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tracking intra-fraction
pancreatic tumor motion by
ultrasound imaging during
radiation therapy
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Purpose: In this study, we aim to further evaluate the accuracy of ultrasound

tracking for intra-fraction pancreatic tumor motion during radiotherapy by a

phantom-based study.

Methods: Twelve patients with pancreatic cancer who were treated with

stereotactic body radiation therapy were enrolled in this study. The

displacement points of the respiratory cycle were acquired from 4DCT and

transferred to a motion platform to mimic realistic breathing movements in our

phantom study. An ultrasound abdominal phantom was placed and fixed in the

motion platform. The ground truth of phantom movement was recorded

by tracking an optical tracker attached to this phantom. One tumor inside

the phantom was the tracking target. In the evaluation of the results, the

monitoring results from the ultrasound system were compared with the

phantom motion results from the infrared camera. Differences between

infrared monitoring motion and ultrasound tracking motion were analyzed

by calculating the root-mean-square error.

Results: The 82.2% ultrasound tracking motion was within a 0.5 mm difference

value between ultrasound tracking displacement and infrared monitoring motion.

0.7% ultrasound tracking failed to track accurately (a difference value > 2.5 mm).

These differences between ultrasound tracking motion and infrared monitored

motion do not correlate with respiratory displacements, respiratory velocity, or

respiratory acceleration by linear regression analysis.
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Conclusions: The highly accurate monitoring results of this phantom study

prove that the ultrasound tracking system may be a potential method for real-

time monitoring targets, allowing more accurate delivery of radiation doses.
KEYWORDS

ultrasound image tracking, radiation therapy, respiratory motion, ultrasound
image, abdominal
Introduction

The median overall survival of patients with pancreatic

cancer is a poor 9 to 15 months (1–4). Only 20% of patients

are diagnosed as having resectable disease suitable for surgical

treatment (5, 6). The outcomes after chemoradiation for

unresectable pancreatic cancer are not ideal as common

irradiation doses used in the treatment are not lethal for

adenocarcinoma (5). Due to the strong radio resistance of

adenocarcinomas, dose escalation is necessary (7). Recently,

advanced radiation therapy (RT) techniques of further dose

intensification using stereotactic body radiation therapy

(SBRT) and intensity modulated radiation therapy (IMRT)

have been potential strategies to improve local control (8).

According to previous research, pancreatic tumor motion

was greatest in the superior and inferior (SI) direction (9–13).

Bussels et al. and Feng et al. observed a larger degree of

pancreatic tumor motion to be 24mm 16mm in the SI

direction by using dynamic magnetic resonance imaging

(MRI) in 12 patients (14, 15). Moreover, Lukas et al. reported

that the mean respiration amplitude between inhalation and

exhalation was 11 mm with a range of 5-23 mm in the SI

direction (5). They also observed the same mean tumor motion

with Goldstein et al. in the left and right (LR) and the anterior

and posterior (AP) directions (3 mm with a range of 3-7 mm in

the LR direction and 4 mm with a range of 3-8 mm in the AP

direction) (10). These significant displacements required the use

of an additional treatment margin to account for this intra-

fraction motion. Previous research demonstrates that the use of a

20-mm margin in the SI direction and a 5-mm margin in the LR

and AP directions accounts for respiratory motion without a

reference measurement (5). In the published American-French
tactic body radiation

py; SI, superior and

US, ultrasound; MRI,

t volume; BR/LAPC,

ancer; CT, computed

graphy; FOV, field of

radiosurgery.
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Consensus, it was recommended that the planning target volume

(PTV) margin was 15 to 20 mm in the LR and AP directions and

20 to 30 mm in the SI direction by taking into account

microscopic spreading, respiratory movements, and set-up

margins (16). It is known that the use of increase internal

target volume (ITV) was required to account for intra-fraction

motion, which is caused by involuntary motion during the

treatment process (e.g. Respiration). However, this larger

margin will result in delivering greater radiation doses to the

area around the tumor, thereby inherently causing toxicities to

normal tissues (17–31). In this case, it is not possible to apply

dose escalation without margin reduction (32–35).

However, the feasibility of dose escalation with reduced

margins necessitates stringent requirements for delivering

doses accurately during the treatment process (36). Therefore,

the ability to track the pancreatic tumor and identify its position

relative to the surrounding normal tissue has become crucial.

The adjustment of the treatment fields to target the pancreatic

tumor may be implemented and then followed by identifying the

location of the pancreatic tumor.

For overcoming this problem, several solutions were

proposed and tested in the past. On one hand, a possible

solution is to control the beam delivery to follow tumor target

movements. D’Souza et al. designed a miniature adaptive robotic

couch model built by using two movable platforms (37). This

robotic couch is able to move in real-time along with target

movements for sparing the unnecessary radiation dose received

by surrounding OARs (37). On the other hand, combining

varied image modalities with gating techniques, such as MRI

(38) and X-ray (39), is another alternative solution for tracking

tumor targets during radiation therapy, thereby improving the

possibility of implementing dose escalation and reducing the

collateral damages.

Ultrasound (US) imaging is a potential method for tracking

tumor targets during radiation therapy (40). The obvious

advantages of US images are that they are non-ionizing and

non-invasive and that they offer non-extra irradiation doses at a

low cost (40, 41). Furthermore, US images provide distinct soft-

tissue delineation. According to Shinohara and Roach III’s

research (42), the US did not rely on the implementation of

fiducial markers, which is an invasive process coupled with
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associated risks. The feasibility of using ultrasound to monitor

tumors and guide radiation therapy has previously been studied.

Bouchet et al. study (43) demonstrated that ultrasound image

reliably transforms image coordinates into treatment

coordinates, thereby eliminating the need for probe

orientation. Hsu et al (44) found that the motion tracking the

performance of a linear array ultrasound probe did not suffer

from ultrasound image noise caused by the radiotherapy

linear accelerator.

In our previous research, we proposed an arm-bridge system

for monitoring intra-fraction real-time movement during

pancreas SBRT (45–48). In addition, we introduced and

validated an image guidance workflow with a volunteer study.

In this study, we aim to further evaluate the accuracy of

ultrasound tracking for intra-fraction abdominal targets

motion during RT by a phantom-based study.
Methods and materials

Input motion data acquisition

Twelve patients with borderline resectable or locally

advanced pancreatic cancer (BR/LAPC) who were treated with

SBRT at our institution were enrolled in this study approved by

the institutional review board. All respiratory cycle data were

acquired with a Philips Big Bore 16 slice CT simulator (120 kVp,

1000 mAs/slice, collimation 16 * 1.5 mm, pitch 0.059, rotation

time 0.44 s, FOV 600mm, ultrafast recon kernel, 3 mm slice

thickness, 3 mm increment, and standard filter) using

retrospective helical 4DCT reconstruction software. These

displacement points of the respiratory cycle, including
Frontiers in Oncology 03
amplitude and frequency, were input displacement data

transferred to a motion platform (Qusar, Modus QA) to

mimic realistic breathing movements in our phantom study.
Ultrasound system and set-up

Our proposed arm-bridge system was illustrated in our

previous paper (45); as a result, we only briefly describe it here.

As Figure 1 showed, an ABDFAN ultrasound phantom

(Kyoto Kagaku Co, Japan) implanted with a tantalum fiducials

marker was placed in the motion platform. This phantom was

fixed to the motion platform. The ground truth of phantom

movement was recorded by tracking an optical tracker attached

to this phantom. One tumor inside the phantom was considered

to be the tracking target. In the evaluation of the results, the

monitoring results from the US system were compared with the

phantom motion results from the infrared camera (Polaris,

NDI). The reason why this phantom surface tracking by

infrared camera works in this study is because the ABDFAN

ultrasound phantom is a rigid phantom, which is no difference

between internal targets movements and phantom

surface movements.

The bridge was attached to the top of the couch in a

customized bottom rail. The probe we used for this arm-

bridge system is a modified mechanically sweeping 4D convex

probe (3-7 MHz), which was used for monitoring abdominal

targets motion in Clarity Auto-scan (Elekta, Sweden). The probe

case was equipped with a spider-like infrared marker and a

shorter passive arm. The spider-like marker was monitored by

the infrared camera mounted in the room. If the probe position

and orientation changed, the ceiling camera was able to detect
FIGURE 1

(A) The set-up of the ultrasound system. (B) An example of tracking the ultrasound image. The red contour was the tracking target in the
phantom. (C) An example of the original ultrasound image. The green contour was the tracking target contoured manually.
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these changes in real-time by tracking the probe marker. The

Clarity ultrasound acquisition system was connected to

this probe.

In this study, the motion platform was required to move in

SI directions to simulate the breathing movements of the

pancreatic tumor during radiation therapy. Therefore, the

lateral direction of the ultrasound probe was aligned with this

SI direction. In the simulation process, the motion platform

started with one position (the original position) and moved to

different positions according to the input displacement data of

previous patients. In every respiratory cycle, the motion

platform went through the original position twice (one in the

expiration process and the other one in the inspiration process).

The tracking target was contoured manually on a reference-

coronal ultrasound image of the phantom obtained when the

motion platform was placed at the origin position at the

beginning of every simulation (Figure 1C reference-coronal).

During the tracking process, the real-time ultrasound images

were obtained. The tracking targets (red contours in Figure 1B)

were automatically generated from the intensity-based image-to-

image registration method which is able to search for the optimal

fit of region of the interest between the real-time images with the

reference-coronal images. A detailed explanation of this

registration method can be found in Lachaine et al.
Data analysis

Differences between infrared monitoring motion and US

tracking motion were analyzed by calculating the root-mean-

square error (RMSE) (Equation 1 shown as follows). Velocity
Frontiers in Oncology 04
(Equation 2) and acceleration (Equation 3) were calculated for

evaluating the reliability and stability of our proposed US

tracking method. Linear regression analysis was also used to

determine if US tracking motion was in good agreement with

infrared monitoring motion. According to previous research, a

difference within 2.5 mm is considered a criterion of clinical

acceptance (49).

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
on

t=1(yinput − yUS)
2

n

s
(1)

Vi =  
Displacement   pointi+1 −  Displacement   pointi

Time   pointi+1 −  Time   pointi
(mm=s) (2)

Where Displacement pointi represented the displacement

(mm) tracked by the infrared camera in ith time point, Time

pointi is the tracking time point (s) of ith sample.

ai =  
Vi+1 −  Vi

Time   pointi+1 −  Time   pointi
(mm=s): (3)

Where Vi is the velocity (mm/s) of ith time point, Time

pointi is the tracking time point (s) of ith sample.
Results

The US tracking motion was plotted against infrared

monitoring motion as shown in Figure 2. Linear regression

analysis resulted in large r values (very close to 1) for all 12

patients. US tracking motion compared well with infrared
FIGURE 2

Comparison of infrared monitoring motion and ultrasound tracking motion.
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monitoring motion in most patients. However, patient 4 had a

relatively larger RMSE value (RMSE = 1.121). More details about

patient 4 will be discussed in the following section.

Figure 3 provides the distribution of the difference in values

for 12 patients. It was found that 82.2% of US tracking motion

was within a 0.5 mm difference value and that 0.7% US tracking

motion resulted in a failure to track accurately (a difference value

> 2.5 mm). This illustrates that the US tracking system is able to

monitor abdominal organs with very few tracking errors.

The difference between US tracking motion and infrared

monitoring motion of 12 patients is summarized in Figure 4.

Because of the small R value and coefficients, linear regression

analysis reveals that these tracking differences do not correlate

with respiratory displacements (coefficient is 0.0354, p< 0.01, R

= 0.251), respiratory velocity (coefficient is 0.0064, p< 0.02, R =

0.048), or respiratory acceleration(coefficient is 0.0268, p< 0.01,

R = 0.256). However, as figure showed, almost difference

samples are located within from -2.5 mm to 2.5 mm range

randomly. So, in other words, this US tracking system is

promising to monitor abdominal organ motion during

radiation therapy.

Figure 5 illustrates 16 difference outliers of US tracking

displacement points with the infrared monitoring value,

infrared monitoring velocity, and infrared monitoring

acceleration. All of these difference outlier absolute values were

larger than 2.5 mm, which is considered a criterion for estimating

US tracking accuracy. According to the results shown in Figure 5,
Frontiers in Oncology 05
for every outlier, at least one parameter’s (infrared monitoring

motion, infrared monitoring velocity, and infrared monitoring

acceleration) absolute value exceeded 5. However, in all 2190

input displacement points (the same as US tracking displacement

points), the value of infrared monitoring, infrared monitoring

velocity, and infrared monitoring acceleration exceeding 5

accounted for 30.6%, 33.8%, and 43.2%, respectively. The

difference value exceeding criterion (>2.5 mm or <-2.5 mm)

accounted for 0.7%, 1.9%, and 0.5% in these three categories,

respectively. On the other hand, infrared monitoring motions

also included 70 (accounted for 3.2%) points with an absolute

value of three parameters exceeding 5. In these infrared

monitoring motions, only 1 (accounting for 0.14%) tracking

motion is not within the criterion. A potential explanation will

be discussed in a later section.

Figure 6 depicts a comparison of infrared monitoring,

4DCT, and US tracking displacements of patient 4 (Figure 6A)

and patient 5 (Figure 6B) with a difference value between

infrared monitoring and US tracking motion. 4DCT

respiratory curve was reconstructed by connecting the centroid

point of same target in ten phases. Compared to the 4DCT

reconstruct respiratory curve, the US tracking line is able to

monitor the target in time. It can be seen that US tracking

motion generally agrees with infrared monitoring motion within

2.5 mm in both patients. Moreover, Patient 4 has a larger

variation than Patient 5 and the potential reason is that
FIGURE 3

The difference (the difference = US tracking displacement – infrared monitoring motion) histogram showed the number of US tracking motions
of every patient.
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Patient 4 has a relatively shorter respiratory cycle compared to

patient 5.
Discussion

In this phantom study, we investigated the feasibility of

ultrasound for monitoring abdominal targets, such as pancreatic

cancer, during SBRT. The high monitoring accuracy results

prove that the US tracking system may be a potential method

for real-time monitoring targets, allowing more accurate delivery

of radiation doses. Therefore, the potential benefits of SBRT may
Frontiers in Oncology 06
be fully realized where the PTV margins that account for target

motion may be reduced and the dose-escalation can be achieved.

According to previous research, the motion of the abdominal

targets, such as pancreas, caused by respiration is one of the biggest

uncertainties in intra-fraction treatment (50). This uncertainty is

the main restriction for implementing dose escalation treatment,

like SBRT for abdominal tumor targets, such as the pancreatic

tumor, and this also is the major motivation of the current

phantom study to simulate pancreatic cancer cases. To

compensate for this respiratory motion, several intra-fraction

monitoring methods were proposed, including X-ray-guided

robotic radiation system (Cyberknife from Accuracy) and MRI-

guided radiation systems (MRIdian from ViewRay and Unity from
FIGURE 4

Linear regression analysis between the difference (the difference = US tracking displacement – input displacement) and infrared monitoring
motion, infrared monitoring velocity, and infrared monitoring acceleration. The red dash lines represent criterion to estimate tracking results.
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Elekta). The Cyberknife system incorporates real-time image

guidance and a robot, thereby enabling stereotactic radiosurgery

(SRS) and SBRT for different disease sites where motion

management is critical. However, due to kV X-ray imaging, every

patient absorbs an additional ionizing radiation dose of 0.1 – 0.6

cGy per orthogonal image pair (51). To reduce the imaging dose,

the X-ray images are only acquired every 30-60s and thus the

treatment beam is likely to miss the target on some occasions (52).

Additionally, previous research demonstrated that themanagement

of imaging doses during RT and diagnostic imaging are two

different problems (53). The onboard MRI-guided radiation

system is a powerful, non-invasive, non-ionizing, and real-time
Frontiers in Oncology 07
method for tracking soft-tissue targets (54, 55). However, this

advanced modality may not be generally available to the

community due to its high capital cost. Recently, Han-Oh et al.

tested the feasibility of monitoring fiducial markers’ location by

using microwave radar (20). Their results proved this microwave

radar technology is a potential non-ionizing tumor tracking device

during radiation therapy (20). But the feasibility and efficiency of

this technology were not yet evaluated in real clinic studies.

Compared to these methods, the ultrasound tracking method is

an ideal potential solution for monitoring mobile targets at a lower

cost, real-time, compatibility when combined with present

treatment equipment (56–61). The feasibility of tracking targets
FIGURE 5

16 difference outliers of US tracking displacement points with the infrared monitoring value, infrared monitoring velocity, and infrared
monitoring acceleration. The yellow points represent the difference between US tracking displacement and infrared monitoring values. The
blue, red, and black bars are the input displacement, velocity, and acceleration of each tracking point, respectively.
A B

FIGURE 6

Shows a comparison of infrared monitoring motion, 4DCT, and US tracking displacements of Patients 4 (A) and 5 (B) with a difference value
between infrared monitoring and US tracking displacements.
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in the liver (56) and the prostate (62, 63) has been. Our study found

similar agreement to demonstrate that ultrasound tracking is

advantageous for tracking SI displacement estimates in

abdominal tumors. In addition, such an advantage is expected to

improve with new US technology (56).

According to the analysis of all tracking motion points

(Figure 4), the accuracy of US tracking ability was not

restricted by movements, respiration rate, or respiration

acceleration. In terms of imaging frame rate, monitoring

pancreatic targets by the US has a reasonable temporal

resolution. Regarding whether the tracking accuracy is always

within clinical requirements (26), however, we found that

Patient 4 has the largest RMSE (RMSE = 1.121) and the lowest

r value (r = 0.968) as seen in Figure 2. This patient has a larger

variation of the difference between input and tracking

displacements, even though all these errors fall within 2.5mm.

The likely reason these relatively unstable tracking results

occurred is that this patient has the shortest respiratory cycle

(1.37s). On the contrary, the other 11 patients’ respiratory cycles

lie between 2.93s and 8s. Due to the limited number of patients’

respiratory cycles, we did not find statistical significance in the

relationship between the respiratory cycle and RMSE. More

patients’ respiratory data are needed to include in a future

study for further testing the tracking ability.

The other limitation of the current study is that we did not

address intra-fraction pancreatic target movement in the LR or the

AP directions. While LR and AP motions are generally smaller in

magnitude and less frequent than SI motions, these displacements

may need to be taken into consideration when exploring the use of

small PTV margins or dose escalation. In addition, the terrible

contrast of pancreatic tumor, or other soft tissue in the traditional

ultrasound image is because unique geometric anatomy, such as

pancreas located behind stomach and duodenum. But our

mechanical robotic arm could fix the ultrasound transducer,

thereby pressing the patients’ body for getting optimal contrast.

Plus, our proposed workflow and methods could be used to track

other abdominal targets, such as liver tumor.

Furthermore, in this study the internal targets’ movements

were simulated by shifting the whole rigid phantom on the

motion platform. A deformable motion phantom that can

simulate both target motion and surface deformation would be

ideal. In addition, in this study, the ultrasound transducer has to

be placed and fixed by using a robotic arm or a passive surgical

arm (41, 45). To maintain the constant contact with the body

surface for ultrasound motion tracking, additional force from

the probe and fixation holder weight and the locking mechanism

is needed and they can cause body surface and internal

anatomical deformation. An ultrasound transducer such as the

flexible ultrasound probe in recent development with distributed

force or pressure along the body surface will be desired.
Frontiers in Oncology 08
Conclusion

The high monitoring accuracy results of this phantom study

prove that the US tracking system may be a potential method for

real-time monitoring targets, allowing more accurate and

conformal delivery of radiation doses. These findings

demonstrate that the US tracking system, which is portable,

non-ionizing, and non-invasive, can be used as an alternative

method to CT, MRI, and marker-based imaging methods for

intra-fraction motion tracking.
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