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Abstract: Threshold voltage adjustment in threshold switching (TS) devices with HfO2/Al2O3

superlattice (by means of changing the cycle ratio of HfO2 to Al2O3 in atomic layer deposition) is
investigated to implement a transparent cross-point array. TS devices with different cycle ratios (i.e.,
3:1, 3:2, and 3:3) were fabricated and studied. The threshold voltage of the devices was increased from
0.9 V to 3.2 V, as the relative contents of Al2O3 layer in the superlattice were increased. At the same
time, it is demonstrated that the off-resistance values of the devices were enhanced from 2.6 × 109 to
6 × 1010 Ω as the atomic layer deposition (ALD) cycle ratio of HfO2 to Al2O3 layer was adjusted from
3:1 to 3:3. However, the hold voltage and the on-current values were almost identical for the three
devices. These results can be understood using the larger barrier height of Al2O3 layer than that of
HfO2 layer.

Keywords: transparent device; indium tin oxide (ITO); threshold switching device; multilayer;
non-volatile memory

1. Introduction

Transparent electronics have been ardently investigated in a variety of areas such as bioelectronics,
environmental-engineering, display engineering, and wearable electronics as replacements and/or
substitutions for conventional opaque electronics, because the optical transparency leads to functional
merits in various applications [1–5]. For example, opaque electrodes (e.g., platinum) have been
used as implantable neural probes for brain-machine interfaces. The opaque electrodes hamper
observations on the section under the electrodes. For this reason, transparent electrodes such as
graphene have been investigated as the candidate for implantable neural probes for brain-machine
interfaces. Among those transparent devices, transparent non-volatile memory devices (e.g., resistive
random-access-memory (RRAM) devices) have drawn growing attention for use in transparent
display panel and circuitry, because non-volatile memory devices have (i) a simple two terminal
structure (i.e., top electrode-dielectric layer-bottom electrode), (ii) a high power efficiency (i.e., low
power consumption), and (iii) a 4F2 cell size [6–13]. However, cross-point array using non-volatile
memory devices has the technical issue of its sneak current path, due to the low off resistance of
non-volatile memory devices. This undesirable sneak current can arise from nearby-unselected cells
when non-volatile memory devices are configured as an array. This would hurt the read margin
of non-volatile memory devices, as well as limit the maximum size of the crossbar array [14,15].
For alleviating those issues, a volatile resistive switching device called a threshold-switching (TS)
device has been studied [16–18]. When a TS device is connected to a non-volatile memory device
in series, the device structure can show non-volatile memory characteristics, avoiding unexpected
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sneak leakage current [19]. Although investigations on TS devices have been widely implemented
for addressing these issues, studies on transparent TS devices are lacking (even though studies on
transparent non-volatile memory devices are available).

Moreover, among various TS devices, metal ion TS devices (which show abrupt resistive switching
through the forming/rupture of metal ion filaments) have been highlighted because they can have a
high on/off ratio (≥106) and fast switching speeds (≤100 ns) [20–24]. Because of those outstanding
electrical properties, TS devices have been utilized for other applications, such as phase-transition field
effect transistor (FET) as well as cross-point arrays. From this point of view, the operational reliability
of TS devices needs to be improved for being used in various fields. Therefore, various reliability
issues such as endurance, cycling stability, temperature stability, etc. have been studied. For example,
the operational failure in a TS device mainly originates from the diffusion of active metal into the oxide
layer. For barricading the diffusion, a TiN diffusion barrier is usually inserted between the active metal
electrode (i.e., top electrode) and the oxide layer [25]. By adding the diffusion barrier, the diffusion can
be restricted, and thus the device can show better endurance characteristics. Moreover, a large area of
electrodes lets a large number of filaments be formed in the oxide layer. In other words, there are many
paths for current flow. This results in variation between operations (i.e., cycle-to-cycle variation). This
issue can be resolved by decreasing the device area [26,27]. As the device area is scaled-down, the
number of filaments in the oxide layer is decreased, resulting in a decrease in cycle-to-cycle variation.
Furthermore, active metal alloy with chalcogenide material (i.e., AgTe) was used as metal electrode for
increasing the endurance and switching speed, because the chalcogenide material contributes to the
fast dissolution of conductive filament. Moreover, investigations on threshold voltage adjustment have
been performed. This is because, for sufficiently suppressing the sneak current, the threshold voltage
of a TS device should be designed in-between the half-set voltage and the set voltage of a non-volatile
memory device [19]. In a cross-point array, the half-set voltage is applied to half-accessed cells. Thus,
if the threshold voltage of a TS device is less than the half-set voltage, the cell cannot benefit from the
high off-resistance of the TS device, resulting in a sneak current. Furthermore, when the threshold
voltage is higher than the set voltage, the current becomes restricted by the high off-resistance of
the TS device, even if the set voltage is applied to the non-volatile memory device. For balancing
those two voltage values, various methods (e.g., adding a diffusion barrier on a dielectric layer and/or
changing a bottom electrode material) to adjust the threshold voltage of metal ion TS devices have
been studied [22–25,28]. However, these methods are hardly applied for transparent applications
because (i) the number of practical transparent substrates is very limited and (ii) adding a new layer
can aggravate the transparency. Thus, in this study, by varying the atomic layer deposition (ALD) cycle
ratio of HfO2 and Al2O3 for HfO2/Al2O3 superlattice (HAO), the threshold voltage adjustment of TS
devices on transparent indium tin oxide (ITO)/glass substrate is demonstrated for realizing transparent
cross-point array. HfO2 and Al2O3 layer are well-known as transparent dielectric layers, and thus do
not adversely affect the transparency. The threshold voltage was increased from 0.9 to 3.2 V as the ratio
of HfO2 to Al2O3 in HAO was changed from 3:1 to 3:3. Furthermore, as the cycle ratio was adjusted
from 3:1 to 3:3, the off resistance at 0.5 V was improved from 2.6 × 109 to 6 × 1010 Ω. However, it is
demonstrated that the hold voltage and on-resistance are not affected by the presence of Al2O3 layers.
These measurement results should be originated from suppressing the diffusion of top electrode (i.e.,
silver) by inserting an Al2O3 layer into HfO2 layer. We expect that this experiment would help to
expediate the development of a transparent cross-point array in the near future.

2. Fabrication and Measurement

A HAO-based TS device was fabricated as follows: First, an ITO-coated glass substrate (AMG,
Uiwang, Korea) was prepared as a bottom electrode. ITO has been widely utilized as transparent
substrate due to its high transparency (i.e., near 90% in the visible wavelength range) and low resistivity
(i.e., ~10−3 Ω·cm). The substrate was dipped/cleaned in acetone (Samchun Chemicals, Pyeongtaek,
Korea), isopropyl alcohol (IPA) (Daejung Chemicals & Metals Co., Siheung, Korea), and deionized
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water (DI water), in order, using sonicator (Sungdong Ultrasonic Co., Seoul, Korea) each 5 min. After
the cleaning process, the HAO film was deposited using ALD (NCD Lucida-D100, NCD, Daejeon,
South Korea) at 200 ◦C of chamber temperature. The chamber pressure was maintained below
5 × 10−2 torr. The cycle ratio of HfO2 to Al2O3 layer is 3:1, 3:2, and 3:3 for DUT (Device Under
Test)_A, DUT_B, and DUT_C, respectively. Subsequently, 3 cycles for HfO2 were deposited on the
superlattice, keeping the vacuum condition for equalizing the interface material (i.e., HfO2) to the top
electrode and bottom electrode. The deposition rate of HfO2 and Al2O3 is ~0.85 and ~1.1 Å/cycle,
respectively. Tetrakis(ethylmethylamino) Hafnium (TEMAHf) and Trimethylaluminum (TMA) were
used as precursors for depositing HfO2 and Al2O3 layer, respectively. The temperature of TEMAHf
was maintained at ~80 ◦C, and the temperature of TMA was maintained at ~10 ◦C. The total thickness
of the HAO layer is 6 nm. In this work, any post-annealing processes were not implemented. So, the
HAO layer does not show ferroelectricity because it was not crystallized to orthorhombic phase which
shows ferroelectricity due to the lack of annealing temperature (note that ferroelectric HAO layer is
usually crystallized at 700–900 ◦C) [29,30]. Lastly, 80-nm-thick Ag top electrodes were deposited by
means of a thermal evaporator (Korea Vacuum KVETE-T4560, Korea Vacuum Limited, Daegu, Korea)
and patterned using shadow mask. The active areas of the fabricated devices are 3.14 × 10−4 cm2. The
structure and fabrication process are described in Figure 1. The electrical characteristics of the devices
were measured using a Keithley 4200A-SCS (Keithley, Cleveland, OH, USA) semiconductor parameter
analyzer at 300 K.
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Figure 1. (a) Structure of HfO2/Al2O3 superlattice (HAO)-based TS devices: DUT (Device Under
Test)_A (left), DUT_B (middle), and DUT_C (right). (b) Fabrication process of HAO-based TS devices
on a transparent ITO/glass substrate.

3. Results and Discussion

Metal ion resistive switching devices can show both non-volatile (i.e., memory switching) and
volatile resistive switching (i.e., threshold switching) properties by means of the forming/rupture of
metal ion filaments. After the initial forming process, when the maximum current flowing through a
metal ion resistive switching device is higher than a critical value (Icritical), stable filaments consisting
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of active metal are formed in the oxide layer at the set voltage. Note that the set voltage indicates a
specific voltage forming metal ion filaments in a non-volatile resistive switching device. Afterwards,
the stable filaments start to be ruptured when the reset voltage is applied to the device. Note that the
reset voltage indicates a critical voltage, which dissolves metal ion filaments in a non-volatile resistive
switching device. The reset voltage usually has the opposite polarity to the set voltage. In this case,
the low resistance can be maintained even if a voltage is not applied to the device after the forming
process, and thus the device has non-volatile memory switching properties (i.e., conductive-bridge
random access memory). However, when the maximum current flowing through a metal ion resistive
switching device is limited below the critical value, unstable filaments consisting of active metal
are formed in the oxide layer at the threshold voltage. Contrary to the previous case (i.e., memory
switching), in this case, the unstable filaments start to be ruptured at the hold voltage which has the
same polarity as the threshold voltage. The reason for this phenomenon is that, as the maximum
current flowing through the device is restricted, the filaments become easy to transform to active metal
clusters (i.e., dissolution of the filaments). At the hold voltage (which has the same polarity as the
threshold voltage), the filaments are ruptured into the active metal clusters, so that the resistance of
the device is abruptly increased because the clusters do not make the top electrode (i.e., active metal)
to be connected with the bottom electrode (i.e., inert metal). The threshold voltage and hold voltage
indicate a critical voltage of triggering the resistive switching from a high resistance state to a low
resistance state, and from a low resistance state to a high resistance state in a volatile resistive switching
device (i.e., a TS device), respectively. Metal ion resistive switching devices, which show non-volatile
(i.e., memory switching) and volatile resistive switching (i.e., threshold switching) characteristics, are
illustrated in Figure 2 [31–33].

Micromachines 2020, 11, x 4 of 11 

 

reset voltage indicates a critical voltage, which dissolves metal ion filaments in a non-volatile resistive 
switching device. The reset voltage usually has the opposite polarity to the set voltage. In this case, 
the low resistance can be maintained even if a voltage is not applied to the device after the forming 
process, and thus the device has non-volatile memory switching properties (i.e., conductive-bridge 
random access memory). However, when the maximum current flowing through a metal ion resistive 
switching device is limited below the critical value, unstable filaments consisting of active metal are 
formed in the oxide layer at the threshold voltage. Contrary to the previous case (i.e., memory 
switching), in this case, the unstable filaments start to be ruptured at the hold voltage which has the 
same polarity as the threshold voltage. The reason for this phenomenon is that, as the maximum 
current flowing through the device is restricted, the filaments become easy to transform to active 
metal clusters (i.e., dissolution of the filaments). At the hold voltage (which has the same polarity as 
the threshold voltage), the filaments are ruptured into the active metal clusters, so that the resistance 
of the device is abruptly increased because the clusters do not make the top electrode (i.e., active 
metal) to be connected with the bottom electrode (i.e., inert metal). The threshold voltage and hold 
voltage indicate a critical voltage of triggering the resistive switching from a high resistance state to 
a low resistance state, and from a low resistance state to a high resistance state in a volatile resistive 
switching device (i.e., a TS device), respectively. Metal ion resistive switching devices, which show 
non-volatile (i.e., memory switching) and volatile resistive switching (i.e., threshold switching) 
characteristics, are illustrated in Figure 2 [31–33]. 

 

Figure 2. (a) Illustration of filaments in memory switching device. The stable filaments are formed in 
the dielectric layer with the compliance current higher than a critical current value. The filament is 
composed of top electrode material. (b) Illustration of filaments in threshold voltage switching device. 
The unstable filaments are formed in the dielectric layer with the compliance current smaller than a 
critical current value. Therefore, the unstable filament can be dissolved with a sufficiently small 
positive voltage (i.e., hold voltage). The filament is composed of top electrode material. 

In practical measurement, the maximum current can be modulated by setting the compliance 
current level. However, it is noteworthy that, in real electronic circuits, blocks for limiting the current 
flow through a device will take up an area. This area penalty must be solved for realizing future low 
power applications using metal ion TS devices. In this work, the compliance current is set to 10−6 A 
for realizing the threshold switching characteristics of the devices. Figure 3a shows the measured 
current vs. voltage characteristics of the fabricated HAO-based TS devices (i.e., DUT_A, DUT_B, and 

Figure 2. (a) Illustration of filaments in memory switching device. The stable filaments are formed in
the dielectric layer with the compliance current higher than a critical current value. The filament is
composed of top electrode material. (b) Illustration of filaments in threshold voltage switching device.
The unstable filaments are formed in the dielectric layer with the compliance current smaller than
a critical current value. Therefore, the unstable filament can be dissolved with a sufficiently small
positive voltage (i.e., hold voltage). The filament is composed of top electrode material.
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In practical measurement, the maximum current can be modulated by setting the compliance
current level. However, it is noteworthy that, in real electronic circuits, blocks for limiting the current
flow through a device will take up an area. This area penalty must be solved for realizing future low
power applications using metal ion TS devices. In this work, the compliance current is set to 10−6 A
for realizing the threshold switching characteristics of the devices. Figure 3a shows the measured
current vs. voltage characteristics of the fabricated HAO-based TS devices (i.e., DUT_A, DUT_B, and
DUT_C). The devices show abrupt volatile resistive switching characteristics (i.e., threshold switching).
Figure 3b plots the threshold voltage and hold voltage of three DUTs which have different HfO2:Al2O3

cycle ratios.
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DUT_C. The compliance current is set to 10−6 A for realizing threshold switching characteristics. (b)
The threshold voltage and hold voltage characteristics of the fabricated HAO-based TS devices. DUT_A,
DUT_B, and DUT_C have a HfO2:Al2O3 cycle ratio of 3:1, 3:2, and 3:3, respectively.

As the cycle for the Al2O3 layer is increased (i.e., from DUT_A to DUT_C, in order), the threshold
voltage is increased from 0.9 to 3.2 V. This is because the bandgap energy (~7 eV) of Al2O3 is higher
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than the energy (~5.7 eV) of HfO2, and thus, as described in previous works, this wider bandgap works
as the metal ion (i.e., Ag) injection barrier, as shown in Figure 4 [34]. Contrary to the case of threshold
voltage, the hold voltages of the three DUTs are almost identical to each other. The hold voltages of
DUT_A, DUT_B, and DUT_C are 0.2, 0.15, and 0.3 V, respectively. This indicates that the dissolution
of filaments is not affected by the bandgap energy of dielectric layer under the condition of 1 µA of
compliance current.
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Due to the larger bandgap energy (i.e., 7 eV) of Al2O3, the Al2O3 layer acts as diffusion barrier, and
thus it increases the threshold voltage and the off-resistance value. (b) The cross-sectional view of
HfO2/Al2O3 superlattice TS device. In this superlattice, the Al2O3 layers act as a diffusion barrier.
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Figure 5a,b illustrate the measured resistance vs. voltage of the DUTs from a high resistance state
to a low resistance state, and from a low resistance state to a high resistance state, respectively. The
resistance values of fully turned-on devices are not extracted, because the current level is fixed to the
compliance current of 10−6 A. The off-resistance values of the devices before forming filaments (i.e.,
from high resistance state to low resistance state) are increased from 2.6 × 109 to 1.3 × 1010 to 5.9 × 1010

Ω at 0.5 V as the HfO2:Al2O3 cycle ratio is manipulated from 3:1 to 3:3 (i.e., from DUT_A to DUT_B,
in order). On the other hand, the resistance values (i.e., 5 × 104 Ω) before being fully turned-on are
almost identical for all the three DUTs. Likewise, the off-resistance values after the rupture of filaments
(i.e., from low resistance state to high resistance state) are increased from 1.26 × 109 to 1.6 × 1010 Ω as
the cycle ratio is adjusted from 3:1 to 3:3 (i.e., from DUT_A to DUT_B, in order). The resistance values
before the rupture of filaments are almost identical to each other. These results are understood by the
low diffusivity of Ag ions in the Al2O3 layer [35,36]. The high barrier of the Al2O3 layer hampers
the diffusion of Ag ions in the dielectric layer, and hence the resistance is increased. However, in the
case of on-resistance, the stability of the formed filament is affected by the compliance current level,
regardless of the diffusivity of Ag ions. Therefore, the on-resistance values are almost the same for all
the three DUTs under the condition of 1 µA of compliance current.

In this work, it is observed that the insertion of an Al2O3 layer into a HfO2 layer can adjust the
threshold voltage as well as improve the off-resistance values. These results would help to balance the
set voltage of a non-volatile memory device and the threshold voltage of a TS device for configurating
a cross-point array. Besides, other applications using TS devices (e.g., phase-transition FET, etc.) could
benefit from these results. For instance, the minimum drain voltage to turn-on phase-transition FETs
is determined by the threshold voltage of TS devices. Therefore, this threshold voltage adjustment
method helps to tune the threshold voltage of phase-transition FETs. Furthermore, this method has no
adverse impacts on the transparency and the device thickness because it does not need an additional
diffusion barrier of metal ions, such as TiN liner, and the HfO2 and Al2O3 layers are transparent.
Therefore, this method is more appropriate for transparent applications than the method of adding a
diffusion barrier layer when the threshold voltage needs to be adjusted. However, there is still room for
more studies in future. First, the other impacts of tuning the threshold voltage should be investigated.
As the threshold voltage is increased by means of the insertion of an Al2O3 layer, a higher voltage
needs to be applied to the device for turning-on the device with the same film thickness. In other
words, a stronger electric field needs to be applied to the device with an inserted Al2O3 layer. This
means that the insertion of Al2O3 layer might adversely affect the reliability. Furthermore, the effects
on the volatility need to be studied. In this work, 1 µA of the compliance current is used for realizing
the threshold switching of the device. It is known that a HfO2-based TS device can show threshold
switching properties at ~100 µA of compliance current [21]. This compliance current for inducing the
threshold switching is decided by the difference between the energy of metal cluster and the energy of
metal filament. Hence, the insertion of the Al2O3 layer could affect the energy difference, changing
the maximum compliance current for causing the threshold switching. Finally, although transparent
dielectric layers (i.e., HfO2 and Al2O3 layers) and bottom electrode (i.e., ITO/glass substrate) are used
in this work, the devices are not fully transparent due to the top electrode (i.e., silver). It has been
demonstrated, however, that the silver electrode can be transparent as its thickness becomes sufficiently
thin (~10 nm), or if the electrode is composed of silver nanowire [37–39]. Moreover, it has recently been
proposed that TS devices with a nickel top electrode can show a sufficiently high on-current (~1 mA)
with threshold switching characteristics [21]. In addition, it has been demonstrated that nickel and
gold alloy can be transparent by means of a rapid thermal annealing process. Therefore, as future
works for fully transparent cross-point array, transparent TS devices with thin silver electrode, silver
nanowire electrode, or transparent electrodes (e.g., Ni/Au) need to be investigated [40–42].
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Figure 5. (a) The measured resistance vs. voltage of the HAO-based TS devices before being turned-on:
DUT_A, DUT_B, and DUT_C. (b) The measured resistance vs. voltage of the HAO-based TS devices
before being turned-off: DUT_A, DUT_B, and DUT_C. When the devices are fully turned-on, the
resistance values are not extracted because the on-current values are identical to the compliance current
of 10−6 A.
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4. Conclusions

In this study, to suppress the sneak current path in a transparent non-volatile memory device
cross-point array, the method of manipulating the threshold voltage of TS devices with HfO2/Al2O3

superlattice is explored. The ALD cycle ratio for the HfO2/Al2O3 superlattice is adjusted from 3:1 to
3:3 to modify the threshold voltage and off-resistance. As the cycle ratio is varied from 3:1 to 3:3, the
threshold voltage increases from 0.9 to 3.2 V, due to the wider bandgap of Al2O3 (~7 eV) than that of
HfO2 (~5.7 eV). On the other hand, there is no relationship between the cycle ratio and hold voltage.
The off-resistance value of the devices is increased from 2.6 × 109 to 6 × 1010 Ω when the cycle ratio is
modified from 3:1 to 3:3 because of the low diffusivity of Ag ions in the Al2O3 layer. However, the
on-resistance values are almost identical for the three DUTs, because the on-current is regulated by
the compliance current of 10−6 A. Lastly—but not least—various future works for materializing fully
transparent cross-point arrays with TS devices are proposed.
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