR2 depleted CAFs had lower pAKT and pSrc levels (Figure 3A).
However, overexpression of POSTN in DDR2-depleted CAFs increased pAKT and pSrc
levels back to baseline (Figure 3A). This data indicates that DDR2 and POSTN acts upstream
of the PI3K/Akt and Src pathways.

3.6. DDR2 Regulates Integrin β1 (ITGB1) Which Binds Directly to Periostin

We have previously shown that the action of DDR2 in breast cancer CAFs is important
for ITGB1 activity [44]. Prior work also suggests that periostin interacts with various
integrin family proteins (αv, β1, and β3) [31–33]. To determine if DDR2 regulates ITGB1
expression in OmCAFs, we performed immunoblot on collagen-stimulated CAFs with
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or without DDR2 expression. DDR2-depleted CAFs had decreased expression of ITGB1
compared to DDR2-expressing CAFs (Figure 5A). We also aimed to determine if POSTN
binds directly to ITGB1 so we performed a co-immunoprecipitation assay using FLAG-
tagged POSTN and control vectors. We identified that POSTN binds directly to ITGB1
(Figure 5B). The regulatory network that connects DDR2 and POSTN includes collagen-
binding receptor, ITGB1 (Supplementary Materials Figure S5). These data suggest that
DDR2 controls ITGB1 expression and POSTN’s binding to ITGB1 may reflect the mechanism
by which DDR2 regulates POSTN.
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Figure 5. DDR2 regulates ITGB1, which is a direct binding partner of POSTN. (A) Immunoblot
showing decreased ITGB1 expression in DDR2-depleted CAFs, (B) Co-immunoprecipitation of ITGB1
using FLAG-tagged POSTN and empty control constructs.

3.7. Regulation of Periostin by DDR2 Promotes Tumor Implantation In Vivo

To determine if DDR2′s regulation of periostin in CAFs has an effect on tumor cell im-
plantation in vivo, we injected ES2 cells and patient-derived CAFs into NCr nude mice and
monitored ability to implant and form metastatic nodules in an intraperitoneal xenograft
model. We sacrificed the mice after 15 days and compared tumor weight within the groups.
Mice injected with DDR2-depleted CAFs (CAF shDDR2 + ES2) had decreased tumor burden
compared to mice injected with DDR2-expressing CAFs (CAF shSCRM + ES2) (Figure 6A).
Overexpression of POSTN in DDR2-depleted CAFs (CAF shDDR2 POSTN OE + ES2) led
to increased tumor burden in our xenograft model. This data suggests that regulation of
POSTN by DDR2 in CAFs is important for tumor metastasis in vivo.
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Figure 6. DDR2 and POSTN promote in vivo tumor implantation. (A) Xenograft model showing
increased tumor burden in mice co-injected with DDR2-depleted, POSTN-overexpressing CAFs
and ES2 tumor cells. (B) Correlation between POSTN mRNA expression and DDR2 (and known
ligands/targets) mRNA expression using TCGA data, and (C) Tumor microarray IHC data showing
correlation between POSTN protein expression and DDR2 protein expression. ** p < 0.01.

3.8. POSTN Expression Correlates with DDR2 Expression in Patient Tumors

We aimed to determine if there was a correlation between DDR2 and POSTN mRNA
expression. Using The Cancer Genome Atlas–Firehouse Legacy study, we analyzed
606 ovarian cancer samples. We determined correlation between POSTN expression
and DDR2 as well as known ligands and targets of DDR2, including collagen isoforms,
MMPs, and SNAIL [26,45]. POSTN expression was strongly correlated with COL1A1
(Spearman rho = 0.82, p < 0.0001), DDR2 (Spearman rho = 0.43, p < 0.0001), and MMP2
(Spearman rho = 0.82, p < 0.0001) expression, among others (Figure 6B).

To determine if DDR2 protein expression was correlated with POSTN protein ex-
pression in ovarian cancer patients, we performed immunohistochemistry on a tumor
microarray with specimens from 180 patients with primary and metastatic tumor sites.
Cores were stained for DDR2 and POSTN and scored blindly for stromal expression. Stro-
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mal DDR2 protein expression was highly correlated with stromal POSTN protein expression
in ovarian cancer patients (Spearman rho = 0.77, p < 0.0001) (Figure 6C, Supplementary
Materials Figure S5A,B). These data suggest that tumors from ovarian cancer patients with
high stromal DDR2 expression also have high stromal POSTN expression.

4. Discussion

To the best of our knowledge, this is the first study to show that DDR2 regulates
POSTN. We identify that the interaction between DDR2 and POSTN is important in CAFs
and promotes tumor metastasis in ovarian cancer. Additionally, we confirm that DDR2
and POSTN signal through the PI3K/AKT and Src pathways. Furthermore, we show
that POSTN binds directly to ITGB1 and that ITGB1 expression in OmCAFs is regulated
by DDR2. DDR2 and periostin signaling in CAFs promotes tumor migration, clearance,
proliferation, and invasion. POSTN and DDR2 protein expression, as well as that of known
ligands and targets of DDR2, are highly correlated.

Ovarian cancer metastasizes throughout the peritoneal cavity. Patients with high grade
serous ovarian cancer (HGSOC) have a worse prognosis compared to other histologies [46].
HGSOC is genetically characterized by the presence of a TP53 mutation [47]. We derived
primary, high-grade serous ovarian cancer-associated fibroblasts (HGSOC-CAFs) in this
study from the omentum of ovarian cancer patients [39]. To determine whether DDR2-
expressing CAFs regulated tumor cell invasion, we utilized the DDR2-expressing ES2 tumor
cell line. The ES2 cell line is histologically characterized as a clear-cell carcinoma derivative
but genetically characterized as HGSOC with a TP53 mutation [48]. It has been shown
previously that DDR2 promotes metastasis in numerous cancers [16–22]. High DDR2
expression predicts poor prognosis in ovarian cancer [49]. TWIST1 induces DDR2, which
signals through the PI3K/AKT and Src pathways and stabilizes SNAIL1 [25,26,50–52].
Interestingly, DDR2 can partially promote metastasis in a kinase-independent manner [40].
However, since we observed an increase in pAKT and pSrc levels in DDR2-depleted
POSTN-overexpressing CAFs (Figure 3A), it is likely that the interaction between DDR2
and POSTN is kinase-dependent. Further studies are needed to confirm if DDR2 and
POSTN interact in the absence of kinase and/or collagen-binding activity.

POSTN is a matricellular protein that has been found to affect multiple processes
in cancer development [27,28]. Others have shown that POSTN-expressing tumor cells
signal through the PI3K/AKT and Src pathways [29–31]. We have demonstrated that
POSTN-expressing CAFs also can signal through PI3K/AKT and Src (Figure 3A). Tumor-
derived POSTN is important for the recruitment of M2-like macrophages during tumor
progression [53,54]. In addition to POSTN expression in tumor cells, stromal POSTN
has been found to have prognostic significance in various cancers, including ovarian
cancer [35,55]. Within the stroma, CAFs are abundant and promote tumor progression,
remodel the extracellular matrix, and are responsible for collagen synthesis [56]. In the
collagen-abundant stroma, POSTN has been shown to interact with various collagen
receptors, including integrins (αv, β1, and β3) and DDR1, however direct binding was not
shown [31–33,57]. We demonstrated direct binding between POSTN and integrin β1 in
CAFs (Figure 5B). Dissecting the functional relevance of this interaction will be important
in future work.

In our in vivo study, we show a decrease in tumor burden in mice injected with DDR2-
depleted CAFs (CAF shDDR2 + ES2) had decreased tumor burden compared to mice
injected with DDR2-expressing CAFs (CAF shSCRM + ES2). In a prior study to decipher
the role of DDR2 signaling in CAFs on tumor lung colonization in a breast cancer model,
it was observed that CAFs co-injected with tumor cells into mice survived for less than
7 days [40]. Since our in vivo model lasted 15 days, it is possible that CAFs influence tumor
initiation and early progression. The kinetics of CAF and tumor cell activity in vivo will be
clarified by future studies.
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In conclusion, we have identified that DDR2-expressing CAFs regulate POSTN through
ITGB1 to promote tumor metastasis in ovarian cancer. DDR2 and POSTN signal through
the PI3K/AKT and Src pathway and represent therapeutic targets in ovarian cancer.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cancers14143482/s1, Figure S1: Tumor spheroid spreading on
basement membrane gels is increased in the presence of CAFs. Figure S2A: Characterization of ovarian
cancer patient-derived normal omental fibroblast and cancer-associated fibroblasts. Figure S2B: DDR2
depleted CAFs have reduced POSTN levels. We tested this using a second hairpin against DDR2
(shDDR2_2). Figure S2C: Periostin mRNA levels decrease in DDR2-depleted CAFs cultured with
tumor cells. Figure S2D: DDR2 does not regulate periostin expression in ovarian cancer cell lines.
Figure S3A: DDR2 depletion in CAFs leads to marginal differences in tumor cell attachment in the
presence of HPMCs. Figure S3B: Matrigel transwell tumor invasion assay with COV362 cells using
conditioned media from DDR2 knockdown and POSTN overexpression CAFs. Figure S4: DDR2’s
regulation of periostin increases tumor spreading. Figure S5: Regulatory network including DDR2,
periostin and ITGB1. Figure S6: Immunohistochemistry for (A) Stromal POSTN positive and (B)
Stromal DDR2 positive cores. 5× images.
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