
A Format for Phylogenetic Placements
Frederick A. Matsen1*, Noah G. Hoffman1,2, Aaron Gallagher1, Alexandros Stamatakis3

1 Program in Computational Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America, 2 Laboratory Medicine, University of

Washington, Seattle, Washington, United States of America, 3 Heidelberg Institute for Theoretical Studies, Heidelberg, Germany

Abstract

We have developed a unified format for phylogenetic placements, that is, mappings of environmental sequence data (e.g.,
short reads) into a phylogenetic tree. We are motivated to do so by the growing number of tools for computing and post-
processing phylogenetic placements, and the lack of an established standard for storing them. The format is lightweight,
versatile, extensible, and is based on the JSON format, which can be parsed by most modern programming languages. Our
format is already implemented in several tools for computing and post-processing parsimony- and likelihood-based
phylogenetic placements and has worked well in practice. We believe that establishing a standard format for analyzing read
placements at this early stage will lead to a more efficient development of powerful and portable post-analysis tools for the
growing applications of phylogenetic placement.

Citation: Matsen FA, Hoffman NG, Gallagher A, Stamatakis A (2012) A Format for Phylogenetic Placements. PLoS ONE 7(2): e31009. doi:10.1371/
journal.pone.0031009

Editor: Jonathan H. Badger, J. Craig Venter Institute, United States of America

Received November 11, 2011; Accepted December 29, 2011; Published February 22, 2012

Copyright: � 2012 Matsen et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: FAM, NGH, and AG were supported in part by National Institutes of Health grant HG005966-01. The funders had no role in study design, data collection
and analysis, decision to publish, or preparation of the manuscript. No additional external funding was received for this study.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: matsen@fhcrc.org

Introduction

‘‘Phylogenetic placement’’ has become popular in the last

several years as a way to gain an evolutionary understanding of a

large collection of sequences. The input to a phylogenetic

placement algorithm consists of a reference tree, a corresponding

reference multiple sequence alignment, and a collection of query

sequences. The output of a phylogenetic placement algorithm is a

set of assignments of the query sequences to branches of the tree;

there is at least one such assignment for each query. A query can

be assigned to more than one branch on the reference tree to

express placement uncertainty for that query sequence.

Phylogenetic placement methods circumvent several problems

associated with applying traditional phylogenetic algorithms to

large, environmentally-derived sequence data. The computational

burden is decreased compared to constructing a tree containing

reference and query sequences de novo, resulting in algorithms that

can place thousands to tens of thousands of query sequences per

hour and per processing core into a reference phylogeny with one

thousand taxa. Because computation is performed on each query

sequence individually and independently, placement algorithms

are also straightforward to parallelize. The relationships between

the query sequences are not investigated. Hence, the size of the

search space is reduced from an exponential to just a linear

number of phylogenetic hypotheses. Moreover, short and/or non-

overlapping query sequences pose less of a problem, as query

sequences are compared to the full-length reference sequences.

Visualization of samples and comparison between samples are

facilitated by the assumption of a fixed reference tree, that can be

drawn in a way which highlights the location and distribution of

reads.

The advent of high-throughput sequencing has motivated a

growing interest in phylogenetic placement. The basic idea is as

old as computational phylogenetics [1,2] although these insertions

historically have been considered as just the first step towards full

de novo tree reconstruction. Recent implementations have focused

on algorithms for likelihood-based placement, such as [3,4], with

more efficient recent implementations [5–7]. These tools are being

incorporated into popular workflows for microbial ecology, such as

QIIME [8] and the next version of AMPHORA [9]. Comparative

methods are being developed and implemented in software

[10,11], and work is underway to extend a tree viewer [12] to

visualize placements. Dedicated algorithms to align reads with

respect to reference alignments for subsequent phylogenetic

placement are also being developed [13,14].

Because of this expansion of activity, standards are needed. The

original versions of pplacer [6] and EPA [5] each implemented

their own idiosyncratic tabular file formats. These ad-hoc formats

kept post-analysis tools from being interoperable and hindered tool

comparison.

In this letter, we describe a lightweight file format that will

ensure consistency between tools. Because it adopts JSON

(JavaScript Object Notation) [15], a widely used data interchange

standard, and extends the widely used Newick format for

phylogenetic trees, it is straight-forward to parse using existing

tools. It can be used with likelihood, posterior probability, and

parsimony-based placements, can associate an arbitrary number of

sequence names associated with a placement, and can store a

generalization of a name list called a named multiplicity as described

below. Basic operations such as subsetting arbitrary collections of

placements and merging these lists are easily done. The format can

be extended to incorporate additional information, such as

taxonomic assignments.

Although we have made our best efforts to ensure that the

format is sufficiently extensible without changing the specification,

it may be necessary to change it in the future. For that reason, the

authoritative version of the file format will be maintained online at

PLoS ONE | www.plosone.org 1 February 2012 | Volume 7 | Issue 2 | e31009

http://arxiv.org/abs/1201.3397. The version described in this

document is version 3 of the file format.

Results and Discussion

Concepts
We first establish terminology in order to describe the

placement format. As described above, phylogenetic placement

is performed by inserting a collection of query sequences onto a

fixed reference tree in order to optimize a given criterion.

Specifically, for a given set of query sequences the objective is to

find an attachment of each query sequence to the tree that

maximizes likelihood or minimizes the parsimony score for the

reference tree with that (and only that) query sequence attached.

Because each query sequence is placed individually on the tree, the

run time complexity is of order the product of the number of

reference sequences, the number of query sequences, and the

number of sites in the alignment.

There may be more than one good or likely location for a query

sequence, and it is important to record this uncertainty.

Uncertainty may be expressed in terms of placement locations

that have equal parsimony scores, in terms of likelihood weight ratio

(the ratio of likelihoods of the various placements), or in terms of

posterior probability. Because a given query sequence thus can be

considered to have a collection of placements with varying

certainties, we use the word pquery for ‘‘placed query’’ to denote

the collection of placements of a single query sequence.

It is also common to obtain several identical sequence reads

from deep-sequencing studies. Furthermore, closely related

sequences may exhibit such similar placement results that a user

may wish to group them together for ease of analysis. For this

reason, we allow more than one sequence name to be associated

with a given pquery.

Users may simply wish to keep the number of sequences

associated with a given pquery instead of the complete collection

of names. More generally, they may wish to simply have a single

floating point number, the multiplicity associated with a pquery.

This multiplicity may represent a transformed measure of the

quantity of sequences associated with that pquery, analogous to

the transforms that are commonly applied to ecological count

data. For that reason, we also allow the specification of a named

multiplicity associated with a pquery in place of a list of names.

Design
One possible representation of a collection of placements would

be a single tree with each placement inserted as a pendant branch.

That design is problematic for representations of uncertainty; if

each possible location for every query sequence were represented

as a pendant branch, then it would be difficult to distinguish the

pendant edges that resulted from uncertainty with those resulting

from multiple query sequences. Subsetting collections of place-

ments would require tree ‘‘surgery’’. Furthermore, packing

everything into a tree would make placement-specific metadata

such as multiple confidence measures difficult to keep track of.

Also, visualizing a reference tree with 1,000 taxa and 10,000

queries and with several placements per query may become

computationally and visually cumbersome.

These considerations led us to develop a format where the

placements are represented as a list, and their branch assignments

are indexed by numbered edges of the reference tree. Each

placement is associated with entries for a collection of fields, which

can contain arbitrary data about the placement. With such a list-

based format, subsetting pqueries becomes trivial.

With the separation of reference set and placements in mind,

our goals in designing the format were: to adopt a popular

extensible open standard human-readable file format, to ease

parsing between languages and tools, and to deploy a light-weight

format that can handle large collections of placements on large

reference trees without requiring too much space. We chose

JSON, since it satisfies all of the above criteria.

Using the JSON syntax, one option would be to individually

associate each placement with an arbitrary collection of informa-

tion using key-value pairs for each placement. However, doing so

would have created a substantial file size overhead, as the total

number of characters used to represent the keys would be about

the same as the total number of characters used to represent the

data. Because of this, the field titles are written out only once, and

every placement just supplies the data as an array with entries in

the correct corresponding order, as described below.

Methods

Specification
Files using the format described in this paper will use the .jplace

suffix, which is short for JSON placement.

The basic types in a JSON file are Array, Boolean, Number,

Object, String, and null. These are familiar terms except Object,

which is a list of colon separated key-value pairs, where the keys

are strings and the values are arbitrary types. A JSON file contains

a single JSON object.

In .jplace files, the fundamental object contains a list of four

keys: tree, fields, placements, metadata, and version. We will

describe each of these in succession, but this need not correspond

to their order in the JSON object. Indeed, the order of key-value

pairs in a JSON object is unspecified.

Tree. To represent the tree, we extend the well-known

Newick file format. In that format, commas and parentheses are

used to display the structure of the tree. The taxon names (leaf

labels) are inserted as plain text. It is also common to label internal

nodes with strings appearing after the closing of a parenthesis. It is

also possible to label edges of the tree with strings enclosed in

square brackets. For example, the tree

((A:.01[e], B:.01)D:.01[g], C:.01[h]);

is a tree with some edge labels and some node labels.

We extend this format with edge numberings in curly braces:

((A:.01[e]{0}, B:.01{1})D:.01{3}[g], C:.01{4}[h]) {5};

These edge numberings index the edges for the placements. We

use curly braces to distinguish between our edge numberings and

other edge label values such as posterior probability or bootstrap

branch (bipartition) support.

Although not required for parsing, we use a convention that

placement algorithms should use a pre-defined edge numbering.

Specifically, we enforce that branches are labeled by a depth-first

traversal (descending left subtree first and starting at the root/top-

level node in the reference input tree) and we assign branch

numbers by a post-order traversal. This strict definition is

convenient to ensure one-to-one comparability of results obtained

from various placement algorithms.

We also require the output tree to be identical as a planar tree to

the input reference tree, that is, the subtree ordering and top-level

multifurcation must remain unchanged. In the case of parsimony-

based placements, the reference tree may optionally be represent-

ed without branch lengths.

Fields. The value associated with fields is an array of strings

specifying the headers in the same order as the arrays of placement

data. For example, the default fields for a maximum likelihood

A Format for Phylogenetic Placements

PLoS ONE | www.plosone.org 2 February 2012 | Volume 7 | Issue 2 | e31009

EPA or pplacer run are edge_num, likelihood, like_weight_ratio,

distal_length, and pendant_length.

The edge_num specifies the placement edge, and is necessary for

all placements. The pendant_length is the branch length for the

placement edge, and distal_length is the length from the distal (away

from the root) side of the reference tree edge to the placement

attachment location. The likelihood is the likelihood of the tree with

the placement attached, which may be calculated from an alignment

with columns masked out that do not appear in the read. For that

reason, the log likelihood of the placement may be better (closer to

zero) than the log likelihood of the reference tree on the full-length

alignment. The like_weight_ratio is the ratio of that placement’s

likelihood to that of the other alternate placements for that read. For

a pplacer posterior probability run, the marginal likelihood margin-

al_prob and the posterior probability post_prob are also included.

In contrast to pplacer, EPA optimizes three branch lengths

associated with a placement: the pendant branch length, the distal

branch length, and the proximal branch length. Thus, the EPA

output could be extended to comprise the full information

generated by the EPA algorithm by adding a proximal_length

field. Because the currently available downstream placement

analysis tools (e.g., guppy) do not use this additional information, it

is not included in the EPA .jplace output file at present.

The corresponding fields for parsimony-based placements

(currently only available in EPA) are edge_num and parsimony.

The parsimony field just contains the parsimony score of the

placement as an integer.
Placements. The value associated with the placements key is

the list of placements grouped into pqueries. The representation of

each pquery is a JSON object of its own, with two keys: p, for

placements, and either n for names or nm for names with multiplicity.

The value associated with p is the list of placements for that pquery

with entries corresponding to the fields in the order set up by the fields

described above. The list of placements shows possible placement

locations along with their confidence scores and other information.

The value associated with n is a list of names associated with that

pquery. Although an arbitrary list of names can be associated with a

pquery, the typical use will be to collect placement information for

identical or closely related sequences. The value associated with nm is

a list of named multiplicities, which are simply ordered pairs of a name

and then a positive floating point value. As described above,

multiplicity can be used to keep track of the number of sequences

associated with that name or a transform thereof.

For parsimony-based placements we require all equally

parsimonious placements of a query to be included in the output

file. This is to enable easy comparison between parsimony-based

placement methods; if only one of the best-scoring placements is

arbitrarily selected in one way or another, comparing programs

based on our standard will become error-prone and biased.

Other keys
There are also two other keys in the fundamental JSON object.

The first, version, is mandatory, and indicates an integer version

number of the format. The version described in this paper is 3.

The second, metadata, is optional and keys an arbitrary object for

metadata. It can describe how the placement file was generated,

which phylogenetic model was used, and so on. In EPA and

pplacer we include the full command line string of the placement

program invocation to allow for easy reproducibility of results.

A small example
{

‘‘tree’’: ‘‘((A:0.2{0},B:0.09{1}):0.7{2},C:0.5{3}){4};’’,

‘‘placements’’:

[

{‘‘p’’:

[[1, 22578.16, 0.777385, 0.004132, 0.0006],

[0, 22580.15, 0.107065, 0.000009, 0.0153]

],

‘‘n’’: [‘‘fragment1’’, ‘‘fragment2’’]

},

{‘‘p’’: [[2, 22576.46, 1.0, 0.003555, 0.000006]],

‘‘nm’’: [[‘‘fragment3’’, 1.5], [‘‘fragment4’’, 2]]}

],

‘‘metadata’’:

{‘‘invocation’’:

‘‘pplacer -c tiny.refpkg frags.fasta’’

},

‘‘version’’: 3,

‘‘fields’’:

[‘‘edge_num’’, ‘‘likelihood’’, ‘‘like_weight_ratio’’,

‘‘distal_length’’, ‘‘pendant_length’’]

}

Tabular representation
The JSON object can be readily transformed into a tabular

format to more easily summarize or explore the data using

statistical tools or a relational database. With the addition of an

index (placement_id) to form a relation between placements and

sequence names, two tables are sufficient: one with columns

placement_id followed by each of the fields contained by each

pquery array, and another providing a mapping of every

placement_id to each of the corresponding sequence names or

named multiplicities. This transformation can be performed

efficiently using any modern high level language with a JSON

parsing library. Such a representation of the data is useful for

supporting analyses that involve grouping and partitioning

placements and sequences.

The latest versions of EPA (http://github.com/stamatak/

standard-RAxML) and pplacer (http://matsen.fhcrc.org/ppla-

cer/) both produce these files. The guppy program in the pplacer

suite has a number of subcommands that allow transformations

and filterings of these files (manuscript in preparation). MePal, an

implementation of placement using an alignment-free generaliza-

tion to indels of Felsenstein’s phylogenetic pruning algorithm [16],

now imports and writes out this format as well. The Topiar-

yExplorer [12] tree visualization package is now in the process of

being extended to read this format for visualization.

Acknowledgments

This work would not have been possible without an ongoing collaboration

with David Fredricks, Martin Morgan, and Sujatha Srinivasan at the Fred

Hutchinson Cancer Research Center.

Author Contributions

Conceived and designed the experiments: FAM AS. Performed the

experiments: FAM NGH AG AS. Wrote the paper: FAM NGH AS.

References

1. Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum

likelihood approach. J Mol Evol 17: 368–376.

2. Kluge A, Farris J (1969) Quantitative phyletics and the evolution of anurans.

Syst Zool 18: 1–32.

A Format for Phylogenetic Placements

PLoS ONE | www.plosone.org 3 February 2012 | Volume 7 | Issue 2 | e31009

3. Monier A, Claverie J, Ogata H (2008) Taxonomic distribution of large DNA

viruses in the sea. Genome Biol 9: R106.
4. Von Mering C, Hugenholtz P, Raes J, Tringe S, Doerks T, et al. (2007)

Quantitative phylogenetic assessment of microbial communities in diverse

environments. Science 315: 1126.
5. Berger S, Krompass D, Stamatakis A (2011) Performance, accuracy, and web

server for evolutionary placement of short sequence reads under maximum
likelihood. Syst Biol 60: 291.

6. Matsen F, Kodner R, Armbrust E (2010) pplacer: linear time maximum-

likelihood and Bayesian phylogenetic placement of sequences onto a fixed
reference tree. BMC Bioinfo 11: 538.

7. Stark M, Berger S, Stamatakis A, von Mering C (2010) MLTreeMap-accurate
Maximum Likelihood placement of environmental DNA sequences into

taxonomic and functional reference phylogenies. BMC Genomics 11: 461.
8. Caporaso J, Kuczynski J, Stombaugh J, Bittinger K, Bushman F, et al. (2010)

QIIME allows analysis of high-throughput community sequencing data. Nature

Meth 7: 335–336.
9. Wu M, Eisen J (2008) A simple, fast, and accurate method of phylogenomic

inference. Genome Biol 9: 1–11.

10. Evans S, Matsen F (2010) The phylogenetic Kantorovich-Rubinstein metric for

environmental sequence samples. Arxiv preprint. arXiv:1005.1699.
11. Matsen F, Hoffman N, Evans S (2011) Edge principal components and squash

clustering: using the special structure of phylogenetic placement data for sample

comparison. arXiv: 1107.5095v1.
12. Pirrung M, Kennedy R, Caporaso J, Stombaugh J, Wendel D, et al. (2011)

TopiaryExplorer: Visualizing large phylogenetic trees with environmental
metadata. Bioinformatics. doi: 10.1093/bioinformatics/btr517.

13. Berger S, Stamatakis A (2011) Aligning short reads to reference alignments and

trees. Bioinformatics 27: 2068–2075.
14. Mirarab S, Nguyen N, Warnow T (2012) SEPP: SATé-Enabled Phylogenetic

Placement. Pacific Symposium on Biocomputing (PSB 2012). Jan 3–7, 2012,
Hawaii.

15. Crockford D (2006) The application/json Media Type for JavaScript Object
Notation (JSON). RFC. Available: http://tools.ietf.org/html/rfc4627. Accessed

2012 Jan 27.

16. Westesson O, Lunter G, Paten B, Holmes I (2011) An alignment-free
generalization to indels of Felsenstein’s phylogenetic pruning algorithm. Arxiv

preprint. arXiv:11034347.

A Format for Phylogenetic Placements

PLoS ONE | www.plosone.org 4 February 2012 | Volume 7 | Issue 2 | e31009

