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A B S T R A C T   

Reliable estimation of chemical sorption from water to solid phases is an essential prerequisite for reasonable 
assessments of chemical hazards and risks. However, current fate and exposure models mostly rely on algorithms 
that lack the capability to quantify chemical sorption resulting from interactions with multiple soil constituents, 
including amorphous organic matter, carbonaceous organic matter, and mineral matter. Here, we introduce a 
novel, generic approach that explicitly combines the gravimetric composition of various solid constituents and 
poly-parameter linear free energy relationships to calculate the solid-water sorption coefficient (Kd) for non- 
ionizable or predominantly neutral organic chemicals with diverse properties in a neutral environment. Our 
approach demonstrates an overall statistical uncertainty of approximately 0.9 log units associated with pre
dictions for different types of soil. By applying this approach to estimate the sorption of 70 diverse chemicals 
from water to two types of soils, we uncover that different chemicals predominantly exhibit sorption onto 
different soil constituents. Moreover, we provide mechanistic insights into the limitation of relying solely on 
organic carbon normalized sorption coefficient (KOC) in chemical hazard assessment, as the measured KOC can 
vary significantly across different soil types, and therefore, a universal cut-off threshold may not be appropriate. 
This research highlights the importance of considering chemical properties and multiple solid constituents in 
sorption modeling and offers a valuable theoretical approach for improved chemical hazard and exposure 
assessments.   

1. Introduction 

The sorption of organic chemicals from water to solid phases in the 
environment, such as those in soils and sediments, is a critical process 
governing their transport and transformation, hence determining their 
environmental persistence, mobility, and bioavailability (Karickhoff, 
1981; Kickham et al., 2012; Reichenberg and Mayer, 2006; Reid et al., 
2000; Webster et al., 1998). Gaining insights into the sorption behavior 
of chemicals is essential for understanding and quantifying their envi
ronmental fate as well as potential ecological and human exposures. 

Mineral matter (MM) and organic matter (OM) are two major com
ponents controlling the sorption of organic chemicals from water. More 
specifically, OM includes (i) amorphous organic matter (AOM) (e.g., 
humic acids and fulvic acids) and (ii) carbonaceous organic matter 
(COM) (e.g., black carbon, coal, natural biochar, and other pyrogenic 
carbonaceous matter). The sorption of chemicals to these constituents is 

governed by different mechanisms. For example, AOM is fluid, rubbery, 
and rich in oxygen-containing functional groups, where neutral chem
icals (non-ionizable organics or the neutral species of ionizable organics) 
can be sorbed mostly through the hydrophobic effect and hydrogen 
bonding (Pignatello and Xing, 1996). By contrast, COM is condensed, 
rigid, and rich in aromatic structures, where neutral chemicals can be 
sorbed additionally through π-bond interactions and pore sorption 
(Cornelissen et al., 2005; Kah et al., 2017; Pignatello et al., 2017). Since 
the solid phases, notably, MM, are often negatively charged, the sorption 
of cations additionally involves electrostatic interactions, including 
cation exchange, cation bridging, and electron donor-acceptor in
teractions (MacKay and Vasudevan, 2012). Other mechanisms, such as 
pore-filling, also contribute to sorption of chemicals to these constitu
ents (Schwarzenbach et al., 2017). 

Since the measurement of OM typically involves combustion, where 
both AOM and COM are converted into CO2, OM is commonly quantified 
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using total organic carbon (TOC) (Nelson and Sommers, 1996). As such, 
most current chemical assessment paradigms evaluate sorption using the 
sorption coefficient (Kd; the ratio of sorbed and dissolved concentra
tions) normalized by the TOC fraction, known as KOC. For example, the 
lowest KOC at a pH range between 4 and 9 is currently used as a con
servative criterion for screening chemicals for their mobility in drinking 
water protection (European Union, 2023; Neumann and Schliebner, 
2019). However, the use of KOC implies two simplifying assumptions: (1) 
sorption is controlled predominantly by OM, with less consideration 
given to MM, and (2) both AOM and COM exhibit similar sorption af
finities for chemicals. While these simplifying assumptions have been 
widely accepted for decades, they have recently been challenged. First, 
although it is reasonable to assume sorption by OM to be the primary 
sorbent for neutral chemicals (Schwarzenbach et al., 2017), MM plays a 
crucial role in the sorption of ionizable chemicals (Droge and Goss, 
2013b, 2013a), which constitute approximately half of the chemicals 
undergoing evaluations (Franco et al., 2010; Zhang et al., 2024). Sec
ond, the sorption affinities of chemicals can vary between AOM and 
COM (Cornelissen et al., 2005), and therefore, varying soil composition 
can impact the sorption of different chemicals (Spark and Swift, 2002). 
For these reasons, efforts have been made to separately consider sorp
tion to different soil constituents (Droge and Goss, 2013a; Han et al., 
2016; Plata et al., 2015). Unfortunately, these approaches have gained 
limited application in holistic environmental fate and exposure 
modeling. Most existing models, such as the well-known examples 
RAIDAR (Arnot et al., 2006; Arnot and Mackay, 2008), USEtox (Fantke 
et al., 2017), PROTEX (Li et al., 2018a, 2018b), and EUSES (European 
Commission, 2004), still rely on the traditional KOC approach for sorp
tion quantification. 

To better characterize the sorption of non-ionizable or predomi
nantly neutral organic chemicals (i.e., >99% of the mass present in 
water being neutral species at pH=7) from water, here we propose a 
novel, general composition-based modeling approach that integrates (i) 
poly-parameter linear free energy relationships (pp-LFERs) for sorption 
of non-ionizable organic chemicals to AOM, COM, and MM and (ii) the 
relative composition of the three solid constituents in soil. This modeling 
approach facilitates cost-effective screening-level predictions of 
chemical-specific and soil-specific Kd for the sorption of non-ionizable or 
predominantly neutral organic chemicals from neutral (pH close to 7) water 
at the standard ambient temperature (15 to 25 ◦C). This modeling 
approach helps us understand the relative contributions of various soil 
constituents to chemical sorption; it also allows comprehensive pre
dictions of overall sorption based on multiple soil compositions, thereby 
facilitating tailored and targeted assessments for chemical screening and 
prioritization. Since inputs to pp-LFERs can be either experimentally 
determined or theoretically predicted from the chemical structure, this 
approach applies to a broad spectrum of non-ionizable or predominantly 
neutral organic chemicals, including those in the design or pre- 
manufacturing stage. This versatility renders the approach well-suited 
for precautionary chemical assessments. 

2. The composition-based model 

2.1. Composition-based model for estimating sorption coefficient (Kd) 

In this approach, we discriminate between three solid constituents, 
namely AOM (with an equivalent carbon content of AOC, fAOC in% 
weight), COM (with an equivalent carbon content of COC, fCOC in% 
weight, where AOC + COC = TOC), and MM (with a mineral content, 
fMM in% weight). Table 1 illustrates the example gravimetric composi
tions of these three constituents across various “reference soil groups”, i. 
e., soil types with distinctive physical, chemical, and biological 
attributes. 

The sorption of chemicals on each constituent from water can be 
described using a sorption coefficient (KAOM-water in Lwater/kgAOM, KCOM- 

water in Lwater/kgCOM, and KMM-water in Lwater/kgMM), defined as the ratio 

of the chemical concentration in each constituent to its concentration in 
water (Eqs. 1 through 3). According to classic sorption theories, these 
partition coefficients are expressed as products of sorption coefficients 
(KAOC in Lwater/kgAOC, KCOC in Lwater/kgCOC, and KMM in Lwater/kgMM) 
and corresponding constituent content (fAOC, fCOC, and fMM) (Eqs. 1 
through 3). 

KAOM− water = CAOM : Cwater = KAOC × fAOC (1)  

KCOM− water = CCOM : Cwater = KCOC × fCOC (2)  

KMM− water = CMM : Cwater = KMM × fMM (3) 

Therefore, the total sorption coefficient is: 

Kd = KAOM− water + KCOM− water + KMM− water, namely
Kd = KAOC × fAOC + KCOC × fCOC + KMM × fMM

(4) 

Since we seek to develop a screening-level approach for sorption 
prediction, we base the above equations on the following simplifying 
assumptions:  

(1) There is a linear, concentration-independent distribution of 
chemicals between each soil constituent and water. This 
assumption has been shown to hold for low-concentration 
chemicals found in the environment (Blum et al., 1994; 
Schwarzenbach et al., 2017); it is also a recommended assump
tion by the Organisation for Economic Co-operation and Devel
opment (OECD) Guidelines for the Testing of Chemicals #106 
(OECD, 2000). 

(2) A chemical maintains equilibrium partitioning between individ
ual soil constituents and water. This assumption is widely 

Table 1 
Example gravimetric compositions of amorphous organic carbon (AOC), 
carbonaceous organic carbon (COC), and mineral matter (MM), as well as cation 
exchange capacity of MM (CECMM) in various reference soil groups.  

Reference 
soil group 

Representative sites 
and corresponding soil 
mapping units (SMUs) 

AOC 
(%)(a) 

COC 
(%)(a) 

MM 
(%) 

CECMM 

(cmolC/ 
kg)(b) 

Luvisol Western U.S. arid areas 
(SMU 5091) 

0.63 0.01 16 64 

Fluvisol Cairo, Egypt (SMU 
16,414) 

0.68 0.01 20 71 

Retisol Belgium, Brussel (SMU 
9383) 

1.28 0.06 20 29 

Ferralsol Amazon rainforest, 
Brazil (SMU 12,767) 

1.34 0.06 35 8 

Podzol Baltic region (SMU 
10,078) 
Great Toronto Area, 
Canada (SMU 4952) 

6.37 0.85 6 74 

Gleysol Great Lakes, U.S. and 
Canada (SMU 4701) 

3.74 0.44 25 20 

Histosol Northeastern Canada 
(SMU 4933) 

40.3 6.18 13 57 

Urban soil England, UK 2.52(c) 1.68(c) 9(d) 16 

Notes:. 
(a) For soil types other than the urban soil, the COC content is extrapolated 

from TOC content reported by the United Nations Food and Agriculture Orga
nization (UN FAO) Harmonized World Soils Database version 2.0, based on an 
empirical relationship between TOC and COC contents as reported by (Glaser 
and Amelung, 2003). The AOC content is calculated to be the difference between 
the reported TOC and calculated COC content. 

(b) Represented by the CEC of clay (CECclay), taken from the United Nations 
Food and Agriculture Organization’s Harmonized World Soils Database version 
2.0, which calculated CECclay by correctting for the contribution of AOC’s CEC 
(CECAOC; a typical mean of 350 cmolC/kgAOC was used) from the measured soil’s 
CEC (CECsoil). 

(c) Taken from the medians of Edmondson et al.(Edmondson et al., 2015). 
(d) Taken from the UN FAO Harmonized World Soils Database version 2.0 

based on soil type in London (SMU 7001). 
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accepted in multimedia environmental modeling that involves 
multiple phases within an environmental compartment (Dia
mond et al., 1992; Mackay et al., 1992). 

(3) We focus on the central-tendency estimates of sorption co
efficients for the same chemical across different types of AOM (e. 
g., humic acids and fulvic acids), COM (e.g., black carbon 
generated at different combustion temperatures), and MM (e.g., 

clays saturated with different cations), and we do not consider 
variability in sorption affinity caused by variations in sorbent 
structure or composition. This is because such within-chemical 
variability is usually less significant than variability in sorption 
coefficients among diverse chemicals (Grathwohl, 1990; Sig
mund et al., 2020). Also, we ignore the impact of soil composition 
heterogeneity, i.e., the relative abundance of and resulting 
competitive sorption by the three soil constituents, on the 
non-linearity of sorption (Chiou and Kile, 1998).  

(4) AOM, COM, and MM do not share sorption sites, and sorption to 
these constituents does not compete. This assumption does not 
consider the formation of organomineral complexes due to in
teractions between AOM and MM (Celis et al., 2006) or the 
changed physical conformation of AOM due to the co-occurrence 
of MM (Bonin and Simpson, 2007). 

2.2. Predictions of sorption coefficients with pp-LFER 

Based on the free energy theory, a pp-LFER calculates the distribu
tion of a chemical between two phases as a linear combination of (i) 
Abraham solute descriptors (capital letters in Eq. (5)) of the neutral form 
of the chemical and (ii) system constants (lowercase letters in Eq. (5)) 
describing the water-sorbent system: 

log10K = c + e × E + s × S + a × A + b × B + v × V (5)  

where, 

E: Excess molar refraction with a unit of (cm3 mol− 1)/10, which 
correlates with a part of the dispersion interaction (induced dipole- 
induced dipole interaction) and Debye forces (dipole-induced 
dipole interaction) that constitute van der Waals interactions. 
S: Polarizability/dipolarity parameter (Arey et al., 2005). 
A: Solute H-bond acidity, which correlates with interactions (e.g., 
hydrogen bonding or π-bond interaction) between H-donating 
chemical and H-accepting sorbent (i.e., AOM or COM in this case) 
(Pignatello et al., 2017). 
B: Solute H-bond basicity, which correlates with interactions (e.g., 
hydrogen bonding or π-bond interaction) between H-accepting 
chemical and H-donating solvent (i.e., water in this case) (Pignatello 
et al., 2017). 
V: McGowan molar volume with a unit of (cm3 mol− 1)/100, which 
correlates with a part of the dispersion interaction and the cavity 
formation during a chemical’s transfer from one condensed phase to 
another. 

The chemical-specific Abraham solute descriptors can be either 
experimentally determined or theoretically predicted. They have also 
been compiled and documented in databases such as UFZ-LSER (Ulrich 

et al., 2017) for many well-studied organic chemicals. 
We apply Eqs. (6) (Bronner and Goss, 2011), (7) (Lu et al., 2016), and 

(8) to predict the sorption of non-ionizable or predominantly neutral 
organic chemicals onto AOC, COC, and MM in neutral water-solid systems, 
which represents either natural soil and sediment or the starting test 
conditions (pH, ionic strength, ionic type, etc.) recommended by the 
OECD Guidelines for the Testing of Chemicals #106 (OECD, 2000):  

where, γ is chemical activity. While readers are encouraged to use 
environment-specific γ, we also recommend a conservative generic 
value of 0.001 be assigned for screening-level studies where 
environment-specific values are unavailable. Earlier studies show that 
most chemical contaminants exhibit a chemical activity in the range 
from 0.0001 to 0.01 in environmental samples (Gobas et al., 2018; 
Mayer et al., 2009), and this range is below a threshold of 0.01 that is 
likely to lead to narcosis or baseline toxicity (Gobas et al., 2018; Mackay 
and Arnot, 2011). We select the generic value of 0.001 because it gives a 
better agreement with the smallest root mean square deviation (RMSE) 
between predicted and measured KCOC of 50 chemicals, compared to 
chemical activities of 0.0001 and 0.01 (for details, see Supplementary 
Materials Table S1). 

log10KMM = 0.32 × E − 2.55 × S − 0.83 × A − 0.65 × B + 3.43 × V − 0.68
(8) 

Supplementary Materials Text S1 details the derivation of Eq. (8) 
and underlying considerations. 

3. Results and discussion 

3.1. Evaluation of the proposed approach’s performance 

In earlier studies (Abraham et al., 1994; Bronner and Goss, 2011; 
Goss et al., 2003; Lu et al., 2016), the KAOC, KCOC, and KMM pp-LFERs 
(Eqs. 6 through 8) have undergone thorough internal validation to 
assess the goodness of fit between their predictions and the experi
mentally derived values of training chemicals (Supplementary Mate
rials Table S2). Here, we additionally perform an external validation to 
assess their predictive ability for experimental measurements that are 
new to these pp-LFERs. Specifically, we first collect literature-reported 
experimentally derived KAOC, KCOC, and KMM for non-ionizable or pre
dominantly neutral organic chemicals that were not used to develop 
these pp-LFERs (Supplementary Materials Text S2). We then use the 
above pp-LFERs to make predictions for these chemicals, using Abraham 
solute descriptors (with a priority given to experimentally determined 
values) and parameters obtained from the UFZ-LSER database (Ulrich 
et al., 2017). Subsequently, we assess the statistical agreement between 
the collected experimentally derived values and the predictions. 

Fig. 1 shows the performance of the adopted pp-LFERs in internal 
and external validations. The internal validation results are obtained 
from corresponding literature, which reported coefficients of determi
nation (R2) of 0.92, 0.96, and 0.95 for KAOC, KCOC, and KMM, respectively 
(Abraham et al., 1994; Bronner and Goss, 2011; Goss et al., 2003; Lu 
et al., 2016) (Fig. 1). These values indicate that the developed pp-LFERs 
can explain more than 90% of the variance observed in the training set. 
The RMSEs were reported to be 0.25, 0.22, and 0.37 log units for KAOC, 

log10 KAOC = (0.81 ± 0.08) × E + ( − 0.61 ± 0.11) × S + ( − 0.21 ± 0.14) × A + ( − 3.44 ± 0.18) × B + (2.99 ± 0.11) ×
V + ( − 0.29 ± 0.12) (6)  

log10KCOC = [( − 0.35 ± 0.02)logγ] × E + ( − 0.62 ± 0.10) × A + ( − 3.35 ± 0.11) × B + (3.74 ± 0.11) × V + ( − 1.45 ± 0.09) (7)   
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KCOC, and KMM, respectively (Abraham et al., 1994; Bronner and Goss, 
2011; Goss et al., 2003; Lu et al., 2016) (Fig. 1). These values indicate 
that predictions deviate from experimentally derived values by gener
ally less than a factor of 3. In the external validation, R2 values are 0.77, 
0.84, and 0.67 for KAOC, KCOC, and KMM, respectively, whereas the 
RMSEs were 0.79, 1.0, and 0.82 log units, respectively (Fig. 1). These 
results suggest that the pp-LFERs may be more uncertain for predicting 
experimental measurements that were new to the models; however, the 
overall performance is still reasonable and sufficient for screening-level 
assessments. In addition, using KCOC of chemicals in the validation sets 
as an example, Supplementary Materials Fig. S1 shows that the 
regression residuals (i.e., the difference between measured and pre
dicted values) across a diverse array of chemicals do not correlate with 
Abraham solute descriptors, indicating the absence of systematic bias in 
the prediction. 

Combining the internal and external validation datasets, we calcu
late that RMSEs are 0.73, 0.63, and 0.54 log units, respectively, for KAOC, 
KCOC, and KMM predictions (Fig. 1). These numbers indicate that the pp- 
LFER predictions generally agree with experimentally derived values, 
with a deviation by a factor of less than 6. Since Kd is a linear combi
nation of KAOM-water, KCOM-water, and KMM-water (Eq. (4)), Eq. (9) allows 
calculating the overall uncertainty (RMSEoverall) by propagating these 
uncertainties: 

RMSEoverall =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

f 2
AOCRMSE2

AOC + f 2
COCRMSE2

COC + f 2
MMRMSE2

MM

√

(9) 

For illustration, we calculate RMSEoverall to be approximately 0.9 log 
units for both Podzol (characterized by high AOC and COC content and 
low MM content; Table 1) and Ferralsol (characterized by high MM 
content and low AOC and COC content; Table 1). Therefore, from a 
statistical standpoint, a Kd prediction may likely suffer an uncertainty of 
less than a factor of 8 if no experimentally derived value is available for 
groundtruthing the prediction. 

3.2. Relative contributions of AOM, COM, and MM in chemical sorption 
from water 

Using the KAOC, KCOC, and KMM pp-LFERs paired with chemical- 
specific inputs, we assess the roles of AOM, COM, and MM in the sorp
tion of 70 non-ionizable organic chemicals drawn from the substances 
registered in the REACH registration database (Fig. 2). These chemicals 
include commonly studied environmental contaminants, e.g., polycyclic 
aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs), 
as well as chemicals that have recently been identified to be “mobile” or 
“very mobile” substances, based on a conservative criterion of log KOC 
lower than 4 (Arp et al., 2017; Arp and Hale, 2022; Neumann and 
Schliebner, 2019). For detailed information on these chemicals, please 
refer to Supplementary Materials Table S3. The comparison between 
Fig. 2a and b illustrates the impact of soil composition on the relative 
importance of chemical sorption onto AOM, COM, and MM. Overall, 
AOM and COM are the main sorbents for most investigated chemicals to 
Podzol, which aligns with Podzol’s higher TOC content, whereas MM is 
the main sorbent for most investigated chemicals to Ferralsol. 

The sorption of certain chemicals is dominated by a single sorbent, 
regardless of soil composition. For example, our approach predicts that 
AOM is the dominant sorbent in both types of soil for the sorption of 
chlorobenzenes and chlorotoluenes (the “HArHCs” category in Fig. 2a 
and b). This agrees with experimental observations where the Kd of 
chlorobenzenes was strongly linearly correlated with soil AOC content; 
notably, the regression slope, which represents AOM’s contribution, was 
200 to 1500 times greater than the regression intercept, which repre
sents combined contributions of sorbents other than AOM (Paya-Perez 
et al., 1991). Likewise, PAHs and some PCBs are predicted to be sorbed 
mainly onto COM in both soil types, due to their planar structures and 
the interaction between delocalized π electron clouds and π electron-rich 
surface of COM. This aligns with earlier observations that COM sorbs 
91% to 99% of the PAH mass in soil (Cornelissen et al., 2006). By 
contrast, our approach predicts that the sorption of non-ionizable per
fluorinated and organosilicon chemicals (the “OF & OSi” category in 

Fig. 1. Comparison between pp-LFER predictions of KAOC, KCOC, and KMM and literature-reported experimentally derived values. Orange dots represent experimental 
measurements used for training the pp-LFERs as reported in the original papers (internal validation), whereas blue dots represent experimental measurements new to 
the pp-LFERs (external validation). Shown in the figures are coefficients of determination (R2), root-mean-square deviations (RMSE), and numbers of chemicals (N) 
for internal validation (“Int”), external validation (“Ext”), and combined datasets (“Tot”). For details on the derivation of these datasets, see Supplementary Materials 
Text S3. Note that KAOC, KCOC, and KMM have been measured for different chemicals in the literature: 23 chemicals have measurements of both KAOC and KCOC 
reported, and none of these chemicals have measurements of all of KAOC, KCOC, and KMM reported (For interpretation of the references to color in this figure legend, 
the reader is referred to the web version of this article). 
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Fig. 2a and b) is significantly influenced by MM in both types of soil. 
Although studies directly comparing the sorption of non-ionizable per
fluorinated and organosilicon chemicals onto MM and other sorbents are 
currently lacking, a previous comprehensive review suggests that for 
ionizable long-chain PFAS, Kd correlates more strongly with soil clay 
content than with soil AOC content (Li et al., 2018). The reduced affinity 
of perfluorinated and organosilicon chemicals toward AOM likely stems 
from their much weaker van der Waals interactions with the “bulk” 
condensed phases (e.g., AOM or water phase) and lower polar
izability/dipolarity, relative to compounds of similar molecular size 
(Goss and Bronner, 2006). This is evidenced by their considerably lower 

(negative or near-zero) values of descriptors E and S, respectively, 
compared to other chemicals investigated here (Supplementary Ma
terials Table S3). Such weaker interactions diminish their propensity to 
remain in the “bulk” condensed phases, leading to a preference for 
sorption on the MM surface (Goss and Bronner, 2006). 

The dominant sorbent for chemical sorption may vary depending on 
the type of soil. For instance, our approach predicts that phthalates are 
mainly sorbed to MM in Ferralsol but to COM in Podzol (Fig. 2a and b). 
Conversely, MM and AOM are the primary sorbents for the sorption of 
halogenated acyclic hydrocarbons (e.g., chloroethane and chlor
opropane) to Ferralsol and Podzol, respectively (the “HAcHCs” category 

Fig. 2. The relative importance of mineral matter (MM), amorphous organic matter (AOM), and carbonaceous organic matter (COM) in the sorption of 70 organic 
chemicals (identified by their CAS Registry Numbers) to two types of soil, Ferralsol (Panel a) and Podzol (Panel b), and the calculated KOC of the 70 organic chemicals 
in the two types of soil (Panel c). Highlighted are six categories of chemicals: Organofluorine (OF) and organosilicon (OSi) compounds, phthalates, halogenated 
acyclic hydrocarbons (HAcHCs), halogenated and/or nitro aromatic hydrocarbons (HArHCs), polychlorinated biphenyls (PCBs), and polycyclic aromatic hydro
carbons (PAHs). 
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in Fig. 2a and b). These two cases highlight the importance of investi
gating chemical sorption onto various soil constituents and considering 
variabilities in chemical properties and soil characteristics, if one seeks a 
thorough understanding of chemical sorption to the soil. 

3.3. Variability in measured KOC among soils with different compositions 

In many current practices, sorption is quantified using KOC, defined 
as Kd normalized by the TOC fraction (fTOC)(Eq. (10), where the symbol 
“–––” means “defined as”). However, from a mechanistic perspective, the 
measured Kd reflects simultaneous sorption to AOM, COM, and MM, and 
the measurement of fTOC does not distinguish between AOC and COC 
(OECD, 2000). Therefore, a mechanistic analysis of the experimentally 
derived KOC by this study gives Eq. (10): 

KOC ≡
Kd

fTOC
=

KAOC × fAOC + KCOC × fCOC + KMM × fMM

fAOC + fCOC
(10) 

Eq. (10) explains that KOC is inherently variable across measure
ments in different environments, which results from variations in the 
environment-specific soil composition. We here quantify such an inter- 
environment variability using the difference between KOC values 
calculated for Ferralsol and Podzol (Fig. 2c). As shown in Fig. 2c, among 
the 70 investigated chemicals, although the Ferralsol and Podzol KOC 
values generally agree with each other, the Ferralsol KOC may exceed 
Podzol KOC by an order of magnitude for 16 chemicals. While our 
approach introduces an overall uncertainty of 0.9 orders of magnitude in 
Kd predictions, this degree of uncertainty is still less than the discrep
ancy in KOC between the two types of soil. Therefore, it remains 
worthwhile to consider multiple geosorbents in hazard or risk assess
ments. In general, these 16 chemicals are primarily sorbed by MM, with 
sorption to MM accounting for over 90% of the sorption in Ferralsol and 

over 40% in Podzol. It is particularly interesting to note that this subset 
of chemicals includes non-ionizable perfluorinated and organosilicon 
chemicals (Supplementary Materials Table S3). By contrast, chem
icals for which AOM or COM serves as the dominant sorbents exhibit 
Ferralsol and Podzol KOC values that differ by less than a factor of 5. This 
contrast indicates that sorption onto MM could significantly influence 
the measurement of Kd. 

Such inherent variability in KOC may impact the use of KOC in 
chemical hazard assessment. For example, Fig. 2c shows that 3 chem
icals [methyl perfluoro-3-(3-methoxypropoxy)− 3H-propanoate (CASRN 
958445–54–0), tris(2-chloroisopropyl)phosphate (CASRN 
13674–84–5), and decalin (CASRN 91–17–8)] may have a logKOC lower 
than 4 in Podzol but greater than 4 in Ferrasol. These discrepancies may 
challenge the use of KOC alone in chemical mobility assessments because 
they constitute potential “false negatives” or “false positives” if only one 
type of soil is used in the experimental determination of KOC. This 
highlights that KOC is soil-specific, instead of intrinsic to a chemical. 

4. Expansion of the approach to ionizable organic chemicals 

In the above case, we have applied Eqs. 6 through 8 to non-ionizable 
or predominantly neutral organic chemicals. Given that the majority of 
the organic chemicals undergoing evaluations are ionizable (Franco 

et al., 2010; Zhang et al., 2024), there is a need to extend pp-LFERs to 
cover cations and anions. This extension involves the use of (i) 
ionic-species Abraham solute descriptors and (ii) system constants that 
are recalibrated specifically for cations and anions. It is important to 
note that, for the same organic chemical, ionic-species and 
neutral-species Abraham solute descriptors can differ substantially. For 
four categories of anionic (carboxylates and phenoxides) and cationic 
chemicals (amines and pyridines), Abraham and collaborators 
(Abraham, 2011; Abraham and Acree Jr, 2010; Abraham and Acree, 
2010a, 2010b) have developed equations that allow for the expression 
of ionic-species Abraham solute descriptors as a linear combination of 
neutral-species Abraham solute descriptors and other parameters 
(Supplementary Materials Text S3). However, for chemicals falling 
outside of these four categories, conversion equations for neutral- to 
ionic-species descriptors are not currently available. Furthermore, as 
these conversion equations rely on neutral-species Abraham solute de
scriptors, they cannot be applied to permanently charged chemicals like 
quaternary ammonium compounds, for which neutral-species do not 
exist. 

To develop KAOC pp-LFERs for cations and anions, we collect 
experimentally determined KAOC at a pH of approximately 7 for 55 
cationic and 28 anionic organic chemicals (Supplementary Materials 
Table S4). We select cationic chemicals with a pKa (i.e., the dissociation 
constant for the conjugate base) greater than 7.5 and anionic chemicals 
with a pKa lower than 6.5, ensuring at least 70% of the mass present in 
water being ionic species at pH=7. For these chemicals, we convert the 
neutral-species Abraham solute descriptors (E, S, A, B, and V) to corre
sponding ionic-species Abraham solute descriptors (i.e., Ei, Si, Ai, Bi, Vi, 
and J+, or J− )(Supplementary Materials Table S4). The KAOC and 
ionic-species Abraham solute descriptors are then correlated using 
multivariant linear regression (Eqs. (11) and (12) for anions and cations, 
respectively):  

These pp-LFERs show satisfactory predictive ability for KAOC of both 
anions and cations (respective R2 of 0.93 and 0.49, and respective RMSE 
of 0.33 and 0.47 log units). 

To our knowledge, there is currently a lack of pp-LFER calculating 
KCOC for ionizable organic chemicals, nor a comprehensive dataset of 
experimentally determined values that could support developing such a 
model. We collect experimentally determined KCOC at a pH of approxi
mately 7 for 11 anionic and cationic organic chemicals (Supplementary 
Materials Table S5). We then evaluate whether Eq. (7), supplied with 
the neutral-species Abraham descriptors, can reasonably predict KCOC 
for these chemicals. Interestingly, our results indicate that Eq. (7) seems 
to perform comparably for both ionizable (R2= 0.71; RMSE= 0.91 log 
units; N = 11) and non-ionizable (R2= 0.72; RMSE= 0.63 log units; N =
50, combined internal and external evaluation datasets; Fig. 1b) organic 
chemicals. However, it is important to acknowledge that this compari
son is made using a limited dataset. Further research is warranted to 
assess the applicability of this approach more thoroughly for ionizable 
organic chemicals. 

Sorption of ionizable organic chemicals onto MM is believed to be 
controlled mainly by the ion exchange mechanism. For example, Droge 
and Goss (Droge and Goss, 2013a, 2013b) have demonstrated that 
KMM-water of cations is strongly correlated with the cation exchange 

logKAOC,anion = (0.07 ± 0.11) × Ei − (0.24 ± 0.07) × Si + (3.40 ± 1.78) × Ai − (1.02 ± 0.27) × Bi + (1.33 ± 0.28)
×Vi + (2.07 ± 0.34) × J− − (0.80 ± 0.90) (11)  

logKAOC,cation = (0.60 ± 0.80) × Ei − (0.84 ± 0.37) × Si + (0.82 ± 0.67) × Ai + (0.58 ± 0.19) × Vi + (0.21 ± 0.92)
×J+ + (1.87 ± 0.65) (12)   
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capacity (CECMM in cmolC/kg) (Eq. (13)): 

KMM− water = KCEC × CECMM (13) 

In their research (Droge and Goss, 2013a, 2013b), Droge and Goss 
have also developed a pp-LFER for the prediction of KCEC for sorption of 
cationic amines sharing a CxHyN+ structure onto phyllosilicate minerals. 
However, there remains a significant need for additional research to 
understand and quantify the KMM-water of both cations and anions onto 
various types of MM, such as clay minerals and pedogenic metal oxides, 
so as to facilitate developing reliable pp-LFERs in the future. 

4. Conclusions and perspectives 

We present a generic composition-based approach to calculate Kd for 
sorption of non-ionizable organic chemicals from water. Statistically, 
this approach exhibits an overall uncertainty of 0.9 log units for pre
dictions. With this approach, we demonstrate that different soil con
stituents may exert a dominant influence on the sorption of different 
chemicals, resulting in variability in KOC across different types of soil. 
Therefore, in chemical hazard assessment, it may not be appropriate to 
view KOC as a chemical’s intrinsic property that is independent of spe
cific environments. 

While our proposed approach shows promising performance, the 
models developed herein are preliminary because the datasets are quite 
limited and for KMM the data had to be derived from other experimental 
parameters. The applicability domain of the models is presently hard to 
define for applications to thousands of chemicals and they should 
therefore be used cautiously. Nonetheless, the framework provides an 
Integrated Approach for Testing and Assessment (OECD, 2020) that can 
be used to systematically improve the mechanistic understanding of 
these processes and efficiently guide experimental resources for subse
quent revision. Further theoretical and experimental investigations are 
still necessary to enhance our understanding and characterization of the 
sorption processes between diverse chemicals and various soil compo
nents. For example, future experimental studies can provide valuable 
insights to examine whether the KMM pp-LFER derived based on a 
thermodynamic circle is mechanistically sound (for detailed discussions, 
see Supplementary Materials Text S3). In addition, our proposed 
approach relies on a distinction between AOM and COM, which 
currently lacks clear theoretical definition and faces analytical chal
lenges in wet labs. The current methods for determining COM, such as 
thermogravimetry, density separation, and the detection of marker 
substances like benzenecarboxylic acids, are complex and imprecise. 
Future research should focus on developing analytical methods for COM 
determination and generating datasets of reliable, reproducible, and 
consistent KCOC measurements to facilitate refining the model. 
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