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When performing a systematic review, researchers screen the articles retrieved

after a broad search strategy one by one, which is time-consuming. Com-

puterised support of this screening process has been applied with varying suc-

cess. This is partly due to the dependency on large amounts of data to develop

models that predict inclusion. In this paper, we present an approach to choose

which data to use in model training and compare it with established

approaches. We used a dataset of 50 Cochrane diagnostic test accuracy

reviews, and each was used as a target review. From the remaining 49 reviews,

we selected those that most closely resembled the target review's clinical topic

using the cosine similarity metric. Included and excluded studies from these

selected reviews were then used to develop our prediction models. The perfor-

mance of models trained on the selected reviews was compared against models

trained on studies from all available reviews. The prediction models performed

best with a larger number of reviews in the training set and on target reviews

that had a research subject similar to other reviews in the dataset. Our

approach using cosine similarity may reduce computational costs for model

training and the duration of the screening process.
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1 | INTRODUCTION

Even for an experienced review team a single systematic
review can take between 6 months and several years.1,2

Approximately half of this time is spent on developing
the research protocol, performing the search, and
assessing the results.3 Therefore, reducing the time spent
on these tasks has a big impact on the efficiency of the
review process.2

Within the medical field, diagnostic test accuracy
(DTA) studies often do not follow a standard design and
are generally poorly reported.4 Therefore, search strate-
gies cannot depend on design descriptors or commonly
reported terminology. Complex and broad literature
searches are needed, resulting in a high number of docu-
ments needing screening to find relevant studies. This
leads to a relatively large part of the review-time being
spent on screening and selection.5,6
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Machine learning methods can aid the screening pro-
cess through ranking or classification of relevant docu-
ments.7 Generally, there are two types of machine
learning; supervised and unsupervised. Supervised
methods use data that have been manually labelled as
being relevant or not. Unsupervised methods learn from
trends in unlabelled data. Both types have been applied
before in systematic reviews with varying levels of suc-
cess (see, e.g., Cohen et al.8–10). In this study, we focus on
a supervised method that needs a training set of labelled
data. This method can only be applied under the assump-
tion that the labelled training data share ‘transferable
knowledge’ with the unlabelled data on which it is
tested.11 In the case of systematic reviews, transferable
knowledge may refer to, for example, the clinical topic or
patient population being similar in the relevant studies in
the training set and in the relevant studies that the model
aims to select.

Typically, as much data as possible is used when
building machine learning models, because more exam-
ples used during training will usually yield a more
robust* model. However, because systematic reviews
focus on a specific research question, the question arises
whether using all available training data indeed results in
optimal model robustness. After all, when considering
which data to use for a review about Alzheimer, another
review about Alzheimer might provide a better training
set than a review about cancer. Therefore, excluding the
review about cancer from the training data might
improve the model's robustness because the remaining
training data is less diluted.

In this study, we use a set of 50 DTA reviews and sim-
ulated the screening process for each of those reviews as
a target review (i.e., the review for which a model is
built). The remaining 49 reviews were used to build the
model using three different approaches to select
the training data. The first and novel approach used a
similarity metric to select a subset of reviews similar to
the target review. The second approach used all
49 reviews as a training set. The third approach randomly
selected a training set. The models trained with these
three approaches were tested on each target review and
the resulting performance was compared. We hypothesise
that creating a training set specifically for the target
review will yield a better prediction performance,
because the transferable knowledge is not diluted by
non-relevant training data.

2 | DATA PREPARATION

In this study, we used the dataset provided by the 2017
CLEF eHealth Lab ‘Technologically Assisted Reviews in

Empirical Medicine Overview’.12 This dataset consisted
of 50 DTA reviews published in the Cochrane Library
and contained the following information about each
review: its unique identifier (in the form of CD0XXXXX),
review title, the search query, and the search results
(PubMed IDs of all found documents). Also, for each
search result there were two labels indicating whether:
(1) it was included in the systematic review after
screening the title and abstract of the document, and
(2) it was included after reading the full text of the doc-
ument. We used the latter because they represent the
inclusions that need to be found after the review pro-
cess is completed.

Data gathering. The dataset was cleaned by the orga-
nisers of the lab, and limited to search results available
through the PubMed search engine. The Entrez Pro-
gramming Utilities API13 was used to retrieve data
about the search results based on their PubMed ID. In
total, we retrieved 266,966 documents using the
efetch function of the Entrez API. We used all docu-
ments regardless of whether they were inclusions or
not. For each document, if available, we stored the fol-
lowing data in a local database: review identifier, docu-
ment title, document abstract, publication date,
publication type, DOI, journal, journal ISSN, journal
ISO, inclusion label, and PubMed ID.

Text preprocessing. The title and abstract of all in- and
excluded studies were used to build the prediction
models. We cleaned the text so that it contained only
unaccented alphabetical letters. We removed: HTML
tags,† special characters (e.g., &, %), and numbers.
Stopwords (e.g., the, what, was) were removed using
the english list from the NLTK Python library.14

Lastly, the documents were split into separate words
and any short ( < 2 characters) or long (> 34 characters)
words were removed, as they were unlikely to be real
words, or words that distinguish the topic of a review.
The Python code implementation is available at van
Altena.15

The characteristics of our dataset after preprocessing
are shown in Table 1. Reviews had an average of 5339
documents with on average 93 inclusions. The smallest
review had 64 documents and the largest 43,363. The
review with the fewest inclusions contained two inclu-
sions, while the largest number of inclusions was 619.
This resulted in a mean inclusion rate of 4% with a mini-
mum of 0.015% (2 on a total of 12,705) and a maximum
of 20% (23 on a total of 114). For an overview of all the
metadata collected per review, see van Altena.16

Abstracts were missing for 45,033 documents (17%).
Table 2 shows the characteristics of these documents.
They were kept in the dataset nevertheless, because
359 of them were inclusions.
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Review metadata enrichment. DTA review questions
are usually constructed according to three elements,
describing the people suspected of the disease
(Patients, P); the diagnostic tests that were evaluated in
the review (Index test(s), I); and a definition of the dis-
ease (Target condition, T).17 Of these elements, the tar-
get condition (T) can be mapped to a standardised
system and was therefore added to the review dataset.
In preparation, one of the authors (A.J.V.A.) read the
abstracts of the 50 reviews and identified the Interna-
tional Classification of Diseases, 10th revision, (ICD-
10) code for the target condition using the ICD-10
browser.18 Each review was assigned the best fitting
code suggested by the auto-complete function of the
ICD-10 browser. If more than one code was available,
both codes were assigned. Together with another
author (M.M.G.L.) the codes were reviewed. Codes
were adjusted if both authors agreed that the resulting
code would better reflect the research topic of the
review at hand.

We categorised diseases into disease groups using the
first letter of the ICD-10 code. Twelve reviews could not
be grouped based on disease codes, so we created a catch-
all group coined ‘other’. A total of eight groups were
identified, with Alzheimer (G) and dementia
(F) combined as one group (see Table 3). Table 4 shows
the metadata collected for each review, including the dis-
ease group of the review question.

3 | METHODS

3.1 | Prediction models

A plethora of feature extraction and classification
methods was available. We selected representatives of
approaches often used in related literature.7,12

Feature extraction. The input that a prediction model
is trained on is called the features. To extract these fea-
tures from the gathered data, we chose the term fre-
quency (TF) because of its simplicity. Document
frequency weighting was added to the term frequency
matrix (TF-IDF) to adjust for words that generally occur
more frequently in texts.

Classifiers. We chose a Random Forest classifier because
it is relatively simple and is much used in systematic review
prediction applications.12 The classifier was implemented
using the RandomForestClassifier method from the
scikit-learn library.19

Each classifier method has a set of parameters that
need to be determined before training on a dataset. The
Random Forest classifier has parameters for the shape of
the trees that will be generated, for example, the maxi-
mum depth of one branch on the tree. Parameters have a
different optimum for each dataset. To find these optimal
values we used grid search, a technique where a range of
values is tested with a small portion of the training set.

TABLE 1 Document characteristics after cleaning

Number of DTA reviews 50

Total number of documents 266,966

Included documents 4661

# Words per documenta 922 [0–9795]

# Unique words per documenta 70 [9–529]

Per review

# Documentsa 5339 [64–43,363]

# Included documentsa 93 [2–619]

% Included documentsa 4% [< 1%-20%]

Missing abstracts

# All documents 45,033 (17%)

# Included documents 359 (7%)

aMean [minimum-maximum].

TABLE 2 Reasons for missing abstract

All Inclusions

Foreign language 16,075 81

Before 1975 14,721 24

Not journal article 23,368 142

Note: Three major characteristics were found: (1) the document was written

in a foreign language and not available in English, (2) the document was
published before (approximately) 1975 and was not digitally available, and
(3) the document was not a primary research publication (e.g., comment,
case report, etc.). Note that there was overlap between the characteristics, as
an document might both be written in a foreign language and be published

before 1975.

TABLE 3 Review groups according to disease (target

condition)

Group # Reviews ICD-10 Disease

1 2 A Tuberculosis

2 4 B Parasitic

3 8 C Cancer

4 12 G and F Dementia and Alzheimer

5 4 K Liver

6 5 M Musculoskeletal system

7 3 Q Down syndrome

8 (other) 12 - Various

van ALTENA ET AL. 833



TABLE 4 Metadata collected for each review [Colour table can be viewed at wileyonlinelibrary.com]

Identifier # docs. # incl. ICD-10 Secondary ICD-10 Disease group

CD007394 2545 95 B44.0 2

CD007427 1521 123 M75.4 6

CD007431 2074 24 M54.3 M54.5 6

CD008054 3217 274 N87.9 Other

CD008081 970 26 H35.81 E14.3 Other

CD008643 15083 11 S32.001A M54.5 6

CD008686 3966 7 M53.9 M54.5 6

CD008691 1316 73 I25.10 Z94 Other

CD008760 64 12 I85 Other

CD008782 10507 45 G30 F06.7 4

CD008803 5220 99 H44.51 Other

CD009020 1584 162 M75.101 M25.5 6

CD009135 791 77 B55.0 2

CD009185 1615 92 N10 Other

CD009323 3881 122 C25.9 C24.1 3

CD009372 2248 25 I61.9 Other

CD009519 5971 104 C34.90 C80 3

CD009551 1911 46 B44.0 2

CD009579 6455 138 B65 2

CD009591 7991 144 N80 Other

CD009593 14922 78 A15.3 U84.9 1

CD009647 2785 56 E86 Other

CD009786 2065 10 C56 C80 3

CD009925 6531 460 Q90.2 7

CD009944 1181 117 C16.9 C80 3

CD010023 981 52 S92.2 Other

CD010173 5495 23 C06.9 C80 3

CD010276 5495 54 C06.9 C80 3

CD010339 12807 114 K80 5

CD010386 625 2 F03 F06.7 4

CD010409 43363 76 C51 C77.4 3

CD010438 3250 39 D68.9 T14.9 Other

CD010542 348 20 K70 5

CD010632 1504 32 F03 F06.7 4

CD010633 1573 4 G31.8 F02.8 4

CD010653 8002 45 F20 4

CD010705 114 23 A15.3 U84.9 1

CD010771 322 48 F03 4

CD010772 316 47 F03 4

CD010775 241 11 G30 F03 4

CD010783 10905 30 G30 F03 4

CD010860 94 7 G30 F03 4

CD010896 169 6 G31.0 F03 4

834 van ALTENA ET AL.



Performance of the resulting models is measured and the
parameter settings of the best model are retained to train
the model on the complete training set.

First, only a subset of all possible value combina-
tions is tried in a random search. The ranges for the
parameters are very wide to find the specific value
range where the prediction model approaches its opti-
mal state. Results of the random search were inspected
and a smaller set of parameter values was chosen for
the full grid search. In the full search, all parameter
values are tested and only the model with the highest
performance is retained. Final prediction models were
trained using a full grid search for each systematic
review. A detailed description of the selection process
can be found in Appendix S2.

3.2 | Model performance metric

Using the predict_proba function from the
sklearn library, the predicted probability of being an
inclusion was retrieved for each document in the target
review. The reading order of documents was deter-
mined by sorting the predicted probability from highest
to lowest. Models were judged on their ability of order-
ing the documents such that inclusions would be
encountered earlier during the screening process. This
reduced the number of documents needed to be read
during the screening process, thus saving work
and time.

This concept of performance is captured in the metric
‘Work Saved over Sampling’ (WSS), introduced by Cohen
et al..8 For a specified level of recall,‡ WSS measures the
fraction of documents that a review author does not need
to read as a result of the ranking, as compared to a ran-
dom ordering. WSS is calculated as follows:

WSS¼TNþFN
n

� 1�Rð Þ ð1Þ

where TN and FN are the number of true and false nega-
tives respectively, n is the total number of documents,
and R is the level of recall. Recall is defined as:

R¼ TP
TPþFN

ð2Þ

where TP is the number of true positives.
We adopted the commonly used WSS at a recall level

of 95% (WSS@95), which is defined as follows by8,12:

WSS@95¼TNþFN
n

�0:05 ð3Þ

WSS@95 ranges between 0.95 and �0.05. Respectively,
indicating a perfect classification or a poor classification
where all documents have been labelled as inclusion
and TNþFN¼ 0.

3.3 | Similarity metric

The similarity between the potential training data and
the target review was measured using titles and abstracts.
In our study, the documents were mathematically repre-
sented as a vector from the TF-IDF matrix, so we adopted
the cosine similarity metric,20 which is designed for vec-
torial representations of documents.

Cosine similarity measures the cosine of the angle
between two vectors of an inner product space,21 being
defined as follows by Huang et al.20:

SIM d
!
a, d

!
b

� �
¼ d

!
a � d

!
b

kd!akkd
!
bk

ð4Þ

where d
!

is a vector representation of a text document
(i.e., a single row of the TF-IDF matrix). The inner prod-
uct space is calculated as:

TABLE 4 (Continued)

Identifier # docs. # incl. ICD-10 Secondary ICD-10 Disease group

CD011134 1953 215 C18 C80 3

CD011145 10872 202 F03 4

CD011548 12708 113 K80 5

CD011549 12705 2 K80 5

CD011975 8201 619 Q90.2 7

CD011984 8192 454 Q90.2 7

CD012019 10317 3 N80 Other

Note: Colours are added to highlight disease groups.
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d
!

a � d
!

b ¼
Xn
1

aibi ¼ a1b1þa2b2þ…þanbn ð5Þ

where n is the length of the document vectors. Similarity
ranges from 0 (not similar, vectors are at an angle of 90 ∘ )
to 1 (perfectly similar, vectors are at an angle of 0 ∘ ).
Because the word counts of the TF-IDF matrix cannot be
negative, similarity cannot be negative either. Note that
Equation (4) may look similar to bivariate correlations
such as the Pearson correlation.

We were interested in the similarity between reviews,
and not between individual documents in these reviews.
We therefore calculated the similarity based on the mean
feature vector for all documents in each review r

!
i:

r
!

i ¼
Pni

j¼1d
!

ij

ni
ð6Þ

where is the feature vector for document j from review i,
and ni is the number of documents in review i. The simi-
larity between all pairs of reviews is then defined as:

Sik ¼ SIM r
!
i, r
!
k

� �

i ∈ 1…50f g, k
k ∈ 1…50f g
k ≠ i

 ð7Þ

where r
!

i and r
!
k are the mean review vectors for, respec-

tively, reviews i and k. Cosine similarity was calculated
between all pairs of reviews (50�49¼ 2450 in total).

3.4 | Workflow

We refer to the approaches used in this study as SIMI-
LAR, ALL, and RANDOM. The SIMILAR approach used

a similarity metric to select documents for the training
set. Training sets were constructed by using the docu-
ments from the n∈ 1,2,5,10f g reviews most similar to the
target review.§ The ALL approach used all of
the remaining 49 reviews as the training set. And lastly,
the RANDOM approach selected n∈ 1,2,5,10f g random
reviews.

The SIMILAR approach was compared with the ALL
and RANDOM approaches. ALL was chosen because it is
the standard in machine learning, following the rule of
thumb that more data equals better models. RANDOM
was added as a control.

As described above, prediction models were
trained using a Random Forest classifier and the
features from the TF-IDF matrix. The models were
used to rank the test set (i.e., the documents from
the target review) and the WSS@95 was calculated.
We repeated this process five times to account for
model training variability. For all three approaches,
each of the 50 DTA reviews were used as test set once.
This would train 1000 models each for the SIMILAR and RAN-
DOM approaches (i.e., 50 reviews � 4 training set sizes � 5
repeats = 1000), and 250 models for the ALL approach
(i.e., 50 reviews�5 repeats¼ 250). The workflow is shown
in Figure 1.

Analysis. Performance of the SIMILAR, ALL, and
RANDOM approaches were analysed using boxplots. Sta-
tistical significance of the results was analysed using a
Wilcoxon rank sum test. The Wilcoxon test was executed
for each pair of training set sizes. Resulting P-values were
adjusted for multiple testing using the Bonferroni
method. The significance tests were implemented using
the stats.ranksums function from the SciPy pack-
age22 and the stats.multitest.multipletests
function from the statsmodels package,23 respectively.
Additionally, the same analysis was applied to the perfor-
mance results after stratification into disease groups: 1–7
and ‘other’.

(A) (B)

FIGURE 1 Overview of workflow for the approaches using different training data: (a) similar data (SIMILAR) and random data

(RANDOM), and (b) all data (ALL). Feature extraction was implemented using TF-IDF (term frequency inverse document frequency). The

prediction model was implemented using the Random Forest classifier [Colour figure can be viewed at wileyonlinelibrary.com]
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Lastly, we analysed the correlation between model
performance and cosine similarity. To determine the cor-
relation, we first retrieved the mean WSS@95 and mean
cosine similarity per review for each training set size used
in the SIMILAR approach (n∈ 1,2,5,10f g). Then, the
corr function of the Pandas package was used to calcu-
late the correlation.24

4 | RESULTS

Approach comparison. The overall prediction perfor-
mance results obtained in the SIMILAR, ALL, and RAN-
DOM approaches are shown in Figure 2. The SIMILAR
and ALL results indicate that on average the best perfor-
mance is obtained when all training data are used. The
ALL significantly outperforms SIMILAR for all training set
sizes. Furthermore, the median performance in the SIMI-
LAR approach is higher for larger training sets (Table 5).

With smaller training sets (n∈ 1,2,5,10f g) the models
from the SIMILAR approach outperform those from the
RANDOM approach. However, the difference in perfor-
mance for the training sets with size 5 and 10 is not sta-
tistically significant, see Table 5.

Influence of the ‘other’ disease group on performance.
Figure 3 presents the overall performance results
obtained for all training set sizes (n∈ 1,2,5,10,49f g)
stratified by disease group. The stratified results show
that in general the prediction performance is higher for
reviews that belong to a disease group, as opposed to
those that do not. The difference in performance is signif-
icant over all training set sizes as seen in Table 6.

Correlation between cosine similarity and perfor-
mance. Results for the correlation analysis are shown
in Table 7. The values in the diagonal show that a
moderate correlation (0.32–0.47) exists between the
performance of a review and its similarity to the
training set.

FIGURE 2 Boxplot of model performance stratified by the

training set size. Performance is shown separately for the

RANDOM, SIMILAR, and ALL approaches [Colour figure can be

viewed at wileyonlinelibrary.com]

TABLE 5 P-values for SIMILAR versus ALL performance and SIMILAR versus RANDOM performance

SIMILAR
ALL

RAND

49 (M¼ 0:49) 1 (M¼ 0:25) 2 (M¼ 0:25) 5 (M¼ 0:33) 10 (M¼ 0:39)

1 (M¼ 0:36) <0.001* 0.03*

2 (M¼ 0:40) <0.001* <0.01*

5 (M¼ 0:39) <0.001* 0.66

10 (M¼ 0:43) 0.05* 1.00

Note: SIMILAR is stratified by the training set size. M is the median WSS@95 performance over all models.

*P-value is significant.

FIGURE 3 Boxplot of SIMILAR performance stratified by the

training set size. The results are shown for groups 1–7 and other

[Colour figure can be viewed at wileyonlinelibrary.com]
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5 | DISCUSSION

In this study, we investigated whether computerised sup-
port of the systematic review screening process could be
improved. Our hypothesis was that a smaller, but more
focused training set would improve performance. We
assessed the use of cosine similarity for selecting data for
the training set and compared the classification perfor-
mance of this approach to approaches using all available
data and randomly selected data.

Approach comparison. Analysis of the SIMILAR and
ALL approaches shows that, when considering all
50 reviews in our dataset, the best performance is
obtained when all training data are used. This rejects our
hypothesis that a more targeted training set is beneficial
for prediction. However, when reviews in the ‘other’
group are considered separately from those in disease
groups 1–7, we observe that they perform significantly
worse at any training set size or approach. This indicates
that a training set with topically similar reviews is crucial
for prediction model performance.

When review authors start a new systematic review,
they may not have a large training set with many previ-
ously undertaken systematic reviews at hand. Our find-
ings indicate that, in these situations, it may be
worthwhile to gather a training set based on a few sys-
tematic reviews on a similar topic. Reviewers who

develop many systematic reviews, for example within a
guideline committee or a review-developing enterprise,
may want to invest into creating a repository of past
reviews to use as a training set. The extra investment to
select related reviews for a training set can thus be
prevented.

The size of the training set is a major factor in the
computational cost of a machine learning method (see
Appendix S5 for a comparison between two training set
sizes). Building a prediction model is much faster for
smaller training sets. However, a comparison of the SIMI-
LAR and RANDOM approaches shows that careful selec-
tion is important for classification performance. Note
that the median performance of the SIMILAR approach
is higher than the RANDOM performance, especially
when smaller training sets were used. Furthermore, a
moderate correlation was found between performance
and cosine similarity. A greater correlation between per-
formance and similarity means that similarity is selecting
useful samples from the dataset for training. From this,
we conclude that, given a target review, cosine similarity
can indeed identify transferable knowledge in the avail-
able data. For computerised support developers the pro-
posed SIMILAR approach may be useful to reduce the
training set size in settings where plenty of data is avail-
able and training on all data is infeasible.

The models always performed well for some reviews,
regardless of the size of the training set, while for other
reviews the models always performed poorly. Note that
this is the reason that the performance boxplots (shown
in Figure 3) cover nearly the whole possible range for the
WSS@95 metric. Although other researchers hypo-
thesised that this may be due to the number of included
studies in a review, our additional analysis (Appendix S4)
did not reveal a clear explanation for this effect.

Reproducibility. Reproducibility of methods is often
problematic in systematic review automation literature
because the proposed methods are difficult to reproduce
and compare.7,25 We attempted to mitigate this problem
by using relatively simple methods and a publicly

TABLE 6 P-values for other versus disease groups 1–7 performance, both are stratified by the training set size

Groups 1–7

Other

1 (M¼ 0:26) 2 (M¼ 0:28) 5 (M¼ 0:29) 10 (M¼ 0:33) 49 (M¼ 0:42)

1 (M¼ 0:40) 0.009

2 (M¼ 0:44) <0.001

5 (M¼ 0:43) 0.005

10 (M¼ 0:47) 0.002

49 (M¼ 0:51) 0.038

Note: All P-values are significant. M is the median WSS@95 performance over all models.

TABLE 7 Pearson correlation between the performance and

cosine similarity for each training set size in the SIMILAR

approach

Performance

Similarity

1 2 5 10

1 0.40

2 0.47

5 0.36

10 0.32
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available dataset. The dataset was provided in the 2017
CLEF eHealth Lab12 and is curated such that it was avail-
able through PubMed using automated methods. We also
provide the complete repository of code that was used to
train the models and analyse the results in van Altena.15

Limitations. Because the dataset has a relatively small
number of inclusions, a missing abstract on an inclusion
has a relatively large influence on the model's perfor-
mance (data shown in Appendix S4). Most are not avail-
able at all and cannot be added manually. On the other
hand, using the dataset ‘as is’ enabled us to consider all
50 reviews in the CLEF dataset.

Another limitation of our study is that we only had
titles and abstracts available for the similarity metric. We
assume that most of the relevant information of each
document is represented in their title and abstract, but it
is possible that complex concepts were only expressed in
the full text. Unfortunately, full-text data for all docu-
ments in the CLEF dataset are not available through
PubMed in an automated way. The techniques that
would enable collection of full-text documents and analy-
sis of the influence of full-text documents on prediction
performance are issues for further research.

The disease group is not the only potentially transfer-
able knowledge among DTA reviews, as it refers only to
the ‘Target condition’ aspect of the PIT. The ‘Patients’
and ‘Index test’ aspects remain unexplored in this study.
Further analysis of these aspects might therefore identify
a different set of reviews in the ‘other’ group. Nevertheless,
because cosine similarity takes all words in the documents
into account, we hypothesise that it also captures the P and
I aspects. Further research is needed to test this hypothesis
and to adapt or extend the similarity metric to further
increase its ability to detect transferable knowledge.

5.1 | Other approaches

Although our approach for selecting training samples is
novel, training sample selection itself is not a new idea in
machine learning. There are numerous examples that
attempt to enrich, balance, or create datasets in other
domains. The techniques proposed in these papers often
stem from the same type of problems: there is little to no
data to train or the available data are noisy or unbal-
anced. Below we compare our approach with some of
these other training sample selection approaches.

Cohen et al.26 conclude that a topically similar train-
ing set almost always outperforms a set that is not. How-
ever, they also note that finding topically similar data for
training is impractical. Our work, however, offers a prac-
tical approach to identify relevant training data through
cosine similarity.

An example of enriching a training set for natural
language models is shown by Moore et al..27 They
showed that curating the data and selecting only those
samples that improve the classifier increases the perfor-
mance of the final language model. This approach is sim-
ilar to ours, as we used cosine similarity to select only
those reviews that are similar to the target review. In
both approaches, less training data are used to improve
the classifier performance.

Imbalanced datasets, where the negative examples in
the dataset massively outweigh the positive examples or
vice versa, are often challenging in machine learning.
Unlike, for example, the Random Forest classifier used in
this study, there are many classifiers that cannot handle
unbalanced datasets and yield a bad prediction. Nowa-
days there are many techniques that address unbalanced
datasets. An example is shown in Kubat et al..28 They
present a simple technique that only removes negative
examples while preserving all the positive examples in
the dataset. This preservation is important for systematic
reviews because generally they have very few positive
documents (i.e., inclusions). In this paper, we did not
apply such a sample selection technique, however for fur-
ther research it might be interesting to combine the pro-
posed training set selection based on cosine similarity
with a technique that tackles dataset imbalance.

Lastly, instead of selection of samples we could also
choose to make a sub-selection of the features that are
extracted. The data used as input to the machine learning
method are represented as a matrix with one sample per
row and one column per feature. In the case of systematic
reviews, we have documents with words. The feature
matrix therefore has one row per document and one
word per column, and each cell contains the occurrence
of a word in a document. The sample selection tech-
niques discussed above will remove rows from this matrix
whereas feature selection removes columns. As discussed
in Adeva et al.,29 feature selection reduces the training
set size and condenses the important features which has
a beneficial effect on the prediction model. Even though
feature selection might have increased the overall perfor-
mance of the prediction models, we chose not to apply it,
which made it possible to focus on training set selection.

6 | CONCLUSION

We have shown that cosine similarity can be used to
select a training set that is relatively similar to the articles
one aims to screen for. We have also shown that using all
available data outperforms a dataset containing data
selected using cosine similarity. Nevertheless, in cases
where reviews on a similar topic are available, good
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prediction performance can be achieved with signifi-
cantly smaller training sets.

For systematic reviewers it might be worthwhile to
gather a few previously undertaken systematic reviews
on a similar topic when applying computerised support
to the screening of a new systematic review. However,
when a large set of systematic reviews is available the
extra investment to make a selection can be avoided.

The approach proposed in this work is meant to
improve future tools that provide computerised support
for systematic reviewers. Further research may investi-
gate the benefits of our approach in a practical setting.
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ENDNOTES

* A model performs better when it is robust, that is, it is able to
accurately label most, if not all, cases that it has not seen before.

† PubMed data may contain the following tags: <i>, <u>, <b>,
<sup>, and <sub>.

‡ That is, the fraction of correctly identified inclusions, in statistics
the term ‘sensitivity’ is used.

§ A maximum of 10 similar reviews was chosen after analysing pre-
liminary data on cosine similarity scores. We observed that
reviews are mostly similar to just a few other reviews. Similarity
rapidly drops and at the 10th review similarity is mostly equal.
Data are shown in Appendix S3.
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