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ABSTRACT
Obesity is strongly associated with metabolic syndrome. Recent research suggests that excess adipose tissue
plays an important role in development of the syndrome. On the other hand, persons with a deficiency of
adipose tissue (e.g. lipodystrophy) also manifest the metabolic syndrome. In some animal models, expansion of
adipose tissue pools mitigates adverse metabolic components (e.g. insulin resistance, hyperglycaemia and
dyslipidemia). Hence, there are conflicting data as to whether adipose tissue worsens the metabolic syndrome
or protects against it. This conflict may relate partly to locations of adipose tissue pools. For instance, lower
body adipose tissue may be protective whereas upper body adipose tissue may promote the syndrome. One
view holds that in either case, the accumulation of ectopic fat in muscle and liver is the driving factor underlying
the syndrome. If so, there may be some link between adipose tissue fat and ectopic fat. But the mechanisms
underlying this connection are not clear. A stronger association appears to exist between excessive caloric
intake and ectopic fat accumulation. Adipose tissue may act as a buffer to reduce the impact of excess energy
consumption by fat storage; but once a constant weight has been achieved, it is unclear whether adipose tissue
influences levels of ectopic fat. Another mechanism whereby adipose tissue could worsen the metabolic
syndrome is through release of adipokines. This is an intriguing mechanism, but the impact of adipokines on
metabolic syndrome risk factors is uncertain. Thus, many potential connections between adipose tissue and
metabolic syndrome remain to unravelled.
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The metabolic syndrome occurs in 20–40% of the worldwide

adult population [1]. This syndrome predisposes to cardiovas-

cular disease (CVD) [2]. Its features are abdominal obesity,

atherogenic dyslipidemia (elevated triglyceride [TG], elevated

apolipoprotein B [apo B] and reduced high-density lipoprotein

[HDL-C]), elevated blood pressure, elevated glucose levels, and

pro-inflammatory and pro-thrombotic states. Those features

other than abdominal obesity are commonly called metabolic

risk factors. Persons with the metabolic syndrome carry an

approximate twofold increase in risk for CVD [3]. Atherogenic

dyslipidemia, hypertension and hyperglycaemia (diabetes) are

well-established major risk factors for CVD; they are known to

directly cause vascular disease. Pro-thrombotic state and pro-

inflammatory states are called emerging risk factors [4,5]; they

associate with CVD and are plausibly in the chain of causation,

but their quantitative contributions to CVD remain uncertain.

In 1988, Reaven [6] postulated that insulin resistance under-

lies the metabolic syndrome. Many investigators accept this

mechanism. But others see excessive nutrient energy and con-

comitant obesity as primary. Support for the latter view comes

from the fact that most people with metabolic syndrome are

overweight or obese. For example, Park et al. [7] found that

among US adults the metabolic syndrome occurs in 4�6%, 22�4%
and 59�6% of normal weight, overweight and obese men,

respectively. Distribution was similar for US women [7]. We

must therefore ask whether adipose tissue itself plays a pivotal

role in causation of metabolic syndrome. This paper will

examine this possibility.

Adipose tissue deficiency and metabolic
syndrome

Adipose tissue is a fat storage organ. Most people believe that

excess adipose tissue is detrimental. But an opposing argument

is that adipose tissue defends against metabolic consequences of

overnutrition. For example, patients having deficiency of adi-

pose tissue (lipodystrophy) redistribute fat to skeletal muscle

and liver [8–10]. This ectopic fat seemingly underlies severe

insulin resistance, fatty liver, diabetes and hypertriglyc-

eridemia. The metabolic syndrome phenotype accompanies
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lipodystrophy in both humans and animal models [11–13].
Conversely, some genetically obese animals manifest similar

metabolic abnormalities; but when their adipose tissue is

expanded more through genetic manipulation, metabolic risk

factors disappear [14]. This suggests that adding more adipose

tissue to existing obesity mitigates the metabolic syndrome. In

animal models, adipose tissue apparently acts as a buffer

against metabolic risk factors; and by the same token, buffering

is impaired in the presence of adipose tissue deficiency [14].

If adipose tissue protects against the metabolic syndrome,

this protection might reside in fat storage capacity. Excess fat is

stored either by increasing the size or number of adipocytes.

Accordingly, earlier investigators identified two types of

obesity in experimental animals: hyperplastic and hypertrophic

[15]. In most obese humans, both number and sizes of adipo-

cytes are increased [16,17]. Nevertheless, Salans et al. [18] and

Sj€ostr€om and Bj€orntorp [19] reported that one or the other

pattern usually dominates among obese individuals. The

hypercellular form occurred in those with severe obesity of

early onset. The hypertropic form, in contrast, began later in life

and occurred with less severe obesity. Theoretically, hyper-

plastic obesity should protect against metabolic risk factors

better than hypertropic obesity, because of greater potential for

fat storage. Some investigators indeed favour the view that

hypertrophic obesity results from deficient adipocyte replica-

tion and an insufficient lipid storage capacity [20–22].
Some insulin-resistant individuals in fact show an excess of

small ‘immature’ adipocytes compared to larger cells [23,24].

Very possibly, smaller cells fail to mature into larger cells. If

this failure occurs, fat storage capacity should be limited and

excess fat could be redistributed to ectopic sites. Young adult

men of South Asian ethnicity likewise have a high proportion

of small adipocytes relative to larger adipocytes [25]; it is well

known that South Asians are prone to insulin resistance,

metabolic syndrome and type 2 diabetes [26–28]. In yet another

report, an apparent defect in adipogenesis was noted in obese

adolescents with insulin resistance [29]. All of these studies are

consistent with the concept of metabolic syndrome being

related to insufficient fat storage capacity.

Obesity and metabolic syndrome: the fatty acid
theory

Beyond adipocyte size and number, adipocytes occur in dif-

ferent body fat pools, which may vary in metabolic character-

istics. For simplicity, there are three adipose tissue locations:

lower body subcutaneous, upper body subcutaneous and

intraperitoneal (visceral) [30,31]. The latter two together are

commonly called upper body fat. The term upper body obesity

signifies accumulation of excessive adipose tissue predomi-

nately in the upper body. Excess fat in intraperitoneal adipose

tissue can be called visceral obesity. In men with upper body

obesity, excessive fat usually occurs in both subcutaneous and

visceral pools [32]. In most women with upper body obesity,

reserve fat is stored largely in subcutaneous adipose tissue;

visceral adipose tissue usually is minimally expanded [32].

Upper body obesity accompanies metabolic syndrome more

commonly than does lower body obesity [33–35]. There is some

dispute as to which pool of upper body fat is more untoward.

Some investigators postulate that excess visceral fat directly

causes adverse metabolic consequences [36–41]. Others put

more blame on an excess of upper body subcutaneous fat

[42–46].
A widely held view is that obesity predisposes to ectopic fat

and hence metabolic risk factors. The fatty acid theory identifies

elevation of plasma nonesterified fatty acids (NEFA) as the

mediating factor [47–54]. According to this theory, the size of

adipose tissue fat stores determines plasma NEFA levels, and

the latter in turn determine amounts of ectopic fat. But this

premise must to be modified to some extent by body fat

distribution. For example, women with upper body obesity

generally have high plasma NEFA levels, whereas those with

lower body obesity have near normal plasma NEFA [55]. This

finding and others like it make upper body obesity the core of

the fatty acid theory. Jensen [35] recently reviewed the role of

three major pools of adipose tissue on NEFA metabolism.

Adipose tissue compartments in lower body, upper body sub-

cutaneous and visceral regions apparently differ in their actions

on fatty acid metabolism and on their associations with meta-

bolic risk factors. Jensen and colleagues [56–58] showed that

upper body subcutaneous fat accounts for most NEFA in the

systemic circulation; but when visceral adipose tissue is also

expanded, portal NEFA are derived about equally from sub-

cutaneous and visceral compartments. Higher concentrations of

portal NEFA accompanying greater stores of upper body fat

could explain increased liver-fat content [59,60], higher plasma

levels of very low-density lipoprotein triglyceride (VLDL-TG)

[31] and other components of atherogenic dyslipidemia [61,62].

At the same time, elevated systemic NEFA coming from sub-

cutaneous adipose tissue in the upper body should contribute

to insulin resistance in skeletal muscle [42,55].

In contrast to the findings with upper body obesity, persons

with predominant lower body obesity are less susceptible to

metabolic risk factors [31,63–69]. One idea is that lower body

adipose tissue sequesters fat in ‘safe’ pools, which do not feed

excess NEFA into the circulation. According to this notion,

lower body adipose tissue protects against metabolic syn-

drome. If true, a deficiency of lower body adipose tissue could

shift fat to upper body pools where NEFA release is more

labile. Thus, at present it is uncertain whether ectopic fat

accumulates as a consequence of too little fat storage in the
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lower body or too much adipose tissue in the upper body [70].

Karpe and Pinnick [63] recently summarized the association of

different adipose tissue pools with metabolic syndrome. They

suggest that profound functional differences exist between the

upper body and lower body tissues and these differences are

determined by site-specific sets of developmental genes.

It may be useful to inquire about the sources of adipose tissue

TG that supply plasma NEFA. In the steady state, efflux of

NEFA from adipose tissue must equal this tissue’s synthesis of

TG. Adipose tissue TG comes from three sources: lipolysis of

TG in lipoproteins (chylomicrons and VLDL), limited de novo

lipogenesis in adipose tissue [71] and reuptake of small

amounts of newly released NEFA [72]. Lipolysis of lipoprotein

TG undoubtedly dominates. With this said, why is it that per-

sons with upper body obesity have higher plasma NEFA than

do those with lower body obesity? Obviously those with upper

body obesity have a greater cycling of fatty acids through adi-

pose tissue pools. The most likely reason is that people with

upper body obesity consume more nutrient energy than those

with lower body obesity because the former have more total

body fat [31,73]. One important and unresolved question is

whether visceral adipose tissue preferentially steals fatty acids

from circulating lipoprotein TG and shunts them directly into

the liver [74]. If so, this mechanism could enhance ectopic fat in

the liver and induce its metabolic consequences [75].

Of note, release of excess NEFA from adipose tissue as the

major cause metabolic syndrome seemingly does not apply to

obese Pima Indians. In this intensely studied population, obese

Pima men, in contrast to Caucasians, do not have elevated

fasting NEFA despite having predominant upper body obesity

[76]. Moreover, they have lower plasma TG and lower hepatic

secretion of VLDL-TG than do comparable obese Caucasian

men [76]. Obese Pima men have hepatic secretion rates for

VLDL-TG and plasma TG levels similar to those of nonobese

Caucasians [76,77]. In contrast, hepatic outputs of VLDL-TG

and plasma TG levels are much higher in obese Caucasians

compared to nonobese counterparts [75]. This apparent para-

dox for Pima men is unexplained. Although lower NEFA levels

may protect Pima men against dyslipidemia, they do not pre-

vent insulin resistance or type 2 diabetes. In Pima Indians, total

body fat predicts insulin resistance and incidence of type 2

diabetes [78,79]; this prediction is independent of body fat

distribution. A relatively low NEFA flux in obese Pima Indians

casts some doubt on the fatty acid theory of insulin resistance,

as noted by Lillioja and Bogardus [78]. Karpe et al. [73] likewise

call for a revaluation of the fatty acid theory of insulin resis-

tance and metabolic syndrome.

But before dismissing the fatty acid theory altogether, how-

ever, we might ask whether other sources of fatty acids, inde-

pendent of NEFA released by adipose tissue, can cause ectopic

fat accumulation. When dietary fat is absorbed, chylomicron-

TG enters the circulation and undergoes lipolysis by lipopro-

tein lipase. Most of the fatty acids released by lipoprotein lipase

are taken up immediately by adipose tissue and incorporated

into TG. But normally during lipolysis, about one-quarter to

one-third of newly hydrolysed fatty acids are not taken up into

adipose tissue and spill over into the circulation as NEFA. The

latter theoretically could enhance ectopic-lipid accumulation

[74,80–82]. The percentage spillover is reduced by obesity [83],

especially by lower body obesity [82]. Excess adipose tissue

seemingly mitigates spillover of fatty acids through increased

adipose tissue uptake. But even so, sequestration of more

postprandial fatty acids in adipose tissue as TG must be only

temporary. To avoid progressive accumulation of fat in adipose

tissue, fatty acids must be returned to the circulation during

fasting.

Dietary carbohydrate is another source of plasma NEFA, but

through an indirect route. A high intake of carbohydrates will

induce hepatic lipogenesis, raise hepatic TG content [80,84] and

increase plasma VLDL-TG levels [85,86]. Lipolysis of plasma

VLDL-TG derived from de novo lipogenesis thus will contribute

to adipose tissue TG. The latter in turn will feed more NEFA to

muscle, where it can raise insulin resistance. Thus, for fatty acid

metabolism, it makes little difference whether nutrient energy

is consumed as fat or carbohydrate. Carbohydrates become fat

through de novo lipogenesis. Ratios fat-to-carbohydrate in the

diet have little effect on amounts of fat stored in adipose tissue;

and neither does the degree of insulin resistance in obese per-

sons depend on relative proportions of dietary fat and carbo-

hydrate [87]. Whether high-carbohydrate diets affect insulin

sensitivity in ways other than through increased lipogenesis is

uncertain.

In spite of several cavets, the fatty acid theory of metabolic

syndrome still lives. There are a variety of pathways whereby

muscle and liver may be overloaded with lipid so as to

engender metabolic risk factors, particularly insulin resistance

and dyslipidemia. Adipose tissue is only one of these pathways

through which fatty acids can flux. At present, we cannot

assume that there is a one-to-one relationship between adipose

tissue stores and ectopic fat. But high levels of ectopic fat could

still be a final common pathway to the metabolic syndrome.

Emerging risk factors of adipocyte origin

In recent years, another theory has been advanced to explain

why obesity might foster the metabolic syndrome. Adipose

tissue is known to release a variety of products including leptin,

adiponectin, inflammatory cytokines, resistin, visfatin, plas-

minogen activator inhibitor-1 (PAI-1) and angiotensinogen.

These products, often called adipokines, can be looked upon as

emerging metabolic risk factors. Some of these can be consid-

ered negative risk factors in that they potentially protect against
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diabetes and CVD; others are positive risk factors because they

may predispose to metabolic disease or CVD. In fact, a very

large number of potentially bioactive molecules have been

found to be released by adipose tissue [88]. There has been

extensive research and discussion of how various adipokines

may modify systemic metabolism [89]. To the extent to which

adipokine release is modified in obese persons, the potential

exists for a direct link between adipose tissue and metabolic

risk factors.

Leptin, one factor released by adipose tissue, is known to

dampen energy intake [90]. In this regards, it can be considered

a protective factor. Humans who are genetically deficient in

leptin have voracious appetites and develop severe obesity

[91,92]. In otherwise normal individuals, when adipose tissue

expands, leptin release is enhanced [93]). Obese persons have

high leptin levels, which theoretically could curtail further food

intake through suppression of the appetite [94]. Conversely,

generalized lipodystrophy is accompanied by leptin deficiency,

which leads to excessive food intake. Humans with generalized

lipodystrophy usually exhibit severe hypertriglyceridemia and

glucose intolerance. These abnormalities might be attributed to

a lack of fat storage capacity in adipose tissue; but in fact, they

appear to be due largely to excessive food intake. In lipodys-

trophic patients, leptin replacement diminishes appetite and

curtails metabolic risk factors [95]. One large epidemiologic

study suggested that caloric consumption in obese individuals

is inversely related to leptin levels [96]. But this finding is not

definitive. Whether the rise in leptin with obesity acts as a

governor on food intake is uncertain. On the other hand, many

reports suggest that leptin suppresses the metabolic syndrome

independent of its effects on appetite [90,97]. Perhaps in this

way leptin acts as a protective factor.

Another leading candidate for a protective adipokine is adi-

ponectin. Many studies show that adiponectin levels are

inversely associated with metabolic risk factors [98]. Adipo-

nectin release is reduced in obese persons, which opens the

door to adverse consequences. But to definitively prove a sys-

temic role for adiponectin, studies are needed in individuals

with genetic deficiencies of this protein. So far however, few

families with genetically reduced adiponectin have been

identified. An exception is one family where a gene mutation

impairs assembly of high-molecular-weight adiponectin; here,

an adiponectin deficiency associated with early onset obesity

and metabolic syndrome [99]. Other studies have examined

effects of polymorphisms in the adiponectin gene in the general

population. In these studies, no consistent relation has been

found between variation in the adiponectin gene and insulin

resistance [100,101]. The strength of the action of adiponectin to

suppress metabolic risk factors thus remains uncertain.

One emerging metabolic risk factor is a pro-inflammatory

state [102]. Excess adipose tissue may contribute to this

putative risk factor. For example, obesity is accompanied by

macrophage accumulation in adipose tissue [103]. Presumably

death of lipid-engorged adipocytes stimulates an influx of

macrophages. Cytokines released in this process apparently

spill into the circulation and possibly cause systemic inflam-

mation and/or insulin resistance [104]. The best evidence for a

systemic response to localized inflammation in adipose tissue is

an increase in plasma C-reactive protein (CRP) [105–107]. The
association of a high CRP with both diabetes and CVD is con-

sistent with a role of inflammation induced by adipose tissue in

systemic metabolic disease [108–110]. Of course, this associa-

tion does not necessarily signify causation. A more direct test of

the pro-inflammatory hypothesis is an ongoing clinical trial to

determine whether a low-dose of methotrexate, an anti-in-

flammatory drug, will reduce risk for CVD and diabetes [111].

Another emerging metabolic risk factor is a pro-thrombotic

state [102]. Although a variety of pro-thrombotic factors have

been noted in patients with metabolic syndrome, the most

consistent finding is an increase in plasma PAI-I. Upper body

adipose tissue appears to be a source of circulating PAI-I

[112,113]. Prospective studies indicate that higher levels of PAI-

I frequently accompany acute cardiovascular syndromes

[114,115]. The action of PAI-1 to block plasminogen activation

could initiate or worsen thrombotic events, although direct

causation is difficult to prove.

Hypertension is major risk factor accompanying the meta-

bolic syndrome. A large body of evidence implicates obesity in

the causation of hypertension [116,117]. Several mechanisms

have been proposed: enhanced renal reabsorption of sodium,

expansion of intravascular volume, activations of the renin–
angiotensin–aldosterone system and sympathetic nervous

system, release of angiotensinogen from adipose tissue, and

insulin resistance [118–120]. Whether hypertension is mediated

through adipokines remains to be confirmed, but several have

been implicated, that is, increased leptin [121], reduced adipo-

nectin [122], inflammatory cytokines [123] and angiotensino-

gen.

In spite of a growing body of literature implicating adipoki-

nes in the pathogenesis of the diabetes and CVD, a solid

connection is by no means definitive. Most of the evidence falls

under the category of association, hence the term emerging risk

factor. The adipokine theory of metabolic syndrome derives

largely from animal studies and epidemiology. The findings are

provocative; but genetic studies in families with adipokine

deficiency or therapeutic trials with adipokine blockers or

enhancers will be required to nail down causative connections.

Overnutrition vs. adiposity

The severe metabolic syndrome observed in persons with

lipodystrophy provides insight into causation of the syndrome.
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In lipodystrophic individuals, leptin deficiency induces over-

nutrition. Their excessive caloric intake obviously overwhelms

metabolic defences and leads to severe ectopic fat accumulation

and its consequences. These are largely reversed by leptin

therapy. The extent to which a lack of fat storage capacity with

lipodystrophy independently produces metabolic risk factors is

uncertain.

What are the defences against overnutrition? Storage of

excess energy in adipose tissue during weight gain is the first

defence. When weight stabilizes, adipose no longer serves this

role. Storage capacity appears to be variable. For example, fat

storage capacity in persons with predominant hyperplastic

obesity appears to be greater than in those with hypertrophic

obesity. Once weight is stabilized, however, obese people still

consume more energy than do nonobese individuals [124,125].

It is doubtful that white adipose tissue alone can oxidize all

the excess energy consumed by obese persons. As a matter of

fact, weight gain is accompanied by an increase in lean body

mass [126]. As obesity develops, there is an almost 1 : 1

increase in fat and lean mass [78]. A significant portion of the

increase in weight occurs in the form of skeletal muscle

[127,128]. Consequently, disposal of excess energy by more

lean body mass could help to buffer the caloric overload in

obese individuals. But when excess calories are not completely

buffered by increases in adipose tissue and muscle, ectopic fat

will accumulate in skeletal muscle, liver and perhaps other

tissues. As discussed before, this ectopic fat may well be a

driver of the metabolic syndrome [129]. In the final analysis,

the metabolic syndrome is the consequence of dietary nutrient

overload that cannot be adequately buffered by various

metabolic defences.

The best evidence for the critical role of nutrient intake as the

primary factor responsible for the metabolic syndrome comes

from studies in patients undergoing bariatric surgery [130,131].

In these studies, caloric intake is reduced by surgery, but in

most patients, significant obesity remains. Meta-analysis of

these studies shows dramatic reductions and often total rever-

sal of metabolic abnormalities even in the presence of

substantial residual obesity [130]. Another trial, the Diabetes

Prevention Program [132], illustrates the potential of energy

restriction to modify metabolic risk. In this large study of

individuals with prediabetes, caloric restriction reduced total

body weight by only 5–10%, but conversion to diabetes was

dramatically decreased; at the same time, the incidence of new-

onset metabolic syndrome was curtailed and metabolic risk

factors were strikingly reduced [133,134]. These benefits

occurred in the face of substantial remaining obesity. Studies on

the pathways whereby nutrient overload enhances metabolic

risk are of great interest. The role of adipose tissue both in

protection and causation is particularly germane. But at this

time, it is unclear whether amounts or characteristics of adipose

tissue present at constant body weight play a major role

buffering excess energy or whether an excess of adipose tissue

independent of caloric intake is a direct cause of metabolic

syndrome.

Nonobese metabolic syndrome

Some people exhibit the metabolic syndrome even in the

absence of obesity [135]. Examples include lean adults with

primary insulin resistance of muscle [136,137], offspring of

parents with diabetes [138], lean South Asians [28,139] and

some genetic forms of hypertriglyceridemia [140]. These

examples appear to represent genetic susceptibility to meta-

bolic syndrome. On the other hand, many people are resistant

to this syndrome even in the presence of obesity [141]. They

presumably are genetically resistant. The mechanisms respon-

sible for differences in expression of the metabolic syndrome at

each end of the genetic spectrum are ripe for research.

Therapeutic implications

These considerations suggest that for prevention or treatment

of metabolic syndrome priority should be given to energy

balance – either decreasing nutrient energy or enhancing its

expenditure. For the population as a whole, this will require

behavioural modification of lifestyle habits. But for individuals

who fail to reverse the metabolic syndrome through behaviour

modification, pharmacological approaches to suppressing the

appetite would be welcome. For some, bariatric surgery may be

the best option; the improvement of the syndrome following

surgery has been impressive [130]. If caloric restriction fails to

reverse the syndrome, it will be necessary to treat each risk

factor individually. To reduce all metabolic risk factors, multi-

ple drugs may be required. The disadvantages to polyphar-

macy for management of multiple metabolic risk factors

however are well known [142].
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