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a b s t r a c t

High incidence of traditional and emerging Fusarium mycotoxins in cereal grains and silages can be a
potential threat to feed safety and ruminants. Inadequate biodegradation of Fusarium mycotoxins by
rumen microflora following ingestion of mycotoxin-contaminated feeds can lead to their circulatory
transport to target tissues such as mammary gland. The bovine udder plays a pivotal role in maintaining
milk yield and composition, thus, human health. However, toxic effects of Fusarium mycotoxins on
bovine mammary gland are rarely studied. In this study, the bovine mammary epithelial cell line was
used as an in-vitro model of bovine mammary epithelium to investigate effects of deoxynivalenol (DON),
enniatin B (ENB) and beauvericin (BEA) on bovine mammary gland homeostasis. Results indicated that
exposure to DON, ENB and BEA for 48 h significantly decreased cell viability in a concentration-
dependent manner (P < 0.001). Exposure to DON at 0.39 mmol/L and BEA at 2.5 mmol/L for 48 h also
decreased paracellular flux of FITC-40 kDa dextran (P < 0.05), whereas none of the mycotoxins affected
transepithelial electrical resistance after 48 h exposure. The qPCR was performed for assessment of
expression of gene coding tight junction (TJ) proteins, toll-like receptor 4 (TLR4) and cytokines after 4, 24
and 48 h of exposure. DON, ENB and BEA significantly upregulated the TJ protein zonula occludens-1,
whereas markedly downregulated claudin 3 (P < 0.05). Exposure to DON at 1.35 mmol/L for 4 h signif-
icantly increased expression of occludin (P < 0.01). DON, ENB and BEA significant downregulated TLR4
(P < 0.05). In contrast, ENB markedly increased expression of cytokines interleukin-6 (IL-6) (P < 0.001),
tumor necrosis factor a (TNF-a) (P < 0.05) and transforming growth factor-b (TGF-b) (P < 0.01). BEA
significantly upregulated IL-6 (P < 0.001) and TGF-b (P ¼ 0.01), but downregulated TNF-a (P < 0.001).
These results suggest that DON, ENB and BEA can disrupt mammary gland homeostasis by inducing cell
death as well as altering its paracellular permeability and expression of genes involved in innate immune
function.
© 2023 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

nc-nd/4.0/).
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1. Introduction

Feed supply and safety is crucial to farm animal production
systems and any limiting factors of feed security could constrain the
production outcome (Bryden, 2012; Pinotti et al., 2016). Mycotoxins
have become one of the highest risk factors for feed security
worldwide and represent a significant issue to livestock and feed
industries (Pinotti et al., 2016; Santos Pereira et al., 2019). They
commonly contaminate various commodities of plant origin,
especially cereal grains, and therefore are often detected in silage
and animal feeds (Bryden, 2012; Jaji�c et al., 2019; Mannaa and Kim,
mmunications Co. Ltd. This is an open access article under the CC BY-NC-ND license

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:nkarrow@uoguelph.ca
http://crossmark.crossref.org/dialog/?doi=10.1016/j.aninu.2022.10.007&domain=pdf
www.sciencedirect.com/science/journal/24056545
http://www.keaipublishing.com/en/journals/aninu/
https://doi.org/10.1016/j.aninu.2022.10.007
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.aninu.2022.10.007
https://doi.org/10.1016/j.aninu.2022.10.007


R. Xu, U.K. Shandilya, A. Yiannikouris et al. Animal Nutrition 12 (2023) 388e397
2017; Reisinger et al., 2019; Xu et al., 2020). Consumption of
mycotoxin-contaminated feed can lead to adverse effects on animal
production, including reduced performance, impaired immunity
leading to increased disease susceptibility, and reduced fertility, all
contributing to enormous economic losses worldwide (Antonissen
et al., 2014; Chilaka et al., 2017; Fouad et al., 2019; Gallo et al., 2020;
Pierron et al., 2016; Pinton and Oswald, 2014; Rodrigues, 2014).

Fusarium spp. is one of the predominant mycotoxin-producing
genera of filamentous fungi. Deoxynivalenol (DON) is amongst
the most frequently detected Fusarium mycotoxins in silage
(Ogunade et al., 2018; Panasiuk et al., 2019; Reisinger et al., 2019),
and adverse weather conditions associated with climate change are
expected to increase the occurrence of Fusarium mycotoxin
contamination in feedstuff (Ji et al., 2019; Liu and Van der Fels-
Klerx, 2021). High incidence of the emerging Fusarium myco-
toxins enniatins, and beauvericin (BEA) in silage has also been re-
ported (Jaji�c et al., 2019; Khoshal et al., 2019; K�rí�zov�a et al., 2021;
Panasiuk et al., 2019; Reisinger et al., 2019), and evidence of their
occurrence is rapidly accumulating (Agriopoulou et al., 2020).
Relevant data on the toxicity of these emerging mycotoxins, how-
ever, is currently lacking (European Food Safety Authority, 2014).
Moreover, the frequent co-occurrence of Fusarium mycotoxins in
grains and animal feeds (European Food Safety Authority, 2014;
Khoshal et al., 2019) makes the understanding of their interactive
toxicity challenging.

In general, ruminants have been considered less susceptible
than monogastric animals to mycotoxins due to ability of rumen to
degrade mycotoxins into less toxic metabolites by rumen microbes
(Bertero et al., 2018; Fink-Gremmels, 2008; Rodrigues, 2014; Xu
et al., 2020). However, ruminal biodegradation of mycotoxins
could be influenced by antimicrobial properties of certain myco-
toxins (Bertero et al., 2020; K�rí�zov�a et al., 2021; Wu et al., 2018),
feed composition (Upadhaya et al., 2010), and the consequent
changes in the rumen environment characteristics (subacute
ruminal acidosis, rumen dysbiosis and redox potential) (Billenkamp
et al., 2021; Huang et al., 2018), diseases (Chen et al., 2021;
Debevere et al., 2020; Nagaraja and Titgemeyer, 2007), and pro-
duction stages (Valgaeren et al., 2019). Collectively, these influences
suggest that in some circumstances, mycotoxins could by-pass
ruminal degradation and be distributed to different tissues via
systemic circulation (Debevere et al., 2020; Escriv�a et al., 2017), and
may therefore exert their toxic effects in different tissues. The
mammary gland for example, is likely to encounter with myco-
toxins, which can be evidenced by the reported carry-over of
Fusariummycotoxins into ruminant milk (Becker-Algeri et al., 2016;
Piątkowska et al., 2018; V€olkel et al., 2011).

The bovine mammary gland is a highly specialized organ that
synthesizes and secrets colostrum and milk. These mammary
products are not only critical to calf health and growth, but also
serve as an important source of nutrients and bioactives for
humans. Maintaining homeostasis of the mammary gland is
crucial for its functionality. Since the teat canal is susceptible to
microbial invasion, mammary epithelial cells (MECs) act as a bar-
rier against invading environmental pathogens and participate in
the innate immune response (Brenaut et al., 2014; Gray et al.,
2005; Kessler et al., 2019), which is the first line of defense
against intramammary infection (Ezzat Alnakip et al., 2014).
Mammary epithelial cells have 2 critical roles in the innate im-
mune response during intramammary infection: (1) they recog-
nize the pathogen-associated molecular pattern (PAMPs) of
invading pathogens via pattern-recognition receptors (PRRs), and
(2) secrete cytokines (IL-6 and TNF-a) and chemokines that initiate
the onset of inflammation, which includes the influx of profes-
sional immune cells to clear the invading pathogens (Newton and
Dixit, 2012; Rainard and Riollet, 2006; Zhuang et al., 2020). Among
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the PRRs, Toll-like receptor 4 (TLR4) is of particular importance to
mammary gland defense due to its capability to recognize lipo-
polysaccharide, the PAMP derived from Gram-negative mastitis-
causing pathogens (Sordillo, 2018). Although inflammation is a
critical component of the innate immune response against in-
fections, an exaggerated or protracted dysfunctional mammary
innate immune response could have deleterious effects resulting
in uncontrolled acute or chronic mastitis (Sordillo, 2018). Pro-
duction of anti-inflammatory soluble mediators such as trans-
forming growth factor-b (TGF-b) is one of the mechanisms
regulating the innate immune response to maintain immune ho-
meostasis (Bannerman, 2009; Ezzat Alnakip et al., 2014).

Mammary epithelial cells also play a critical role in sustaining
optimal milk composition by controlling the exchange of compo-
nents between blood and milk via paracellular transport (Kessler
et al., 2019; Wellnitz and Bruckmaier, 2021; Zhao et al., 2019).
Disruption of this homeostatic balance of the mammary gland
could result in reduced milk production and quality, which could
therefore lead to economic losses for dairy farmers. Effects of
Fusarium mycotoxins on the bovine mammary gland are rarely
documented. Yet, there is evidence indicating MECs play a critical
role in initiating immune response in the mammary gland during
intramammary infection (Brenaut et al., 2014; Gray et al., 2005).

A wealth of studies using various cell models have previously
shown that DON, enniatin B (ENB), and BEA could affect epithelial
permeability and immune function (Bertero et al., 2020; Gao et al.,
2020; Xu et al., 2020). The aim of this present study was to inves-
tigate the effects of DON, ENB and BEA on permeability and innate
immune function of MECs by using bovine mammary epithelial
(MAC-T) cells.

2. Materials and methods

2.1. Chemicals

DON, ENB and BEA (Sigma-Aldrich) were dissolved in dime-
thylsulfoxide (DMSO) to stock solutions of 5 mg/mL. All stock so-
lutions were stored at - 20 �C. Mycotoxin working solutions at
designated concentrations were prepared in serial dilutions in cell
culture medium described below.

2.2. Cell culture

The MAC-T cells were maintained according to the previous
protocol (Huynh et al., 1991) in T75 flasks in themedium containing
Dulbecco's Modified Eagle Medium (DMEM) supplemented with
4.0 mmol/L L-glutamine, 10% heat inactivated fetal bovine serum,
25 mmol/L HEPES buffer (Invitrogen), 1% Penicillin/Streptomycin
(100 units/mL of Penicillin and 100 mg/mL Streptomycin; Invi-
trogen) and 1 mmol/L Sodium Pyruvate (Invitrogen). Cells were
cultured in a humidified incubator at 37 �C with 5% CO2, and the
culture medium was changed every other day.

2.3. Cytotoxicity assay

MAC-T cells were seeded in 96-well microplates at a density of
2 � 104 cells per well and reached confluence within 24 h. The cells
were then treated with DON (0, 0.67, 1.35, 3.4 13.4 mmol/L), ENB (0,
2.5, 5, 20, 100 mmol/L) and BEA (0, 5, 10, 20, 80 mmol/L) for 48 h. The
range of exposure concentrations were selected based on previous
studies (Diesing et al., 2011; Kolf-Clauw et al., 2013; Olleik et al.,
2019) and our preliminary studies (data not shown). According to
the references (Li et al., 2016; Oh et al., 2015) with slight modifi-
cations, at the end of the exposure, Calcein AM (Invitrogen, CA,
USA), a cell-permeant fluorescent dye was added to each well at a
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concentration of 2 mmol/L and the plates were incubated at room
temperature for 45 min. The fluorescence intensity (FI) of Calcein
AM was measured by a microplate reader (BioTek Instruments, VT,
USA) at 498/528 nm. The percentage of viable cells was calculated
using the following formula:

Cell viability (%) ¼ Mean (FI498 treated cells - FI Blank)/Mean (FI498 un-

treated cells - FIBlank) � 100

where FI498 treated cells is the FI obtained from mycotoxin-treated
groups, FI498 untreated cells is FI obtained from groups without any
mycotoxin treatment, and FIBlank is the background signal resulted
from Calcein AM treated wells with no cells. Mean is the average FI
of 3 replicates.

The 50% inhibitory concentration (IC50) was also calculated by
fitting the data to non-linear Hill equation using GraphPad Prism
version 8.2.1 for Windows (GraphPad Software, San Diego, Cali-
fornia USA). According to these cell viability data, non-cytotoxic
concentrations were chosen for subsequent experiments in an
attempt to exclude any changes in experiment endpoints caused by
the damage of cell monolayer (Gao et al., 2017).

2.4. Measurement of transepithelial electrical resistance (TEER)

A two-dimension (2-D) MAC-T monolayer model was estab-
lished according to the reference (Wang et al., 2019a) with slight
modifications. MAC-T cells were seeded at the density of
2.5 � 104 cells per Transwell insert (Corning Transwell #3470,
6.5 mm, 0.4 mm pore size) coated with Type I collagen at 10 mg/cm2

(C3867, Sigma-Aldrich) according to the manufacture's instruction
and cultured in the same medium describe above for 33 d based on
our preliminary studies to ensure cell monolayer yielding stable
TEER readings. The cells were then ready for mycotoxin treatments.
Medium was refreshed for both apical and basal compartments of
the Transwell inserts every other day (Wang et al., 2019a). The cells
were challenged by adding DON (0, 0.39, 0.78 and 1.35 mmol/L), ENB
(0, 0.48,1.25 and 2.5 mmol/L) or BEA (0, 2.5, 5 and 10 mmol/L) at non-
cytotoxic concentrations to the apical side. The TEER of MAC-T cell
monolayers was measured before the addition of mycotoxins
(TEER0) and 48 h after mycotoxin exposure (TEER48) (Majima et al.,
2017) using Millicell ERS-2 Voltohmmeter (EMD Millipore Corpo-
ration, MA, USA) according to the manufacturer's instruction. The
change in TEER was expressed as the ratio of TEER48 to TEER0,
which was calculated according to the following formula (Majima
et al., 2017):

TEER (%) ¼ TEER48 (U � cm2) / TEER0 (U � cm2) � 100.

2.5. Permeability tracer flux assay

Fluorescein isothiocyanate (FITC)-dextran (40 kDa molecular
weight) (FD-40, Sigma-Aldrich) was dissolved in DMEM/Nutrient
Ham's Mixture F-12 (F12) to a final concentration of 1 mg/mL to
create the tracer working solution (Solhaug et al., 2015; Sun et al.,
2017; Wang et al., 2019a). The 2-D MAC-T monolayer model was
established as described above. On d 33 post confluency when
stable tight junction was formed, the cells were treated with DON,
ENB or BEA for 48 h as described above in Section 2.4. The tracer
solution was added to the apical compartment with DMEM/F12
added to the basal compartment. Based on the incubation periods
previously described (Chopyk et al., 2017; Gao et al., 2017; Wang et
al., 2018; Wang et al., 2019a) and our preliminary studies, after 3 h
incubation, the fluorescence intensity of FITC-40 kDa in the basal
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compartment was measured by a microplate reader (Agilent
Technologies formerly BioTek Instruments, VT, USA) at 498/528 nm.

2.6. RNA extraction and quantitative real time-qPCR (qPCR)

MAC-T cells were seeded in 24-well plates in triplicate at a
density of 1 � 105 cells per well. After 24 h, cells were treated with
DON (0, 1.35 mmol/L), ENB (0, 2.5 mmol/L) and BEA (0, 10 mmol/L) at
the highest non-cytotoxic concentrations for 4, 24 and 48 h. Cells
were lysed with TRIzol Reagent (Invitrogen) according to the
manufacturer's instructions and stored at �80 �C until further RNA
extraction. Total RNA was extracted and purified using RNeasy
Mini Kit (Qiagen). The quantity and purity (A260/A280) of isolated
RNA in the present study were determined using Agilent BioTek
Take 3 microvolume plate (Agilent Technologies formally BioTek
Instruments, VT, USA). RNA samples with A260:A280 ratio between
1.9 and 2.1 were considered useable purified samples and used for
further experiments according to the manufacturer's instructions.
The integrity of RNA in the present study was determined using
agarose gel electrophoresis. Sharp, clear 28S and 18S rRNA bands
with their ratio about 2.0 were obtained on a denaturing gel
indicated intact total RNA. As previously described (Shandilya
et al., 2021), the purified RNA samples were reverse-transcribed
into cDNA using High-Capacity cDNA Reverse Transcription Kit
(Applied Biosystems) according to the manufacturer's instructions.
Then qPCR was performed using SsoAdvanced Universal SYBR
Green Supermix (Bio-Rad) in a total reaction volume of 10 mL in a
PCR 96-well plate (Applied Biosystems). The polymerase was
activated at 95 �C for 10 min and the PCR was performed for 40
cycles (95 �C for 15 s and 60 �C for 1 min) using a StepOne Plus
instrument (Applied Biosystems). The primers were either selected
based on previous studies (Lee et al., 2019; Shandilya et al., 2021;
Wu et al., 2022; Zhao et al., 2016) or designed using Primer3Plus
software (Hung andWeng, 2016; Mallikarjunappa et al., 2020). The
sequences of the selected primers are listed in Table 1. Primer
specificity was checked by sequence alignment using Nucleotide
BLAST at the NCBI genome browser gateway, and was further
confirmed in a standard PCR reaction followed by ethidium-
bromide staining on 2% agarose gel as previously described
(Shandilya et al., 2021). The reference genes glyceraldehyde-3-
phosphate dehydrogenase (GAPDH) (Sharma et al., 2019) and
ubiquitously expressed prefoldin like chaperone (UXT) (Wang
et al., 2022) were used as the internal control to normalize the
expression of the target gene transcript levels. A total of 4 refer-
ence genes (GAPDH, UXT, b-actin and b2-microglobulin) were
tested as internal control genes. GAPDH and UXT were selected
over the other reference genes because they were more stable
across all treatment groups. The relative levels of genes were
determined using DDCt method (Livak and Schmittgen, 2001).

2.7. Statistical analysis

The results were analyzed by ANOVA followed by Dunnett's
post-hoc test formultiplemean comparisons using GraphPad Prism
version 8.2.1 for Windows (GraphPad Software, San Diego, Cali-
fornia USA). Data are presented as mean ± SEM of 3 independent
experiments conducted in triplicate, and P < 0.05 was considered
statistically significant.

3. Results

3.1. Cytotoxicity of Fusarium mycotoxins

To assess the cytotoxicity of mycotoxins, cell viability of MAC-T
cells was determined upon exposure to DON, ENB and BEA for



Table 1
Details of primer sequences, PCR efficiency, amplicon length, accession number of the target and reference genes.

Gene Primer sequence 50e301 PCR efficiency, % Amplicon length2, bp Accession no.

GAPDH F: GATGGTGAAGGTCGGAGTGAAC 101.711 100 NM_001034034.2
GAPDH R: GTCATTGATGGCGACGATGT
UXT F: TTGACACAGTGGTCCCAGAC 96.603 143 NM_001037471.2
UXT R: CTTGGTGAGGTTGTCGCTGA
ZO-1 F: GCGAAATGAGAAACAAGCACC 97.78 121 XM_024982012.1
ZO-1 R: ATGAGTTGAGTTGGGCAGGAC
Claudin 3 F: AGGGACTGTGGATGAACTGC 108.701 128 NM_205801.2
Claudin 3 R: CAGTAGGATGGCGATGACG
Occludin F: GCCAGCATATTCCTTCTACCC 103.487 139 NM_001082433.2
Occludin R: AAGAGTGGAGGCAACACAGG
IL-6 F: GGCTCCCATGATTGTGGTAGTT 105.691 523 NM_173923.2
IL-6 R: GCCCAGTGGACAGGTTTCTG
TNF-a F: CGGTGGTGGGACTCGTATG 103.751 352 NM_173966.3
TNF-a R: CTGGTTGTCTTCCAGCTTCACA
TGF-b F: CCTGAGCCAGAGGCGGACTAC 99.181 130 NM_001166068.1
TGF-b R: GCTCGGACGTGTTGAAGAAC
TLR4 F: GAACAGGTAGCCCAGACAGC 99.35 151 NM_174198.6
TLR4 R: AGGCCATGATACGGTTGAAG

GAPDH ¼ glyceraldehyde-3-phosphate dehydrogenase; UXT ¼ ubiquitously expressed prefoldin like chaperone; ZO-1 ¼ zonula occludens-1; TNF-a ¼ tumor necrosis factor a;
TGF-b ¼ transforming growth factor-b; TLR4 ¼ toll-like receptor 4.

1 F ¼ forward; R ¼ reverse.
2 bp ¼ base pair.
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48 h (Fig. 1). DON, ENB and BEA reduced viability of MAC-T cells in a
concentration-dependent manner within the concentration range
used in the present study. DON, ENB and BEA significantly
decreased cell viability at concentrations greater than 1.35, 2.5 and
10 mmol/L, respectively (P < 0.001). The calculated IC50 for DON and
BEAwere 12.87± 1.418 mmol/L (R2¼ 0.93) and 12.93± 0.939 mmol/L
(R2 ¼ 0.99), respectively. No IC50 was obtained for ENB from the
present study. The calculated 25% inhibitory concentrations (IC25)
of DON, BEA and ENB were 4.517 ± 0.50, 11.6 ± 0.56 and
62.2 ± 15.45 mmol/L, respectively.
3.2. Transepithelial electrical resistance and paracellular tracer flux

Transepithelial electrical resistance (TEER) and then paracellular
flux of 40 kDa dextran of the MAC-T monolayer were measured to
assess the effects of mycotoxins on paracellular permeability of
mammary epithelium. Based on the cytotoxicity results, the
Fig. 1. Effects of (A) deoxynivalenol (DON), (B) enniatin B (ENB) and (C) beauvericin (BEA)
percentage of viable cells compared to the untreated control (0 mmol/L); values are the mean
indicated at P < 0.001 (***). MAC-T cells ¼ bovine mammary epithelial cells.
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concentrations that did not exhibit cytotoxicity to MAC-T cells were
used for each mycotoxin to carry out TEER measurement and the
paracellular flux of 40 kDa dextran. As shown in Table 2, exposure
to tested mycotoxins for 48 h at the selected concentrations did not
alter TEER of MAC-T cell monolayer. With regards to paracellular
flux assay (Table 3), after 48 h exposure, DON (P ¼ 0.02) and BEA
(P ¼ 0.013) at their lower concentrations decreased FITC-40 kDa
dextran flux across the MAC-T cell monolayer, whereas at higher
concentrations, DON and BEA did not have any impact on dextran
flux. In contrast, ENB did not alter dextran flux at any concentra-
tions used in the experiment.
3.3. Gene expression analysis

The effects of mycotoxins on the relative mRNA expression of
selected tight junction (TJ) proteins (zonula occludens-1 [ZO-1],
occludin and claudin 3) and immune-related genes (TLR4, IL- 6,
on MAC-T cell viability after 48 h exposure, respectively. Results are presented as the
± SEM of 3 independent experiments. Significant differences compared to control are



Table 2
Effects of Fusarium mycotoxins on transepithelial electrical resistance (TEER) of
MAC-T cells after 48 h exposure.

Mycotoxin Treatment, mmol/L TEER1, % of initial value SEM P-value

DON Untreated 98.47 13.01 0.6609
0.39 112
0.78 105
1.35 106.5

ENB Untreated 100 5.45 0.2579
0.48 109.8
1.25 104.2
2.5 104.9

BEA Untreated 98.1 5.70 0.1205
2.5 99.1
5 87.4
10 93.27

DON ¼ deoxynivalenol; ENB ¼ enniatin B; BEA ¼ beauvericin; MAC-T ¼ bovine
mammary epithelial cell line.

1 Results are presented as mean values of 3 independent experiments.
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TNF-a, and TGF-b) were analyzed in MAC-T cells at 3 time points of
mycotoxin exposure (4, 24 and 48 h) by qPCR. The highest con-
centration for each mycotoxin that did not exhibit cytotoxicity to
MAC-T cells (1.35 mmol/L for DON, 2.5 mmol/L for ENB and 10 mmol/L
for BEA) were used in this experiment. Results demonstrated that
DON, ENB and BEA significantly affected mRNA expression of the
studied genes. As shown in Fig. 2 for example, mRNA expression of
ZO-1 was significantly upregulated after exposure to DON at
1.35 mmol/L for 4 h, 24 h and 48 h (P < 0.05) compared to control
groups without DON treatment. Similarly, mRNA expression of ZO-
1 was upregulated by ENB at 2.5 mmol/L and by BEA at 10 mmol/L
but only at 24 h (P < 0.05). DON also significantly upregulated
mRNA expression of occludin at 4 h (P ¼ 0.003). Messenger RNA
expression of occludin exhibited a trend towards increasing
(P ¼ 0.052) after exposure to DON for 48 h. In contrast to ZO-1 and
occludin, claudin 3 mRNA expression was significantly down-
regulated by DON at 1.35 mmol/L at 24 h and 48 h (P < 0.001),
respectively. At 48 h, claudin 3 mRNA expression was also signifi-
cantly downregulated by 2.5 mmol/L ENB (P < 0.001) and 10 mmol/L
BEA (P ¼ 0.02).

We also analyzed mRNA expression of pro- and anti-
inflammatory cytokines as well as TLR4 to assess the potential ef-
fects of DON, ENB and BEA on the innate immune function of MECs.
Results showed that expression of immune-related genes was
Table 3
Effects of Fusariummycotoxins on paracellular flux of FITC-40 kDa dextran in MAC-T
cells after 48 h exposure.

Mycotoxin Treatment,
mmol/L

FITC-dextran flux1,
% relative to
untreated control

SEM P-value

DON Untreated 100 5.29 0.0122
0.39 84.8*
0.78 92.8
1.35 103

ENB Untreated 100 5.04 0.5439
0.48 90.17
1.25 93.3
2.5 110

BEA Untreated 100 5.85 0.0285
2.5 81.73*
5 94.4
10 93.1

DON ¼ deoxynivalenol; ENB ¼ enniatin B; BEA ¼ beauvericin; MAC-T ¼ bovine
mammary epithelial cell line.

1 Results are presented as mean values of 3 independent experiments. Significant
differences compared to control (untreated) are indicated at P < 0.05 (*).
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differentially altered by tested mycotoxins at different timepoints
(Fig. 3). IL-6 expression was significantly upregulated by 10 mmol/L
BEA at 4 h (P < 0.001), and by 2.5 mmol/L ENB at 24 h and
48 h (P < 0.001). Whereas DON at 1.35 mmol/L did not affect IL-6
mRNA expression at any timepoints. We also observed a significant
upregulation of TNF-a by 2.5 mmol/L ENB at all 3 timepoints
(P < 0.05). In contrast, significant downregulation of TNF-a
expression was observed after exposure to BEA at 10 mmol/L for
48 h (P < 0.001). The expression of TGF-b was significantly upre-
gulated by ENB at 24 and 48 h (P < 0.01) as well as by BEA at
24 h (P ¼ 0.01). With regards to TLR4, expression was significantly
downregulated by DON and BEA at 4 h (P < 0.01) and by ENB
(P ¼ 0.04) and BEA (P ¼ 0.008) at 48 h. There were no significant
changes on mRNA expressions of TLR4 caused by any tested my-
cotoxins at 24 h.

4. Discussion

Maintaining udder health is of utmost importance for produc-
tion of quality milk, and therefore food security and human well-
being. This present study was designed to investigate the effects
of frequently detected Fusarium mycotoxins, specifically DON, ENB
and BEA on paracellular permeability and innate immune function
of bovine mammary epithelium using the MAC-T cell line as in vitro
model. Epithelial cell lines have been widely accepted as in vitro
models for mycotoxin toxicity testing (Bertero et al., 2020; Xu et al.,
2020), and MAC-T cells are widely used cell line to help address
basic questions related to mammary gland physiology (Mitz and
Viloria-Petit, 2019; Silva et al., 2017; Wang et al., 2019b; Zhang
et al., 2018). To our best knowledge, this study is the first in vitro
study to simultaneously investigate 2 important functions of MECs,
barrier and immunological functions, in response to mycotoxins.
Our study enhances the understanding of the effects of traditional
and emerging Fusariummycotoxins on the bovine mammary gland
epithelium.

Alveolar MECs are the fundamental milk secretory units of
mammary gland (Fu et al., 2020; Montalbetti et al., 2014). The
number of alveolar MECs predetermines the amount of milk pro-
duced by lactating animals (Akers and Nickerson, 2011; Capuco and
Ellis, 2013). These MECs also form an epithelial barrier between
blood and milk during lactation, and damage to this barrier
resulting in cell loss can lead to sub-optimal milk composition and
production (Wellnitz and Bruckmaier, 2021). This barrier also plays
a critical defensive role against microbial invasion and is actively
involved in the innate immune response during intramammary
infection (Newton and Dixit, 2012; Rainard et al., 2008).

To assess the effects of DON, ENB and BEA on MAC-T cell
viability, we performed cell viability assays using Calcein AM, a
cell-permeant dye that is frequently used to determine cell
viability in eukaryotic cells (Li et al., 2016, 2018; Oh et al., 2015). In
the present study, we observed a concentration-dependent
decrease in cell viability after 48 h exposure to DON, ENB and
BEA. These observed cytotoxic effects were expected and in line
with other epithelial studies (Lei et al., 2017; Olleik et al., 2019;
Wang et al., 2019b). Based on the calculated IC50 and IC25 values,
the rank of toxicity of tested mycotoxins to MAC-T cells was
DON > BEA > ENB, which was consistent with previous in vitro
studies using other epithelial cell models (Fraeyman et al., 2018;
Olleik et al., 2019; Ruiz et al., 2011). Our cell viability results sug-
gested that exposure to DON, ENB and BEA at certain concentra-
tions could potentially lead to perturbation of mammary gland
function by inducing the loss of milk secreting cells.

Maintaining the mammary gland tissue barrier between the
alveolar lumen and interstitium is essential to maternal lacto-
genesis, subsequent galactopoiesis and milk secretion (Markov



Fig. 3. Effects of DON at 1.35 mmol/L (DON 1.35), ENB at 2.5 mmol/L (ENB 2.5) and BEA at 10 mmol/L (BEA 10) on mRNA expression of immune-related genes (A) IL-6, (B) TNF-a, (C)
TGF-b and (D) TLR4 in MAC-T cells after 4, 24 and 48 h exposure, respectively. Results are presented as fold change; control groups (untreated) of each timepoint were used as
calibrators; values are the mean ± SEM of 3 independent experiments. Significant differences compared to control (untreated) are indicated at P < 0.05 (*), P < 0.01 (**) and
P < 0.001 (***), respectively. DON ¼ deoxynivalenol; ENB ¼ enniatin B; BEA ¼ beauvericin; MAC-T ¼ bovine mammary epithelial cell line.

Fig. 2. Effects of DON at 1.35 mmol/L (DON 1.35), ENB at 2.5 mmol/L (ENB 2.5) and BEA at 10 mmol/L (BEA 10) on mRNA expression of tight junction proteins (A) ZO-1, (B) occludin and
(C) claudin 3 in MAC-T cells after 4, 24 and 48 h exposure, respectively. Results are presented as fold change and control groups (untreated) of each timepoint was used as cali-
brators; values are the mean ± SEM of 3 independent experiments. Significant differences compared to control (untreated) are indicated at P < 0.05 (*), P < 0.01 (**) and P < 0.001
(***), respectively. DON ¼ deoxynivalenol; ENB ¼ enniatin B; BEA ¼ beauvericin; MAC-T ¼ bovine mammary epithelial cell line.

R. Xu, U.K. Shandilya, A. Yiannikouris et al. Animal Nutrition 12 (2023) 388e397

393



R. Xu, U.K. Shandilya, A. Yiannikouris et al. Animal Nutrition 12 (2023) 388e397
et al., 2017; Montalbetti et al., 2014), and for preventing microbial
invasion (Ezzat Alnakip et al., 2014). The integrity of this barrier
during lactation is primarily determined by TJ proteins, which
connect adjacent secretory epithelial cells. During lactation, TJs
become highly impermeable via the paracellular route to prevent
paracellular transport of ion and small molecules (Markov et al.,
2017; Stelwagen and Singh, 2014), and closure of TJs plays a
pivotal role in maintaining bovine milk composition and yield. In
this study, TEER measurement and paracellular tracer flux using
FITC-40 kDa dextran were performed to investigate effects of
tested mycotoxins on paracellular permeability of MAC-T cells.
Although both measurements are the indicators of paracellular
permeability, they reflect different mechanisms of paracellular
route and may have differing sensitivities to mycotoxin exposure.
TEER manifests ionic conductance of the paracellular pathway,
whereas measurement of flux FITC-dextran reflects paracellular
water flow and the pore size of the TJs (Zucco et al., 2005). Based
on the previous results, we selected non-toxic concentrations for
each mycotoxin in an attempt to exclude any change in para-
cellular permeability caused by the damage of cell monolayer. To
this end, any observed alteration in paracellular permeability will
be elucidated as the result of mycotoxin exposure. Decreased TEER
values, or increased paracellular flux, is suggestive of increased
MEC paracellular permeability. It is well documented that effects
of different mycotoxins on TEER of various epithelial cell models
were commonly dependent on concentration and exposure
duration (Alizadeh et al., 2019; Luo et al., 2019; Springler et al.,
2016a; Wang et al., 2019a; Weidner et al., 2013). In the present
study, we did not observe any significant TEER modulation by
DON, ENB or BEA within the concentrations and exposure dura-
tion used. Springler et al. (2016b) previously reported DON did not
significantly decrease TEER values of differentiated porcine in-
testinal epithelial cells (IPEC-J2) at concentrations below 5 mmol/L,
which was comparable to the low DON concentrations used in the
present study. ENB and BEA were previously found to decrease
IPEC-J2 cell TEER reading after 48 h exposure at comparable
concentrations to the ones used in the present study (Springler
et al., 2016a). Variation in the reported results could be attrib-
uted to different cell types, which was documented in previous
work (Pinton et al., 2009).

In contrast, a significant decrease in FITC-40 kDa dextran flux
was observed in the paracellular tracer flux assay at the lowest
concentrations of DON and BEA, and there was a trend towards
decreasing at the lowest concentration of ENB. Consistently, DON
has been reported to decrease paracellular flux of human intestinal
epithelial cells (Caco-2) (Wang et al., 2019a). This phenomenon
could be explained as “hormesis”, which is defined as a phenom-
enon in which exposure to a low dose of a chemical agent or
environmental factor that is damaging at higher doses gives
adaptive beneficial effects to cells or living organisms, and it is
indeed considered an adaptive compensatory process following an
initial disruption in homeostasis (Mattson, 2008). Detection of such
low-dose stimulatory effects is highly dependent on many study
design features (Calabrese, 1999). Hormesis has been established in
several research fields (Bhakta-Guha and Efferth, 2015; Calabrese
and Blain, 2005; Calabrese and Mattson, 2017; Li et al., 2019), and
such hormesic effects have also been observed in other experi-
mental endpoints after exposure to DON (Diesing et al., 2011; Liu
et al., 2020; Maresca et al., 2008; Pietsch et al., 2011;
Razafimanjato et al., 2011) and the Fusarium mycotoxin zear-
alenone (ZEN) (Ranzenigo et al., 2008). Yet, toxicity data on BEA and
ENB are limited in the literature as mentioned earlier. Conse-
quently, our study demonstrated that exposure to DON, ENB and
BEA at lower concentrations could potentially disrupt the homeo-
stasis of MECs.
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We next investigated the effects of mycotoxins on membrane
integrity at the gene level by performing qPCR for assessing the
expression of the TJ proteins, ZO-1, occludin and claudin 3. Our
results showed that gene expression of ZO-1, occludin and claudin 3
was differentially modulated in response to mycotoxin exposure:
ZO-1 being upregulated, whereas claudin 3 was downregulated and
occludin expression was unaffected overall. This suggests TJ gene
networks could be affected by tested mycotoxins. It could also be
suggestive of different response mechanism of MAC-T cells to cope
with the presence of different mycotoxins. Such mycotoxin-
induced differential expression of TJs have also been previously
reported for other epithelial cell models (Liao et al., 2017; Ling et al.,
2016). By correlating the results between TEER and paracellular
flux, as well as TJ protein expression, our study indicated that DON
at 1.35 mmol/L altered the gene expression of selected TJ proteins
without altering MAC-T cell permeability. Although we did not
assess their protein expression levels, these changes in gene
expression suggested that other TJ proteins could play a role in
MAC-T cell paracellular permeability upon DON exposure. For
example, Wang et al. (2019a) found that Claudin 4 was the core TJ
protein to Caco-2 cell permeability upon DON exposure. In contrast,
in the present study, the unaltered permeability upon ENB and BEA
exposure was in accordance with unaffected mRNA expression of
ZO-1 and occludin. Unchanged permeability, however, might not be
attributed exclusively to these 2 TJ proteins, as TJ complexes are
also composed of different co-localizing proteins (Stelwagen and
Singh, 2014). Our results indicated that DON, ENB and BEA differ-
entially altered TJ networks of MECs.

Immunocompetence in mammary gland determines the ability
of mammals to resist the establishment of intramammary infection,
which is one of the leading causes of economic losses for dairy
farmers. The qPCR for analysis of TLR4, IL-6, TNF-a and TGF-b was
performed to investigate the effects of DON, ENB and BEA on the
competence of innate immune response capacity of the mammary
gland. We observed that exposure to DON, ENB and BEA at non-
cytotoxic concentrations decreased mRNA expression of TLR4 at
selective timepoints (4 and 48 h), suggesting possible immuno-
regulatory effects of these mycotoxins, and raising the possibility of
reduced ability to detect Gram-negative bacteria during intra-
mammary infection. Studies investigating the effects of the tested
mycotoxins on TLR4 in epithelial cells are limited. However, a
downregulation of TLR4 in porcine alveolar macrophage cells was
reported after DON exposure (Liu et al., 2020). Previously, a study
using IPEC-J1 cells also reported that exposure to 25 mmol/L ZEN
decreased mRNA expression of TLR4 (Taranu et al., 2015).

After PAMPs are recognized by PRRs expressed on MECs, PRR-
PAMP ligation initiates a signaling cascade that leads to the secre-
tion of soluble mediators such as cytokines that trigger the onset of
inflammation. Therefore, we next assessed the effects of DON, ENB
and BEA on mRNA expression of IL-6, TNF-a and TGF-b. The pro-
inflammatory cytokines IL-6 and TNF-a are the main effectors to
initiate the innate immune response at both local and systemic
levels (Bougarn et al., 2011; Rainard et al., 2008), whereas TGF-b
functions as an anti-inflammatory cytokine to dampen the
inflammation (Bannerman, 2009; Ezzat Alnakip et al., 2014).
Elevated levels of IL-6, TNF-a and TGF-b have been found to be
associated with experimentally-induced inflammation in the
bovine mammary gland (Bannerman et al., 2006; Chockalingam
et al., 2005; Kauf et al., 2007; Bannerman, 2009). In the present
study, ENB was a potent inducer of inflammation in MAC-T cells
compared to DON and BEA, as indicated by the marked upregula-
tion of IL-6 and TNF-a gene expression, in company with signifi-
cantly increased expression of TGF-b. Previously, the induction of
inflammation by ENB was also observed in a murine
monocyteemacrophage cell line (Gammelsrud et al., 2012).
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Interestingly, we found that BEA upregulated expression of IL-6 at
4 h exposure, but decreased expression of TNF-a at 48 h exposure,
which indicated different BEA-induced kinetics of IL-6 and TNF-a
gene expression. It also suggested that BEA could exert time-
dependent immunomodulatory effects like the biphasic time-
effect relationships defined recently (Li et al., 2019). An immu-
nostimulatory effect of BEAwas previously observed in female mice
(Maranghi et al., 2018), whereas its immunosuppressive property
has been previously reported in various cell lines (W€atjen et al.,
2014; Yoo et al., 2017).

DON-induced changes in mRNA expression of IL-6 (Liu et al.,
2020; Wan et al., 2013; Yu et al., 2021; Zhang et al., 2020), TNF-a
(Liu et al., 2020; Wang et al., 2019b; Zhang et al., 2020) and TGF-b
(Liu et al., 2020) have been previously observed in various cell
models. However, in the present study, DON did not change mRNA
expression of IL-6, TNF-a and TGF-b. Similarly, Zhang et al. also did
not observe changes in IPEC-J2 cell IL-6 and TNF-a mRNA expres-
sion by DON (Zhang et al., 2020). Such inconsistent findings could
be attributed to concentration- and duration-dependent exposure
to DON that have been reported in previous work (Pestka, 2008;
Pietsch et al., 2015; Wang et al., 2019b).

5. Conclusion

High incidence of Fusarium mycotoxins occurs in cereal grains
and silage, the common ingredients for ruminant feeds. Inadequate
biodegradation of these mycotoxins by rumen microflora can lead
to the interaction between bovine mammary gland and myco-
toxins, and they may elicit their toxic effects and disrupt mammary
gland homeostasis. In this study, DON, ENB and BEA at their lower
concentrations were found to differentially disrupt paracellular
permeability of MAC-T. The studied mycotoxins could also poten-
tially lead to the disruption in immune homeostasis by reducing
mammary gland ability to recognize pathogen and altering cyto-
kine profiles in the mammary gland microenvironment.
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