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Abstract

Magnetic resonance imaging (MRI) plays a critical role in the planning and monitoring of

hepatocellular carcinomas (HCC) treated with locoregional therapies, in order to assess dis-

ease progression or recurrence. Dynamic contrast-enhanced (DCE)-MRI sequences offer

temporal data on tumor enhancement characteristics which has strong prognostic value.

Yet, predicting follow-up DCE-MR images from which tumor enhancement and viability can

be measured, before treatment of HCC actually begins, remains an unsolved problem given

the complexity of spatial and temporal information. We propose an approach to predict

future DCE-MRI examinations following transarterial chemoembolization (TACE) by learn-

ing the spatio-temporal features related to HCC response from pre-TACE images. A novel

Spatial-Temporal Discriminant Graph Neural Network (STDGNN) based on graph convolu-

tional networks is presented. First, embeddings of viable, equivocal and non-viable HCCs

are separated within a joint low-dimensional latent space, which is created using a discrimi-

nant neural network representing tumor-specific features. Spatial tumoral features from

independent MRI volumes are then extracted with a structural branch, while dynamic fea-

tures are extracted from the multi-phase sequence with a separate temporal branch. The

model extracts spatio-temporal features by a joint minimization of the network branches. At

testing, a pre-TACE diagnostic DCE-MRI is embedded on the discriminant spatio-temporal

latent space, which is then translated to the follow-up domain space, thus allowing to predict

the post-TACE DCE-MRI describing HCC treatment response. A dataset of 366 HCC’s from

liver cancer patients was used to train and test the model using DCE-MRI examinations with

associated pathological outcomes, with the spatio-temporal framework yielding 93.5% clas-

sification accuracy in response identification, and generating follow-up images yielding

insignificant differences in perfusion parameters compared to ground-truth post-TACE

examinations.
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Introduction

Hepatocellular carcinoma (HCC) is the sixth most common cancer worldwide and fourth

most common cause of cancer-related mortality [1]. Several therapies have been developed for

treating patients with this frequent malignancy, including transarterial chemoembolization

(TACE) [2]. Initial or acquired resistance to systemic chemotherapy is the main determinant

of patient survival. In current first-line palliative chemotherapy trials, response rates remain

approximately 50% by standard radiologic criteria. The inability to accurately predict response

to TACE drives the current practice of treating large numbers of patients with HCC, knowing

only a fraction will benefit, while a significant fraction will endure treatment-related toxicities

without benefits. Hence, there is a need to develop clinical tools anticipating response of HCC

to TACE [2] before beginning treatment, with improved integration of temporal data.

Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) allows to survey the

dynamic behavior during tumor enhancement as shown in Fig 1, and was demonstrated in

previous studies to yield high accuracy in the prediction of tumor volume following neoadju-

vant chemotherapy [3], when confronted to other imaging modalities such as radiographic

imaging or ultrasound, which exhibits low contrast. Recent studies of DCE-MRI performed on

HCCs have shown the ability to evaluate treatment response based on perfusion analysis [4].

Diffusion-weighted imaging has played a key role in predicting response. Manelli et al. [5] and

Chung et al. [6] used serial diffusion-weighted MRI for TACE in HCC to improve prognosis,

while Prajapati et al. [7] presented clinically relevant measures and their value for HCC

prognosis.

In the past decade, machine learning has been used to train predictive patient response

models from extracted imaging features (e.g. radiomics) and anticipating the pathological

response [8, 9]. Approaches include neural networks [10], regression-based classification tech-

niques [11] or more recently, using a combination of radiomics and deep learning [12], which

have shown significant promise for computational medical imaging applications. A combina-

tion of imaging biomarkers was also shown to be predictive of pathological response to sys-

temic chemotherapy and for assessing treatment response for rectal carcinomas [13].

Quantitative imaging features extracted from pre-treatment CT showed promise to forecast

response in patients with colorectal metastases [14]. In the case of HCC, radiomics have been

Fig 1. Example of a dynamic contrast-enhanced (DCE) MRI sequence for assessment of HCC enhancement. The

first row presents the pre-TACE examination, while the second row presents the post-TACE examination. The white

arrow indicates the location of the HCC across the arterial phases before and after treatment.

https://doi.org/10.1371/journal.pone.0259692.g001
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used to anticipate outcomes to specific drug treatment regimens [15, 16]. Notably, Vosshen-

rich et al. [17] showed a prediction of colorectal metastases with an accuracy of 0.83 and 0.96

in HCC CT images. However, predictive techniques for chemotherapy response are often

based on simple linear regression, using hand-crafted features such as texture or volumetric

features, without exploiting discriminative features in the temporal domain to capture changes

in the hepatobiliary system. On the other hand, deep learning enables to learn low-dimen-

sional features in an unsupervised fashion which could be used for outcome prediction [18].

Peng et al. [19] and Liu et al. [20] similarly reached promising results using deep learning-

based approaches for HCC. Temporal features [21] and deep learning [22] were also used to

predict outcomes, but are sensitive to limited datasets without capturing links between lesion

types. More importantly, these techniques only provide a binary classification and do not pro-

duce follow-up images which can be used to extract quantifiable parameters from perfusion

analyses prior to TACE.

Image prediction and image synthesis has seen a surge in popularity with the advent adver-

sarial learning. In medical imaging, this helped to introduce the concept of domain translation

to learn intrinsic relationships before different pathology contexts [23]. However, these

approaches lack describing tumors in dynamic imaging data. Due to their ability to capture

relations between structural components and temporal data, graph convolutional networks

(GCNs) [24, 25] have been used in several applications in object identification and motion

modeling, including action recognition [26], image classification [27] and tracking in video

sequences [28]. GCNs were also used to describe relations between several image regions of

interest (ROI) [29], but these focused solely on static representations. Furthermore, these

methods do not account the inter or intra-subject morphological alterations in temporal

sequences. A GCN was introduced in [30] to model the contextual interactions linking the dif-

ferent features from disparate ROIs, exploiting connections in salient features and global align-

ment. Still, these steps are computationally intensive, prohibiting an end-to-end training of the

entire network, and leading to under-performing results.

Identifying responsive patients which may benefit from locoregional therapy approaches is

paramount to reduce local recurrence [31]. As shown above, there is still no reliable approach

that can produce accurate future image predictions of liver cancer response to treatment or

assessing the possibility of local recurrence. There is a clear need to produce robust forecasting

methods allowing to re-treat patients with increased drug concentrations or changing para-

digms. Previous methods are based on binary classification, with no capability to predict

futures images from which physiological parameters of the tumor can be measured before

treatment [22]. By capturing the relationships between tumoral modifications with TACE regi-

mens in a domain translation framework with GCNs, this would allow to build additional

knowledge on patient response to chemoembolization. It allows also to configure patient-spe-

cific drug delivery which are administered during a multi-week treatment. Instead of attempt-

ing several potentially ineffective strategies, a framework attempting to learn from a cohort of

previously treated liver cancer patients with HCC may elucidate which patients are more

adapted to TACE [2]. This aim of this work is to provide the capability in current TACE work-

flows to anticipate treatment response with predicted follow-up images, where doxorubicin-

based therapies may have insignificant impact on tumor viability. Furthermore, it may allow

to change therapeutic strategies and thereby increasing the chances of full tumor regression.

We introduce a predictive framework to generate follow-up TACE images before treatment

begins, forecasting tumoral changes based on a pre-TACE DCE-MRI and HCC annotations

delineated prior to therapy. The model, named Spatial-Temporal Discriminant Graph Neural

Network (STDGNN), is inspired by GCNs which have shown an ability to model relationships

between structural and temporal features in contrast-enhanced imaging. A GCN is proposed
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in this work to represent the intrinsic connections between image patches from time-series

DCE-MRI sequences, represented as nodes in a graph. Discriminant graphs connecting these

nodes are built to describe the temporal enhancement of the tumor, with the goal of offering

additional data to first classify pre-TACE DCE-MRI examinations into different tumor viabil-

ity classes (viable, equivocal, non-viable), which is used to drive the prediction process of post-

TACE images. The motivation for introducing structural and temporal graph is to capture

complementary features from both intra-phase tumor information and from individual phase

acquisitions included in the 4D sequence. These features are combined with a domain transla-

tion network using concepts in optimal transport to measure the cost of mapping between dif-

ferent HCC viability groups in DCE-MRI. While GCN modeling has been used in several

computer vision tasks, previous techniques have mostly focused solely on image-based graphs,

without incorporating the structural features within image subregions to the temporal compo-

nent [30].

Materials and methods

The spatio-temporal network is first trained from a collection of pre-treatment (input) and

post-treatment (output) DCE-MRI from HCCs of liver cancer patients treated with TACE. In

the first step, embedded features from viable, equivocal and non-viable tumor samples in HCC

are separated within a joint latent space, which is created using a discriminant graph neural

network. These graphs are then used as input to the second step, where structural, temporal

and global branches are implemented in the network, with the latter capturing the effort of

mapping between tumor viability groups using a domain translation component based on the

Wasserstein distance. In the final step, branches are fused together and fed to a decoder to pro-

duce the DCE-MRI output. For each test case, the pre-treatment DCE-MRI with HCC annota-

tions is embedded on the discriminant latent domain, where morphological tumor response is

inferred. The enhanced post-TACE with HCC viability response is generated, allowing to

extract perfusion parameters in the tumoral region. The different steps of the workflow are

shown in Fig 2.

Fig 2. Future post-TACE DCE-MRI prediction framework of HCC patients. At training, feature maps are extracted from the baseline (pre-TACE) DCE-MRI

sequences using a backbone ResNet, and projected in latent space, with data points partitioned within in a discriminant graph, with viable (V), equivocal (E) and

nonviable (NV) tumor classes. Latent space samples are processed with three separate branches: a temporal branch modeling the dynamic changes, a structural branch

capturing the morphological properties within single volumes, and global branch integrating an adversarial domain-translation loss, measuring the cost of mapping

between source (pre-TACEXS
) and target (post-TACEXT

) domains in latent space M, with the three branches combined to provide complementary features for

inference. At inference time, the pre-treatment DCE-MRI is processed through a BatchNorm (BN) layer and a decoder followed by a softmax layer, to generate as an

output, the follow-up sequence describing HCC response to TACE.

https://doi.org/10.1371/journal.pone.0259692.g002
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Imaging acquisition

This study was performed in line with the principles of the Declaration of Helsinki. Ethics

approval was granted by our Institutional Review Board (IRB) for human studies. Written

informed patient consent was obtained through our IRB approved protocol to use imaging

data and patient outcomes. Patients diagnosed by imaging with LI-RADS criteria demonstrat-

ing at least one tumor that is probably or definitely HCC and scheduled for TACE were cho-

sen. A 3.0 T MRI system (Achieva TX, Philips Healthcare, Best, The Netherlands) was used for

image acquisitions, with a 16-channel body array coil used for signal reception. After a gadobe-

nate dimeglumine dose injection (MultiHance, Gd-BOPTA, Bracco Imaging SpA, Milan,

Italy) administered based on body habitus (0.1 mmol/kg; maximum dose, 20 mL) and with a

1 mL/s injection, a 15 mL flush of saline was performed at 2 mL/s. After 10 s, the imaging

sequence which consisted of a 4D mDixon with a 10 degree flip angle used to acquire a series

of 10 breath-hold acquisitions at end-expiration, was performed 5 minutes following contrast

administration. Respiratory motion correction was applied using diffeomorphic registration

[32], to attenuate for tumor location variation. The field of view was 370×300mm2, and an in-

plane resolution of 1.90×1.90mm2, with a 2.5mm spacing between slices, covering the entire

liver.

Spatial-temporal discriminant graph neural network

Given a temporally enhanced sequence, we denote V = V1, V2, � � �, VT as a set of 3D DCE-MRI

volumes acquired during contrast agent injection, with T the number of sequences acquired

during free-breathing acquisitions. For each volume of the sequence, feature maps are

extracted using a backbone model, which are denoted as F = F1, F2, � � �, FT, with Fi 2 R
h�w�n

as

the feature map of i-th volume, where h, w, n indicates the height, width and number of slices,

respectively. The entire feature map Fi is partitioned into P number of 3D patches, which are

then treated with average pooling, yielding a normalized feature patch described as xi per

patch. Therefore, for a DCE-MRI sequence with T volumes, the total number of 3D patches is

N = T × P, with pi = 1, � � �, N as the series of extracted patches from the dynamic sequence and

associated with feature vectors xi.

A spatio-temporal discriminant embedding in d space is used to describe the relationship

between pre- and post-TACE enhancement, using DCE-MRI sequences. We define YS as pre-

TACE samples, and post-TACE samples denoted as YT . Both are described in high-dimen-

sional D space. We map a dataset of patients that are viable (V), non-viable (NV) or equivocal

(E) to TACE for HCC patients, which favors the distancing between sample instances using

graph structures with discriminative features (see following subsection). From a radiological

perspective, tumors responding to treatment are typically linked to enhancement of active

edema, however it is difficult to anticipate TACE regimens based on the pre-treatment images

only. Learned features from a model can help to determine the relationship with efficient drug

regimens and their associated outcomes.

Provided sample 3D patches of size 5 × 5 × 5 from an MRI acquired at time t before treat-

ment, YS
¼ fðyS

i ; li; tiÞg
N
i¼1

defined in RD
is embedded in M 2 Rd

, a discriminant joint mani-

fold, with li describing tumor viability (V / NV / E), and ti indicating the acquisition time

during the DCE-MRI acquisition. With the assumption that a deep neural network can be

trained on observed data lying within an underlying high-dimensional manifold, we denote

XS
¼ fðxS

i ; li; tiÞg
N
i¼1

existing within Rd
and XT

as the target post-TACE domain. We hypothe-

size the existence of locally linear maps Mi 2 R
D�d, where local regions can be described by

tangent planes yS
j � yS

i and xS
j � xS

i , describing within linked neighbours the deviation between
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pairs of points i, j. Hence, the correspondence is determined as yS
j � yS

i � MiðxS
j � xS

i Þ, and by

assuming a global non-linearity of the underlying Riemannian manifold, a locally defined

Euclidean structure can be employed.

We construct from M an undirected discriminant graph G ¼ ðV;WÞ, preserving the prop-

erties of local neighbourhoods in the low-dimensional embedding based on the graph charac-

teristics captured inRd
. The collection of nodes V (features points arising from CNN

backbone and average pooling) in the graph are connected by network edges with weights W
(described in following subsection). These weights are divided into feature vectors Ww and

Wb, representing, respectively, samples points belonging to same class clustered together and

samples from different classes with similar features mapped further apart. Weights allow to

compose the embedding M. Hence, Ww and Wb partition samples in the discriminant embed-

ding. The Laplacian matrix L is determined by L = Diag −W, with Diagði; iÞ ¼
P

j6¼iW ij8i and

Diag the diagonal matrix.

The relationship between input image data and generated features from the backbone

model is represented with joint input-features tuples fyS
i ; x

S
i g. This allows a regularization on

the underlying latent embedding of the generated outputs from the backbone model network,

denoting the baseline DCE-MRI as yS
i . A softmax function J assigns a probabilistic distribution

of the input data xS. This represents the probability of belonging to either one of the response

classes (N/NV/E). Values are represented as negative log-probabilities. This allows enforcing

regularization of joint features to determine the associated weights, similar to a smoothing

method performed on latent points based on [33]. By using minimizing iteratively the differ-

ence between edge weights W and latent samples, it avoids an overfit of the latent space

dimensionality in M:

min
W; M

JðWÞ þ
Z

M
dimðMðyÞÞdy

s:t: fyS
i ; x

S
i g

N
i¼1
�M;

ð1Þ

with each low-dimensional point coordinate y 2M ¼ [L
l¼1

Ml, MðyÞ describing a sub-

domain associated to g, while jMj an instance of M volumes, combining each sub-domain L
in the entire manifold. The regularization term ensures that the mapped input-feature tuples

are mapped together within M, of intrinsic dimensionality determined by dim() in Eq (1).

Discriminant graph structure. The discriminant graph structure as proposed here

includes two separate sub-networks. These sub-networks provide similar features vectors on

how the sample points originating from different responsive classes are distanced apart from

each other within projected latent spaces. We now define the process during the training of

the manifold-regularized network of determining and assigning weights to the various edge

components of the graph. With every data point belonging to either one of a similarity graph

(Ww, Wb), samples linked to a particular response group (viable, equivocal or nonviable) share

graph edges included in their own structure G. Subsequently, only the latent point coordinates

belonging to a particular group are used to reconstruct each sample point, where coefficients

of each neighbour is calculated based on the geodesic distance within the Ww graph:

Wwi;j
¼

(
1 if yS

i 2 N wðyS
j Þ or y

S
j 2 N wðyS

i Þ

0; otherwise:
ð2Þ

where samples within a group and between groups is given by hypersphere N w defined in d
space, respectively, which radii are defined from the number significant weights. Similar sam-

ple points are based on weights Wb given their association to responsive or non-responsive to
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TACE such as:

Wbi;j
¼

(
1 if yS

i 2 N bðyS
j Þ or y

S
j 2 N bðyS

i Þ

0; otherwise
ð3Þ

where for each i sample, the closest points from other groups are included in the hypershpere

N b. The target is to accomplish a mapping M in Rd
, i.e. yS

i ! xS
i which is obtained during the

training of the manifold-regularized graph structure. This process modifies the sample data

within groups Ww by drawing their location closer to the center of the assigned groups within

the subspace, while distancing as much as possible the samples points with opposing treatment

response as defined with neighbourhoods Wb.

Temporal branch. As initially stated, patches of different volumes from dynamic

sequences can give complementary features which can alleviate several challenges such as

motion artefacts and contrast agent variations. Based on the work in [30], the temporal graph

structure is proposed to encapsulate relations between particular tumor patches and surround-

ing tissue within a the sequence of dynamically contrast enhanced volumes. Fig 3 shows the

DCE-MRI sequence with N patches extracted used to build the discriminative temporal graph

structure such that Gt ¼ ðV t;W tÞ with Vt = {x1, x2, � � �, xN}, and the graph weight matrices Ŵ t
b

and Ŵ t
w.

Using the discriminant weight matrices, the temporal branch of the model applies the tem-

poral graph structure using the weight graphs to represent the time relationships between the

different nodes extracted from the free breathing sequence. Here, K-layer graph convolutions

are used, with the k-th layer included in one of the K layers, and is implemented such as:

Xk ¼ Ŵ t
bX

k� 1Bk � Ŵ t
wX

k� 1Bk ð4Þ

with XðkÞ 2 RK�dk as the network features extracted in layer k from the patches (X(0) as the ini-

tial features generated by a baseline CNN), dk as the feature dimensionality and Bk 2 Rdk�dk

are the learned network parameters. A BatchNorm and a LeakyReLU is added after each layer

Fig 3. Schematic representation of the the temporal branch, where a series of patches are extracted from the input volumes and features

partitioned to generate a total of T × P patches for a particular input sequence. Graph nodes are constructed from temporal feature patches,

providing a representation of the entire sequence such as Gt ¼ ðV t;WtÞ, which are processed with a discriminant graph network, followed by a

max pool operation to obtain the feature vector.

https://doi.org/10.1371/journal.pone.0259692.g003
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in order to improve stabilization in training. Finally, to improve the effectiveness in the train-

ing, residual shortcuts are also added such as:

Xk ¼ Xk þ Xk� 1; 2 � k � K: ð5Þ

Following a max pooling operation, the output of the temporal branch for each sequence after

the convolutional graph is denoted as XðKÞ 2 RKt�dk
. We therefore generate the temporal vector

ft 2 R
1�dk , which dimensionality is set to 512 based on the temporal resolution of the

DCE-MRI examinations.

Structural branch. An important difficulty in tumoral characterization and contrast-

enhanced dynamic imaging lies in accurately differentiating similar enhancement patterns

between patients, with most previous methods using low-level features to capture tumor

appearance. On the other hand, for tumor characterization from temporal DCE-MRI volumes,

tissue information of the same patients will be accurate and complete since each sequence is

composed of several frames covering an increased amount of data samples. Additional dis-

criminative features can be provided from structural tumor information which can improve

HCC characterization for outcome measures. Fig 4 presents the structural module, which dif-

fers from the temporal branch of the GCN.

While in the temporal branch, sequential images are used to extract tumor patches in order

to build a temporal graph which encapsulates correlated features from patches throughout the

time sequence, the structural branch focuses on spatial relationships between different tumor

regions within individual volumes. With each volume linked to a GCN, features are then com-

bined together to obtain an intrinsic structural feature from the DCE-MRI sequence. Hence,

provided a series of T volumes, the graph structure of the i-th volume is given by Gs
i ¼

ðV s
i ;W

s
iÞ with V s

i ¼ fyi;1; yi;2; � � � ; yi;Pg, and each volume divided into P feature nodes, with i as

the i-th volume.

Similarly to the temporal graph branch, the associated discriminative weight matrices Ŵ s
b

and Ŵ s
w are associated to each Gs

i . Hence, an M-layer convolutional graph is constructed for

Fig 4. Schematic representation of the structural branch, where spatial relations between extracted patches from

the single enhanced volumes are exploited in order to represent the morphological features from the DCE-MRI

sequence. Graph nodes stemming from single volume feature patches are combined together in the discriminant

graph network to form the feature vector of the structural data.

https://doi.org/10.1371/journal.pone.0259692.g004

PLOS ONE Prediction of post TACE MRI of HCCs using spatio-temporal graph convolutional networks

PLOS ONE | https://doi.org/10.1371/journal.pone.0259692 December 7, 2021 8 / 22

https://doi.org/10.1371/journal.pone.0259692.g004
https://doi.org/10.1371/journal.pone.0259692


each volume, and for each layer m (1�m�M), the extracted features are obtained as:

Xm
i ¼ Ŵ s

bX
m� 1

i Bm
i � Ŵ s

wX
m� 1

i Bm
i : ð6Þ

Here, Bm
i 2 R

dm�dm as the learned network parameters, and dm is the feature dimensionality,

which are reduced for every individual graph structure, yielding an output of feature vector

Xm
i 2 R

P�256. This is followed by a max pooling layer to reduce feature dimensionality to 256.

Spatial features are then grouped together, given the overall final feature fs.
Domain translation branch with optimal transport. Provided the data samples yS

i in

latent space, the third branch addresses the global tumor appearance as an unsupervised

domain translation of HCC viability groups, based on tumor assessment on post-treatment

images. It achieves domain translation of feature points in the latent domain, projecting

trained feature vectors representing the overall tumor appearance to target tumor volumes at

follow-up xT
i using multi-domain adaptation based on the treatment response class. The

model translates the baseline volumes to post-TACE tumor appearance domain based on a co-

training approach which was previously proposed for organ segmentation [34]. We propose a

method based on the discriminant graphs to yield with high confidence joint output features

using overlapping salient characteristics from input and target domains, namely the pre-treat-

ment DCE-MRI. A generator G performing the extraction of features from DCE-MRI volumes

is included in this third branch. Features are extracted based on the discriminant graph

embedding as previously shown, which gives distinct higher-order forecasting features origi-

nating from the class predictions. Conversely, the deviation in output predictions is used to

provide a weighting on the adversarial loss from the entire set of features, while allowing to

generate prediction coherent with the overall tumor class. Lastly, Δ represents the discrimina-

tor used at the network’s backend which reduces the difference in actual and predicted

tumoral appearance. From the baseline domain YS, temporal forecasting of the tumor

response allows to create tumor volume and adversarial losses, using the features obtained

from Δ. Resulting forecasted tumor evolution are given to Δ once in the target space, creating

directly the adversarial projection in XT
. The network implementation is presented in the fol-

lowing section.

A three-term loss function is used to achieve domain translation, integrating a tumor over-

lapping term for the longitudinal prediction, an adversarial term which imposes a global out-

put appearance consistent with the mappings of Δ and G, and a term to measure differences in

graph weights. The tumor overlap term seeks to train G, capturing the information from the

discriminant latent space knowledge which maps the baseline tumor annotationYS to the fore-

cast volume in YT , and seeks to maximize the overlap in tumor estimation based on a multi-

class cross-entropy term, using a supervised approach: E tumorðGÞ ¼
PD

i¼1
� MixT

i log pi;l, using

every D samples, with pi,l as the probability distribution that i is linked to a class l (V, NV, E),

and MixT
i represents the baseline probability of the sample point i.

We incorporate in the unsupervised domain translation loss an adversarial term based on

optimal transport, where G is trained with dense deformations which are confronted to the

deformations estimate by Δ, which enables to distinguish between data samples in both

domains. This objective is achieved through an adversarial loss, measuring the cost of mapping

features between latent spaces:

EadvðG;DÞ ¼ � E½logðDðGðYS
ÞÞÞ� � E½logð1 � DðGðYT

ÞÞÞ� ð7Þ

and E presenting the distribution’s statistical expectation. We extent this loss to include an

optimal transport measure based on a sliced Wasserstein distance implementation [35], by
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measuring the cost of image transformation of mapping samples between the different viability

group domains, and vice-versa, such that:

Eadv ðG;DÞ ¼ � E½logðDðGðYSÞÞÞ�

� E½�cðpi;V ; pi;NV ; pi;EÞ þ xÞ logð1 � DðGðY
T
ÞÞ�

ð8Þ

using the optimal transport map c which involves estimating the effort of mapping samples

between viable pi,V, equivocal pi,E and non-viable pi,V distributions, with ξ the self-stabilizing

term and ϕ as the weighting term. Lastly, we impose that weights stemming from distinct via-

bility groups are indeed divergent within the latent space using the cosine distance which is

minimized. The discrepancy in weights is represented as the following:

EweightðGÞ ¼ ð~W b �
~WwÞ=ðk

~W bkk
~WwkÞ ð9Þ

using (~W b,
~Ww) which is obtained by the combination of the weights of the graph G. We inte-

grate the previous three loss terms within the overall function of the mapping:

Eglobal
tripletðG;DÞ ¼ E tumorðGÞ þ lwEweightðGÞ þ laEadvðG;DÞ ð10Þ

using λw and λa to weight the importance of the different losses (details in Network Implemen-

tation). The proposed loss function Eglobal
triplet adopts a co-training strategy, focusing on learning

semantic features which are invariant to the domain, in contrast to learning specific elements

associated to the domain nature, for example as morphological variations. This allows to

improve the training process of the adversarial model by translating category-based features,

and consequently improves the network’s capability to adapt to various tumor response

profiles.

Overall loss functions

The proposed network includes a temporal, structural and global branch, with the later captur-

ing the overall changes in tumor appearance and acting as a regularization term using a

domain translation cost based on an optimal transport measure. The temporal branch captures

the links between serial patches extracted from the tumor to learn dynamic information, while

the structural branch encapsulates variations in tumor regions across patients.

The triplet loss function with a hard constraint on the batches is denoted as E triplet, with a

softmax cross-entropy term Esoftmax used to help in the training of the network. Hence, the vari-

ous triplet components are combined together for the loss function:

Eoverall ¼ Eglobal
triplet þ E t

triplet þ Es
triplet þ Esoftmax ð11Þ

with Esoftmax ¼ ½f global; f t; f s� the softmax function combining the different features from the

temporal and structural branches, and [] performing a concatenation of the features.

Network implementation

The framework is based on a ResNet50 [36] backbone, with 3 convolutional layers (CL) of

5 × 5 kernels, 2 max pooling layers, a fully connected layer and a softmax layer at the end, with

a stride of 1. The ResNet backbone was pretrained with ImageNet, with a random sampling

strategy used to extract frames from the temporal dynamic sequences. A random sampling

approach was used with T = 4 from every sequence, using a data augmentation strategy based

on non-linear warping. For the graph convolution networks, the number of layers of the tem-

poral module was set at 3, and at 2 for the structural branch. These were determined based on
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experiments which progressively increased the graph layers, yielding a compromise between

network depth and capturing sufficient features. For the domain adaptation branch with the

Wasserstein distance, the backbone of the generator was a ResNet101. The discriminator Δ
was configured based on a Cycle GAN architecture [37], which includes a series of 5 CL of

4 × 4 kernels. The channel size was set at {64, 128, 256, 512}, with ReLU functions linked with

2 strides. The final decoder includes 4 CL followed by a softmax layer. Hyperparameters were

determined using an Adam optimizer, with 5e−5 as the learning rate for the first 600 epochs,

decayed by 10 at each following 50 epochs, using a momentum = 0.09 and weight

decay = 0.00050. The parameters for the domain adaptation module’s adversarial loss function

was as follows: {λw = 0.2, λa = 0.5, ϕ = 30, ξ = 0.35}. A total of 4 NVIDIA Titan X GPU K80

dual-GPU graphics cards were used to train and test the models.

Statistical analysis

Statistical analyses were performed by a biostatistician (23 years of experience) (Software

Stata/IC version 14.2). Wilcoxon tests were performed for paired sample analysis. Here, p
values< 0.05 were considered significant for this study.

Results

HCC transarterial chemoembolization dataset

A total of 252 HCCs from 175 patients (age 63±7) were used for training, with HCC sizes rang-

ing between 10 and 104 mm. HCCs were categorized in viable (n = 91), equivocal (n = 85) and

non-viable (n = 76) classes based on post-TACE assessment. The flowchart of patient selection

is shown in Fig 5. Individuals diagnosed with HCC and awaiting TACE treatment between

June 2016 and June 2020 were eligible for this study (n = 175). Image acquisitions were

obtained through a prospective IRB-approved study from our tertiary referral between 2016

and 2018. Treatment response was assessed on the 6-8 week follow-up examination according

to the LI-RADS treatment response algorithm, with absence of recurrence or appearance of

new lesions in follow-up CT or MRI acquisitions. Patients underwent a diagnostic MRI 14

days before TACE, as well as a follow-up MRI 6-8 weeks following the procedure. Patients

undergoing TACE treatment with doxorubicin for tumors on the baseline MRI were selected

in this study. Inclusion criteria was a minimal HCC size of 10mm as measured on the pre- and

post-treatment DCE-MRI acquisitions (registered for training using diffeomorphic registra-

tion [32]), annotated by an experienced radiologist (12 years).

The training of the networks was performed with original 512 x 512 resolution, with inter-

slice spacing between 2 and 4 mm. The testing dataset included 65 separate patients totalling

114 HCCs (age 62 ± 7), using DCE-MRI images acquired before therapy and 6 weeks following

TACE (also treated with doxorubicin). A total of 40 non-viable, 39 equivocal and 35 viable

were assessed at post-TACE.

An assessment of the deformable registration method [32] used to compensate for respira-

tory motion during free-breathing acquisitions was first performed, as these were used for

training purposes. The process involved the alignment of the pre- and post-TACE images for

training, and evaluation was performed based on 10 expert annotations/volume on the early

arterial enhancement phase images. Fig 6 presents sample registration results between the pre-

and post-TACE images. The average target registration errors after the alignment was

1.1 ± 0.4mm.
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Predicting TACE response

A five-fold cross-validation study was performed to assess the ability of the framework to pre-

emptively identify patients responding to TACE, as this drives the future image generation

process. The dataset was divided into five folds: training performed on four folds and testing

on the remaining fold. This was repeated for each fold of the dataset. The separation of pre-

dicted viable, equivocal and non-viable tumors was performed based on the input baseline

DCE-MRI, with temporal acquisitions at 10s, 60s, 100s, 145s, and 320s, using also the seg-

mented HCC on the baseline exam. Findings were confirmed by fellowship-trained radiolo-

gists with expertise in liver imaging. The method was compared to two other outcome

prediction methods chemotherapy procedures such as TACE. The comparative methods

included one based on residual CNNs for HCC prediction (ResCNN) [19] and another based

on radiomics deep learning model (RadiomicsDL) [20]. These methods were implemented to

produce a 3-class classification model by adapting the output with a softmax function. The

quantitative comparison with prediction results is presented in Fig 7, showing the confusion

matrices. As shown in Fig 7, the STDGNN leads to an average accuracy of 93.2% from the

cross-validation study, which is a statistically significant improvement to the other two meth-

ods (80.4% for ResCNN and 82.9% for RadiomicsDL) based on a paired Wilcoxon test. The

comparison confronted each method to the proposed STDGNN using the HCC

segmentations.

Fig 5. Flowchart of patient selection.

https://doi.org/10.1371/journal.pone.0259692.g005
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Follow-up DCE-MRI evaluation

We evaluated the generation of the follow-up sequences using annotated HCCs from pre-

treatment DCE-MRI scans as inputs, and where the predicted follow-up images were com-

pared to the sequences acquired 6-8 weeks after to assess treatment response based on the

radiological readings. Tumor masks were also generated on the follow-up sequence through

the framework’s decoder. We performed an ablation study, testing the different branch com-

ponents of the STDGNN, shown in Table 1. For the predicted post-treatment HCC lesion, we

evaluated the Dice coefficient and the mean squared error of the HCC surface. For the out-

come, we evaluated the overall accuracy and area under the ROC curve, where the reference

was the LI-RADS classification at follow-up. Results show a statistically significant improve-

ment (p< 0.05) of the structural and temporal branches compared to the baseline, as well as

the use of GCN compared to FCN.

Finally, we compared the predictive performance with 4 recent future image prediction

methods, namely GenSeg [23], ST-ResNet [38], ST-Manifold [39] and contrastive unpaired

translation (CUT [40]). The choice of these methods was made based on their ability to gener-

ate future temporal images. Table 2 compares the results in Dice and the Hausdorff distance of

the HCC segmentations at post-TACE, as well as MSE in voxel intensities of the predicted

Fig 6. Illustration of deformable registration results on 4 DCE-MRI cases (columns), achieving the non-rigid alignment of pre-TACE to post-TACE DCE-MRI

examinations used for training purposes. The last row illustrates the deformation vector fields (DVF) obtained on the coronal slices.

https://doi.org/10.1371/journal.pone.0259692.g006

PLOS ONE Prediction of post TACE MRI of HCCs using spatio-temporal graph convolutional networks

PLOS ONE | https://doi.org/10.1371/journal.pone.0259692 December 7, 2021 13 / 22

https://doi.org/10.1371/journal.pone.0259692.g006
https://doi.org/10.1371/journal.pone.0259692


images, while Fig 8 presents the box-plot diagrams of the Dice scores, stratified between viable,

equivocal and non-viable lesions assessed at post-TACE. The proposed STDGNN framework

yields higher Dice score in HCC tumor enhancement at follow-up (statistically significant

p< 0.05), as compared to similar predictive frameworks. Results of the post-TACE predictions

are shown in Fig 9.

HCC perfusion analysis

The HCC characteristics from the predicted post-TACE images were evaluated with a previous

dual-input single-compartment perfusion model [4]. The model allows to assess with high

accuracy the portal venous input function (PIF), as well as the arterial input function (AIF),

Fig 7. Confusion matrices of tumor viability classification (V: Viable, E: Equivocal, NV: Non-viable) of HCC following TACE based on the LI-RADS score.

Inputs to each model were the annotated pre-treatment DCE-MRI acquisitions. (a) ResCNN [19]; (b) RadiomicsDL [20]; (c) Proposed STDGNN method.

https://doi.org/10.1371/journal.pone.0259692.g007
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which were obtained by measuring flows in ROI identified by a radiologist in the portal veins

and celiac trunk. The non-parametric analysis included measures such as the time for the con-

trast agent to reach its peak value (TTP), the time of arrival for the contrast agent into the tis-

sue (T0), the intensity difference (difference between baseline and maximum intensity) ΔS, the

normalized intensity time ratio, between TTP and peak enhancement (nMITR), the peak

enhancement ratio (PER), and finally wash-out and wash-in slopes, which are calculated

between the maximum and original signals. The parametric analysis included distribution vol-

ume (DV), estimating the blood flow ratio between arterial / portal plasma and the central

vein, the arterial fraction (ART), as well as transfer constant from the liver tissue to the central

vein (K2), the transfer constant from the arterial plasma to the surrounding extravascular

space (Ka) and the transfer constant from the portal venous plasma to the surrounding tissue

(Kp) [41].

Fig 10 shows the enhancement variation in several regions (parenchyma, portal vein, aorta,

HCC). Images were reconstructed using a motion compensation of the 4 liver motion states

(from end inspiration to end expiration), which were aligned to the same reference space [32].

This allows to capture early enhancement of the HCC within the reference expiration motion

state. Table 3 presents the different perfusion parameters obtained from the predicted follow-

up HCC images, in comparison to the parameters extracted from the original DCE-MRI

sequence. Results show that all non-parametric measures, including the nMITR, PER, TTP

and wash-in / wash-out slopes yield no statistically significant difference to the ground-truth

Table 1. Ablation experiments, comparing the addition of the structural and temporal branches to the proposed

STDGNN. A comparison is also made between the fully convolutional network (FCN) and the graph convolutional

network (GCN). DSC: Dice similarity in %, MSE: Mean squared error (mm), Acc: classification accuracy in %, AUC:

area under curve (AUC). Analysis of differences was performed by paired Wilcoxon tests (p< 0.05). Bold values indi-

cate significant difference to baseline.

HCC segmentation Outcome

DSC MSE Acc. AUC

Baseline (global branch) 72.5±8.8 5.7±3.2 74.5±6.6 78.0±6.9

Global + temporal branch (FCN) 74.1±7.5 3.9±2.4 77.8±6.7 81.2±6.8

Global + temporal branch (GCN) 77.9±6.9 3.1±2.1 81.5±5.9 84.9±5.9

Global + structural branch (FCN) 75.6±7.3 3.5±2.6 80.2±7.3 82.6±6.0

Global + structural branch (GCN) 77.6±7.0 2.9±2.2 82.4±6.9 84.3±5.5

Global + struct. (FCN) + temp. (FCN) 79.4±6.5 2.7±1.9 83.1±6.0 85.2±5.7

Global + struct. (FCN) + temp. (GCN) 82.6±6.1 1.6±1.1 86.7±5.9 87.4±5.0

Global + struct. (GCN) + temp. (FCN) 81.8±6.6 1.8±1.4 85.7±6.5 86.8±4.8

Global + struct. (GCN) + temp. (GCN) 85.9±5.7 1.4±0.7 89.4±5.7 90.3±4.2

https://doi.org/10.1371/journal.pone.0259692.t001

Table 2. Comparison with predictive methods. DSC: Dice score coefficient of HCC segmentation, HD: Hausdorff distance (mm) of HCC segmentation, MSE: Mean

squared error in voxel intensities of the predicted images. Analysis of differences was performed by paired Wilcoxon tests (p< 0.05). Bold values indicate significant

difference.

Non-viable Equivocal / viable

DSC HD MSE DSC HD MSE

GenSeg [23] 66.2±8.3 9.2±4.3 0.11±0.05 68.5±8.4 9.1±4.9 0.09±0.03

ST-ResNet [38] 71.5±7.8 8.4±4.0 0.06±0.04 72.8±7.7 8.4±4.1 0.06±0.03

ST-Manifold [39] 72.4±7.3 8.2±3.7 0.05±0.02 73.4±7.1 8.3±3.7 0.06±0.03

CUT [40] 76.7±6.8 6.7±4.1 0.04±0.01 75.7±6.2 7.4±3.7 0.05±0.02

STDGNN 83.2±5.3 5.8±3.3 0.03±0.01 86.1±4.9 5.5±3.2 0.03±0.01

https://doi.org/10.1371/journal.pone.0259692.t002
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Fig 8. Box-plots of the HCC segmentations from the predicted post-TACE images based on tumor viability class, using the original post-

TACE examinations as the reference, and compared to 4 generation methods.

https://doi.org/10.1371/journal.pone.0259692.g008

Fig 9. Pre-TACE (used as input) and post-TACE images with HCC segmentations generated through the decoder for 4 different liver cancer patients. The first

row depicts the pre-TACE examination with HCC delineation used as the baseline input. The second row presents the ground-truth post-TACE examinations, while

the third row presents the predicted post-TACE images.

https://doi.org/10.1371/journal.pone.0259692.g009
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sequence. As for the parametric measures, only the transfer constant Kp representing the trans-

fer from the portal venous plasma to the parenchyma, showed a significant decrease

(p< 0.05). All other constants (Ka, K2), as well as DV and AR, showed no difference. This can

be explained variability in appearance of the liver parenchyma, which affects measures

extracted outside the delineated HCC.

Discussion

We presented a framework for the prediction of DCE-MRI images following TACE treatments

of HCCs from dynamic contrast-enhanced MR imaging, to generate prior to therapy, both

post-TACE DCE-MRI images and tumor region maps which can be used to assess viability.

Our approach is anchored on spatio-temporal features produced from a discriminant deep

neural network exploiting pre-TACE tumor viability stratification, combined with a global

adversarial branch to capture tumoral changes stemming from optimal transport distance

transforms. This leads to results similar to radiological interpretation based on LI-RADS

Fig 10. (a) Predicted tumor enhancement at sequential time points from the predicted post-TACE DCE-MRI images. Color maps

indicate the changes within HCC tissue area. (b) Sample perfusion curves extracted from different liver regions (aorta, liver, HCC,

portal vein), with the dashed lines indicating ground-truth post-TACE images.

https://doi.org/10.1371/journal.pone.0259692.g010
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treatment response assessment. The input feature pairs based on a manifold regularization

terms allows to establish the relationship between temporal enhancement and treatment

response to a locoregional therapy such as TACE.

A significant benefit to other clinically-based criterion or machine learning methods is the

ability to forecast post-TACE images with the integration of dynamic aspects of nodular arte-

rial phase hyperenhancement via contrast injection, as well as being efficient computationally.

The mean inference time for generating predictions was 3.2±0.4s, which incorporates the pre-

processing time to register the images to a common reference. Furthermore, the approach

yields similar perfusion analysis results to ground-truth images, from a dual-compartment

parametric model representing the hepatic function [4]. The method can also be tailored to

other chemotherapy procedures, where significant tumor appearance variation can be

observed, as well as to other modalities such as contrast enhanced CT and to liver metastases.

This study presented three sets of experiments to analyze distinct components of the predic-

tive framework. First, the ability of the discriminant network to segregate viable, nonviable

and equivocal tumors based on the baseline examination was assessed using the tumor charac-

teristics, as this step dictates dictate the construction of the discriminant graph network from

temporally enhanced tumor volumes. Secondly, experiments were performed to evaluate

future projections of tumor evolution, comparing HCC volume estimations from actual fol-

low-up examinations, and outperforming previous spatio-temporal models used for predic-

tion. Finally, evaluation in nonparametric and parametric perfusion analyses was performed

on the follow-up examination, which provide quantitative metrics such as mean transit time

and time to peak ratios. It should be noted the framework presented here allows to preemp-

tively identify HCC’s response, allowing to avoid unnecessary chemotherapy. Traditional

treatment response methods rely on expert-based annotations and empirical metrics, and do

not incorporate quantitative metrics capturing the dynamic nature of tumoral enhancement.

The proposed method produces future post-therapy images by extracting features associated

with tumor regression while integrating inter-patient variations, thereby circumventing time

consuming radiological readings.

The difficulties implicated in treating patients with HCC, which is one of the most common

types of cancer, are well established and properly identifying patients responding to TACE can

have a major impact on planning additional embolization sessions. More importantly,

Table 3. Parametric and non-parametric perfusion values extracted from the ground-truth (GT) and proposed predictive model (STDGNN). Analysis of differences

was performed by paired Wilcoxon tests (p< 0.05). Bold values indicate significant difference.

Non-viable Equivocal or viable

GT STHGNN p GT STHGNN p
Parametric analysis

Kp (10−3) (s−1) 11.7±8.2 11.0±7.9 0.03 5.1±5.5 4.7±5.1 0.02

Ka (10−3) (s−1) 5.6±7.6 5.3±7.0 0.60 6.9±10.2 7.0±9.8 0.43

K2 (10−3) (s−1) 8.9±15.0 8.6±14.1 0.41 8.1±9.1 8.3±8.9 0.35

DV (%) 45.1±41.5 49.9±38.6 0.37 48.6±34.5 48.2±33.9 0.76

ART 0.4±0.3 0.5±0.3 0.58 0.5±0.3 0.6±0.4 0.47

Non-parametric analysis

PER 0.8±0.9 0.8±1.0 0.61 1.0± 0.5 1.1± 0.4 0.59

TTP (s) 83.3±12.8 83.8±13.0 0.88 69.5± 18.9 70.1± 19.0 0.32

nMITR (10−2) (s−1) 1.3±1.1 1.2±1.3 0.74 1.5±0.7 1.7±0.9 0.49

Wash-in slope (10−3) (s−1) 19.9±13.4 20.3±13.4 0.65 25.7±19.1 25.4±19.5 0.58

Wash-out slope (10−3) (s−1) 13.7±25.2 14.1±25.8 0.52 16.4±19.6 16.8±20.0 0.66

https://doi.org/10.1371/journal.pone.0259692.t003
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predicting tumor enhancement or increase of lesion burden is imperative to change the course

of treatment. This aspect is portrayed in Fig 9, which shows an example of the forecasted HCC

with an increased lesion volume compared to the segmentation in the diagnostic DCE-MRI. A

prognosis framework which takes under consideration the various effects of locoregional treat-

ments may lead to an improved clinical workflow compared to standard empirical measures.

The discriminant embedding generated with the graph convolutional network (GCN) pro-

vides a mechanism to properly distinguish the variety of tumor response profiles, learning the

translation between outcomes and dynamic enhancement of tumoral appearance within an

adversarial domain. Even though this tool has yet to be used in the clinical setting, it provides

probabilistic measures for tumor viability which may be taken under consideration when

establishing a drug regimen.

Observed issues with the model was for the prediction of future post-TACE images and

outcomes in cases where lesion sizes where in lower range of tumor sizes. Indeed for cases

where the diameter of the HCC was below 15mm, the identification of tumor response yield-

ing in a 11% drop in performance, which affects the overall image prediction. This is caused by

the limited amount of feature patches that can be extracted from smaller volumes, as well as

the reduced spatial resolution which affects smaller lesions.

The study has however some limitations. The first relates to the size of the training dataset

used to create the generative model from patients treated with specific regimens of TACE. The

dataset does not include the wide range of possible drug regimens and compounds, which can

greatly affect the outcomes of patients, depending on tumor vascularity and viability. Even

though the clinical dataset tends to be homogenous, thus helping in the model convergence

from the DCE-MRI examinations pre- and post-therapy, using a more heterogenous set of

patient datasets treated with different drug combinations and variation of contrast timing can

help in the generalization of the model. The second issue lies in the quality of the maps used

for ground-truth, which are prone to user variability. It should be noted that even though

lesion maps and segmentations can be edited by radiologists, the framework is limited in

incorporating variants in regimen composition or treatment course, which could be applied to

each case. A final limitation lies in the model dependence on constrained timings in follow-up

examinations, which can be difficult to respect for each patient, varying within 1-2 months.

This makes predictions less reliable when the examinations are outside the recommended fol-

low-up visits.

The dynamic spatio-temporal framework generated reliable follow-up exams using HCC

delineated pre-treatment exams. Results are consistent with LI-RADS treatment response

assessments that requires the anatomical constrains imposed by manual planning. The tempo-

ral and structural branches incorporating discriminant graph networks allow to understand

the mechanisms behind patient response to locoregional treatments and why TACE regimens

response vary between different physiological profiles. The framework is adaptable for lesion

delineations of different sizes and margins, taking under consideration the enhancement pat-

tern of the examined tumor, by extracting the tumoral differences in the domain translation

branch. The method provides predictions that capture the temporal aspects of the examina-

tions rather than focusing solely on specific contrast timings based on static examinations, and

yields improved outcome predictions compared to recent deep learning techniques which

focus on learned feature characteristics to identify tumor viability. Even though these tech-

niques do not require manual interventions from a radiologist to select lesion features from

annotations for determining treatment response, they are primarily anchored on empirical

thresholds and approximate tumor delineation, thus discarding personalized modeling of

lesion enhancement.
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Future work will adapt the framework for liver metastases, as well as exploring native MRI

data extracted directly from the k-space to train the model. We plan to establish a prospective

study to assess the capability of using this predictive method during TACE planning, as well as

evaluate the capability of accurately predicting patient recurrence and response. Finally, we

plan to establish a multi-center study to incorporate data from several institutions to test the

performance with regards to DCE-MRI acquisition variability.
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