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A B S T R A C T   

Introduction: Deep learning (DL) models are increasingly developed for auto-segmentation in radiotherapy. 
Qualitative analysis is of great importance for clinical implementation, next to quantitative. This study evaluates 
a DL segmentation model for left- and right-sided locally advanced breast cancer both quantitatively and 
qualitatively. 
Methods: For each side a DL model was trained, including primary breast CTV (CTVp), lymph node levels 1–4, 
heart, lungs, humeral head, thyroid and esophagus. For evaluation, both automatic segmentation, including 
correction of contours when needed, and manual delineation was performed and both processes were timed. 
Quantitative scoring with dice-similarity coefficient (DSC), 95% Hausdorff Distance (95%HD) and surface DSC 
(sDSC) was used to compare both the automatic (not-corrected) and corrected contours with the manual con-
tours. Qualitative scoring was performed by five radiotherapy technologists and five radiation oncologists using a 
3-point Likert scale. 
Results: Time reduction was achieved using auto-segmentation in 95% of the cases, including correction. The 
time reduction (mean ± std) was 42.4% ± 26.5% and 58.5% ± 19.1% for OARs and CTVs, respectively, cor-
responding to an absolute mean reduction (hh:mm:ss) of 00:08:51 and 00:25:38. Good quantitative results were 
achieved before correction, e.g. mean DSC for the right-sided CTVp was 0.92 ± 0.06, whereas correction sta-
tistically significantly improved this contour by only 0.02 ± 0.05, respectively. In 92% of the cases, auto- 
contours were scored as clinically acceptable, with or without corrections. 
Conclusions: A DL segmentation model was trained and was shown to be a time-efficient way to generate clin-
ically acceptable contours for locally advanced breast cancer.   

Introduction 

The process of radiotherapy (RT) treatment planning contains 
several steps, which are partly performed manually. One of these steps is 
segmentation of target contours and surrounding organs at risk (OARs). 
Several studies showed variability in delineation of target and OARs 
delineation for breast cancer, even in the presence of delineation atlases 
[1,2]. Moreover, manual delineation is a time consuming process. 
Therefore, several studies introduced automatic segmentation of 

contours. Previously, these segmentation delineation models were atlas- 
based, and several studies regarding delineation for breast cancer were 
published [3–5]. In recent years, the use of deep learning (DL) for 
automatic delineation increased [6–12]. For delineation of contours for 
breast cancer RT, several DL models are deployed and promising results 
are shown. Most studies limit the analysis to a quantitative score, 
however for successful clinical implementation a qualitative end-user 
scoring is of great importance [13,14]. This qualitative scoring in-
cludes assessment by end-users of the DL models to validate its use in a 
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real-world clinical setting. Besides, the end-users will correct contours 
when found as not directly clinically acceptable, and a quantitative 
assessment is performed to compare the contours before and after 
correction. These measurements are additional to measurements per-
formed in comparable studies [8,12]. Moreover, both the manual con-
touring as automatic contouring, including correction time, are timed 
since time efficiency is the primary endpoint, while still preserving 
quality. In addition, consistency is considered as an important endpoint. 
In this study, the performance of a DL segmentation model, trained 
separately for both left- and right-sided locally advanced breast cancer, 
including target and OARs volumes, is assessed. Both quantitative and 
qualitative scoring of the contours are included, as well as time 
efficiency. 

Materials and methods 

Patients 

The patient dataset used in this study consists of a training set for the 
development of the DL models and an independent test set used for the 
quantitative and qualitative evaluation. All patients were treated for 
locally advanced breast cancer between February 2017 and May 2022. 
After surgery of the breast and axilla, radiotherapy of the breast 
including axillary node levels 1 and 2 or levels 1 to 4 was indicated. Data 
was anonymized according to Dutch data protection and privacy legis-
lation. The training set contains 80 patients for both the left- and right- 
sided model, thus 160 patients in total. The test set contains 10 patients 
for each side. Of these 20 patients, respectively four and seven patients 
contained node levels 1 to 4 for the left- and right-sided model, where 
the other patients only contained node levels 1 and 2. Contouring was 
performed following the ESTRO guidelines [15,16], where targets were 
delineated by radiation oncologists (ROs), and OARs by radiotherapy 
technologists (RTTs). Experience of both ROs and RTTs differed. All 
contours were checked by an experienced RO before inclusion in either 
the training or test set. Patients were excluded from training or evalu-
ation when contours differed from the guidelines due to the clinical 
nature, for example nodal tissue which was visible on PET-CT and 
included in the nodal target volume beyond the standard atlas 
boundary. 

Deep learning model 

The DL model framework is developed by RaySearch and training is 
performed in RayStation 9B, while testing is performed in version 10B- 
SP1 (RaySearch laboratories, AB, Sweden). The DL network used is a 3D 
U-net, based on the architecture described by Çiçek et al. [17]. One of 
the distinctive characteristics of a U-net is its ability to combine image 
features on different levels of resolution, which makes it suitable for 
segmentation. Data augmentation is performed during training to syn-
thetically generate new data, to improve model performance. A more 
detailed description of the model and training procedure can be found in 
the supplementary materials. 

Evaluation 

Targets and OARs of the patients in the test set were contoured 
manually during clinical practice and thus delineated by one RTT and 
RO. Afterwards, the automatic segmentation was performed. Manual 
corrections could then be applied if needed. Both segmentation pro-
cesses were timed. For full manual segmentation, this time included 
loading the structure template, delineation of the OARs by the RTTs and 
a check of the OARs delineation and delineation of the target volumes by 
the ROs. For automatic segmentation, the time needed to run the seg-
mentation model, and to check and correct the contours by the corre-
sponding user was measured. The outcomes were scored both 
quantitatively and qualitatively. For quantitative scoring, three metrics 

were used to compare the manual contours to both uncorrected and 
corrected auto-contours: (1) Dice Similarity Coefficient (DSC), (2) sur-
face DSC (sDSC) [18] and (3) 95% Hausdorff Distance (95%HD). Sig-
nificance in performance between the models for both sides was 
investigated with the Wilcoxon rank-sum test, whereas the Wilcoxon 
signed rank test was used to investigate differences between the un-
corrected and corrected contours. For both tests, a p-value of 0.05 or 
lower was considered statistically significant. 

Qualitative scoring was measured by using a 3-point Likert scale for 
each contour:  

1. Clinically acceptable, no correction is needed  
2. Not clinically acceptable, but can be used as a starting point to create 

a clinically acceptable contour while still saving time  
3. Not clinically acceptable, and cannot be used as a starting point to 

create a clinically acceptable contour 

For qualitative scoring, anonymized patients of the test set were 
divided over the same group of five RTTs and five ROs, which performed 
the manual segmentation of the test set. To prevent bias, automatic 
segmentation and correction of corresponding patients was always 
performed by different RTTs and ROs than the those who performed the 
manual segmentation. Moreover, manual contours were hidden during 
the qualitative scoring. 

To assess possibility of clinical implementation, the primary 
endpoint is time reduction. When leading to a mean reduction of time, 
the DL model will be considered as successful for clinical use. 

Results 

Time saving 

Fig. 1 shows the time needed for each patient for manual and auto-
matic segmentation, including corrections when needed. The mean time 
(hh:mm:ss) for manual delineation was 00:17:05 and 00:41:31 for 
respectively the OARs and CTVs. While using auto-segmentation, the 
total time spent including correction was 00:08:47 and 00:15:43 for 
OARs and CTVs, resulting in a reduction of 00:08:51 and 00:25:38, 
respectively. Only for one patient case out of 20, the time needed to 
correct the OARs took more time than the manual delineation (00:12:40 
vs 00:10:15), leading to a decrease in time in 95% of the patients. 

Quantitative evaluation 

The automatically generated structures were quantitatively 
compared with the manually generated structures, of which the results 
are visualized in Fig. 2. The results can also be found in Table S2 of the 
supplementary materials. As can be observed, some outliers are present 
for the CTVp and CTVn1 for all three metrics. When statistically 
comparing the two models, a significant difference was found for both 
lungs for all metrics. However, as these quantitative metrics show a good 
performance, these differences are not considered as clinically relevant. 
Moreover, for the 95% HD and sDSC a significant difference was found 
for the esophagus, where the model for the right side outperforms the 
left-sided model. However, after visual inspection, it was observed that 
differences between manual and automatic contours were mostly due to 
a difference in length. When only considering the overlapping parts, a 
95% HD of 3.78 ± 2.05 mm and 3.27 ± 1.38 mm were found for 
respectively the left- and right-sided model, which were not significantly 
different. Also for the sDSC, the scores were not significantly different, 
with mean scores of 0.96 ± 0.04 and 0.97 ± 0.04. The differences be-
tween the sDSC score of the heart also decreased when only considering 
overlapping parts, but were still statistically significant (0.89 ± 0.08 vs 
0.78 ± 0.10). 

The impact of the corrections made was also quantitatively 
measured, by calculating the metrics for both the automatically (not- 
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corrected) and corrected structures, using the manually generated con-
tours as ground-truth. The difference between these metrics were 
calculated by subtracting the not-corrected metrics from the corrected 
metrics, and therefore a better agreement with the manual contour of 
the corrected contours is indicated by a positive DSC or sDSC value or a 
negative 95% HD value. The outcomes for the three metrics are visu-
alized as boxplots in Fig. 3, and can also be found in Table S3 of the 
supplementary materials. For the left-sided CTVn1, a significant differ-
ence was observed for all three metrics, indicating an significant impact 
of the corrections made. For the right-sided CTVp and the heart, this 
significance was only observed for the DSC and sDSC scores. These re-
sults indicate that, although corrections were made in most of the cases, 
only for a small number of cases these corrections were actually 
significantly different. 

Qualitative evaluation 

The automatically generated contours were qualitatively scored by 
five different RTTs and five ROs. For both models, the scores are visu-
alized in Fig. 4. While for the OARs, only the heart and thyroid both got 
scored as not usable in only one patient, this was more often the case for 

one of the CTVs. The CTVp was found not to be usable in a total of seven 
cases, CTVn1 in six cases and CTVn4 in four cases. A few observations 
can be made. First of all, the correction needed for the left and right 
lungs in respectively 20 and 50% of the cases for the right-sided model is 
remarkable, given the high quantitative score for these ROIs. Except for 
one case, these scores were assigned by the same observer. Something 
similar can be observed for CTVp and CTVn1, which were always 
assigned a score 3 by one of the observers, which scored four cases in 
total. No correlation was found between the quantitative metrics and the 
assigned scores, except for assigning score 3 to cases which were outliers 
in terms of DSC scores and HD95%. However, score 3 was also assigned 
to ROIs which had high quantitative results. 

Discussion 

This study explored the clinical feasibility of an auto-segmentation 
model for breast cancer. In 95% of the cases, time reduction was ach-
ieved while including corrections of the contours when needed. During 
qualitative measurements, the auto-contours got scored as clinical 
acceptable, with or without corrections, in 92% of the cases. 

Several other studies are published which use auto-segmentation for 

Fig. 1. Visualization of the time spent per patient on manual and automatic (including correction) segmentation of (a) clinical target volumes and (b) organs at risk. 
Patients including clinical target volume of node levels 1 to 4 are indicated with an asterisk, other patients only include node levels 1 and 2. 
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breast cancer. Recently, Almberg et al. performed a study in collabora-
tion with RaySearch, evaluating a model for the same target areas [12]. 
Similar quantitative results were achieved, except for CTVn4, thyroid 
and humerus, which scored better in their study. However, in our study 
these ROIs were found to be useful as a starting point for correction in 
most cases, while still saving time, showing clinical feasibility. The study 
of Almberg et al. did not include a measurement of contouring time 
needed. In a future study, an extensive comparison could be made to 
assess the differences in performance in more depth and explore the 
origin of these differences. 

During analysis of the qualitative results, it was observed that 
different scores were assigned by different RTTs and ROs for comparable 
corrections made. For example, one RO would assign a score 2 if he/she 
had to correct eight slices of the CTVp, while another RO would assign a 
score 3, emphasizing the subjectivity of these scores. This inter-observer 
difference in scoring could be a result of using a 3-point Likert scale, 
which is less able to capture extreme values than for example a 5-point 
Likert scale. Therefore, it was important to further investigate the actual 
corrections made during the study. It was found that, even when a score 
3 was assigned, in some cases the auto-contour was still used as a 
starting point, and still lead to a reduction in time. 

Besides, the study only involved scoring of auto-contours, which 
could induce subjectivity. Observers could judge auto-contours differ-
ently, then they would judge manual contours by a change in perception 
towards the use of AI. This difference could be overcome by performing 
a head-to-head comparison, such as the Turing test, in which the user 
has to identify the origin of the contour [19]. 

An evaluation method of the model performance which was not used 
in this study, but is used in other studies involving auto-segmentation, is 

dosimetric evaluation [13,20]. This method gives an indication of the 
clinical relevance of variations in contours and could therefore quantify 
the clinical relevance of corrections made. In a future study, the dosi-
metric impact of this auto-segmentation model could be evaluated. In 
order to perform such an analysis without any interobserver bias, ideally 
this should be done by the use of automatically generated treatments 
plans [21,22]. Moreover, these plans should be based on predefined 
clinical goals which are widely accepted to make such a comparison 
more generally useful [23]. Ideally, this dosimetric information could be 
incorporated in the auto-segmentation tool, indicating in which regions 
the uncertainty of the auto-contour is large, and in which regions cor-
rections could be considered clinically relevant. 

The results of this study led to the clinical implementation of the DL 
models for auto-segmentation. To fully assess the clinical use, the time 
needed for correction and amount of corrections will be monitored 
during the first period after clinical introduction to determine the effi-
ciency of the use of the models. A difference between the clinical setting 
and the study setting could for example emerge when people gain more 
trust in the DL module. Besides, these outcomes could give insight in 
which ROIs need the most corrections, and therefore might require re- 
training of the model to improve the model outcome. This improve-
ment could for example be achieved by the use of more and more 
consistent data. 

Conclusions 

A DL segmentation model was developed for both left- and right- 
sided locally advanced breast cancer. The primary endpoint of time 

Fig. 2. Visualization of the (a) DSC scores, (b) 95% HD and (c) sDSC scores of 
the comparison between automatically and manually generated contours. 
Horizontal lines in boxes are medians, crosses are means, dots are outliers. 
Statistically significant differences are indicated with an asterisk (p < 0.05). 

Fig. 3. visualization of the difference in (a) DSC scores, (b) 95% HD and (c) 
sDSC scores of the automatically generated contours (not corrected) and cor-
rected contours, using the manually generated contours as ground-truth. Hor-
izontal lines in boxes are medians, crosses are means, dots are outliers. 
Statistically significant differences between the contours are indicated with an 
asterisk (p < 0.05). Note: y-axis between Figs. 2 and 3 differ. 
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efficiency was fulfilled, while also improved consistency as an inherent 
effect of using auto segmentation. Besides, both quantitative as quali-
tative measurements showed high clinical potential. As a result of this 
study, the DL models will be clinically implemented in the near future in 
our clinic. 
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