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Abstract

Moderate-to-high levels of physical activity are established as preventive factors in metabolic syndrome development.
However, there is variability in the phenotypic expression of metabolic syndrome under distinct physical activity conditions.
In the present study we applied a Genotype X Environment interaction method to examine the presence of GxEE interaction
in the phenotypic expression of metabolic syndrome. A total of 958 subjects, from 294 families of The Portuguese Healthy
Family study, were included in the analysis. Total daily energy expenditure was assessed using a 3 day physical activity diary.
Six metabolic syndrome related traits, including waist circumference, systolic blood pressure, glucose, HDL cholesterol, total
cholesterol and triglycerides, were measured and adjusted for age and sex. GxEE examination was performed on SOLAR
4.3.1. All metabolic syndrome indicators were significantly heritable. The GxEE interaction model fitted the data better than
the polygenic model (p,0.001) for waist circumference, systolic blood pressure, glucose, total cholesterol and triglycerides.
For waist circumference, glucose, total cholesterol and triglycerides, the significant GxEE interaction was due to rejection of
the variance homogeneity hypothesis. For waist circumference and glucose, GxEE was also significant by the rejection of the
genetic correlation hypothesis. The results showed that metabolic syndrome traits expression is significantly influenced by
the interaction established between total daily energy expenditure and genotypes. Physical activity may be considered an
environmental variable that promotes metabolic differences between individuals that are distinctively active.
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Introduction

The understanding of the wide range of physical activity (PA)

and total daily energy expenditure (TDEE) levels in different

populations has been of utmost concern in epidemiological

research, because of its relationship with health in general [1],

and the metabolic syndrome (MetS)—a cluster of interrelated

cardiovascular disease risk factors characterized by glucose

intolerance, hypertension, dyslipidemia and obesity—in particular

[2]. The definition of MetS, and its associated empirical cut-off

points of different markers are controversial issues. Moreover, the

mechanisms underlying MetS pathophysiology are extremely

complex, as it is both genetically and environmentally driven

[3]. In the recent Takahata study [4], the results showed that total

energy expenditure was, on average, lower among those individ-

uals with the clustering of MetS risk factors, regardless of body

mass index status. Also, it has been suggested that moderate-to-

high PA levels have a preventive effect on the development of

MetS [5,6]. Further, recent data suggest that distinct PA

frequencies and intensities may produce different effects in MetS

expression, as a study has showed that everyday activities such as

walking and cycling yielded minor effects on MetS whereas high

intensity activities performed for more than two hours per week

were associated with a lower prevalence of MetS [7].

Phenotypic variation in different MetS indicators at the

population level has been studied using different approaches

[8,9], and new efforts have been employed to disentangle the

highly complex architecture of their genetic foundations [10]. One

aspect that remains to be addressed is the understanding of the

differential effects of TDEE and PA on MetS traits via a possible

interaction with genetic factors. This possibility was eloquently

postulated by Booth and Lee [11] in a revision of Arthur Beaudets

concept of environmental-gene interaction [12] in which each

‘‘individual has their own array of disease susceptibility genes that will interact

with physical inactivity to produce maladaptive changes in gene-expression that

often passes a clinical threshold into a chronic disease phenotype’’ (pg. 148).

Data supporting this evidence in humans is scarce. Recently, in a

2004 statement by NIH [13] it was indicated that a previously

identified type 2 diabetes (T2D) predisposing polymorphism [14]

would only express itself concurrently with uncertain genetic

susceptibility factors, alongside environmental factors such as PA.

In a study on rats, the results showed that after 11 generations of

controlled selection in which high aerobic capacity animals were

mated, those with high aerobic capacity had 12% lower mean 24 h
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blood pressure, 16% lower fasting blood glucose, 56% lower

fasting plasma insulin, and 63% lower plasma triglycerides ad

those with low aerobic capacity [15]. The logical inference was

that genetically determined aerobic capacity is related to MetS

traits [16].

Contemporary technological advances and new statistical

models allow geneticists to study EE and PA and its impact on

phenotypic variance in different MetS traits using an escalating

wealth of complex genetic models [8]. These developments permit

the estimation of complex MetS traits using family data exploiting

the elegant flexibility of maximum likelihood estimation tech-

niques [see Elston and colleagues [17]]. These statistical

techniques, mostly based on variance components (VC) models,

provide a robust framework for statistical inference, which includes

parameter and model-likelihood estimation, and associated

likelihood ratio testing procedures [18].

Under the VC model approach, we can formally test for

genotype x environment (GxE) interaction [19]. Very briefly, this

interaction arises when a genotype yields distinct phenotypic

expressions under contrasting environments [20]. Here we

hypothesize that genotype x EE (GxEE) interaction is a potent

determinant of variation in MetS traits. This possibility deserves

further consideration, because it can inform the discussion around

the preventive and systematic protective effects of EE and PA on

MetS traits. For example, in the Nurses Health Study, it was

concluded that PA interacts with T2D susceptibility, because

among the women whose parents had T2D, a 65% greater risk of

developing T2D was found for those who were on the lower

quintile of PA level when compared to those in the higher quintile.

On the contrary, among the daughters of non-diabetic parents,

being in the lower quintile of PA was associated with twice the risk

of developing diabetes than being in the most active quintile.

The main purposes of the present study, using a nuclear family

design, are to estimate the magnitude of genetic factors responsible

for the architecture of MetS traits, and to study potential GxEE

interaction.

Materials and Methods

The Portuguese Healthy Family study, from the Portuguese

Estudo de Famı́lias Saudáveis Portuguesas (FAMS), investigates the

relationship among MetS traits, PA, physical fitness and body

composition in nuclear families. Children and adolescents aged 10

to 18 years were recruited in schools from the north and central

regions of mainland Portugal, and were approached to freely

participate in the study with their siblings and parents. The ethics

committee of the Faculty of Sport, University of Porto, approved

the study, and written informed consent, and assent, was obtained

from the parents (or guardians). Given that families with 3 or more

children are scarce in the Portuguese population [21], a total of

500 families with at least one child were invited to participate in

this study. Of these, 294 families agreed to participate with at least

two family members (see Table 1).

Physical Activity
Using a 3 day physical activity diary [22], a trained technician

interviewed each subject, recording the dominant activity for each

15-min period during 24 h by using a list of categorized activities.

Categories from 1 to 9 refer to increasing levels of energy

expenditure (METs) of each activity in which category 1 indicates

very low energy expenditure such as sleeping or resting in bed, and

category 9 refers to highly demanding physical work such as high-

intensity sports. Approximate median energy cost for each of the

nine categories in kcal/kg/15 min was used to compute the daily

energy expenditure for each individual. The number of 15-min

periods for each category was first summed over the 3 day period

and weighted by its own median energy cost. Total energy

expenditure (TEE) was then calculated by summing over the

median energy cost of all nine categories and multiplying by

subjects body weights. Total daily energy expenditure (TDEE

(kcal/day)) was then calculated by dividing TEE by 3.

Blood sampling and measurements of cardiovascular risk
factors

Blood samples were collected after an overnight fast of at least

10-12 h. Glucose (GLU), total cholesterol, HDL-cholesterol

(HDL), and triglycerides (TG) were analyzed with an LDX point

of care analyzer [23]. This method has been previously validated

against a laboratory reference method [24], and daily optical

equipment checks were made according to manufacturer instruc-

tions.

Resting systolic blood pressure (SBP) was measured with an

Omron Model M6 (HEM-7001-E) device according to The

International Protocol of the European Society of Hypertension

[25]. Cuff sizes were modified depending on the size of the

participant’s arm. Subjects were seated in an upright position and

the right arm sitting on a table at the heart level. The first reading

was performed after a 5 minute resting period. The other two

readings were performed with three minute breaks in between.

The mean of the three blood pressure measurements was used for

further analysis. All blood samples and blood pressure analysis

were performed between 7:30 am and 10:30 am.

Waist circumference (WC) was measured with a Holtain flexible

tape at the level of the smallest waist perimeter, with the subject

standing erect with relaxed abdominal muscles and at the end of

normal expiration.

Statistical Analysis
Univariate quantitative genetic procedures as implemented in

SOLAR [26] under a special class of the multivariate linear model,

namely the variance components (VC) approach, were used to

estimate additive genetic and environmental VCs for each of the

MS traits. Prior to all modeling, age, age2, sex and their relevant

interactions were used as covariates in a preliminary VC model.

Residuals were thus derived for each trait and were normalized

using an inverse normal transformation, as previously advocated

[27,28]. Heritability estimates (h2) were computed using a

maximum likelihood approach to estimate variance components

under the standard polygenic model as implemented in SOLAR

v.4.3.1 software [26].

To test for GxEE interaction, basic initial hypotheses were

formulated regarding the variance/covariance relationship of a

MetS indicator between family members with different levels of

TDEE. As regards GxEE interaction, the fundamental null

hypothesis is that the expression of a polygenotype (i.e., aggregate

of all genotypes related to the expression of a phenotype) is

independent of TDEE level. It can be shown from first principles

that if there is no GxEE interaction, the same MetS indicator

measured in subjects with different levels of TDEE will have a

genetic correlation of 1.0 and the genetic variance will be

homogeneous across all levels of TDEE [18,29]. On the contrary,

if GxEE interaction is present, the genetic correlation will be

significantly less than 1.0 and/or the genetic variance will not be

the same among all levels of TDEE.

The foregoing requires that we model the variance and

correlation as functions of TDEE levels. For the genetic variance

function (and similarly for the environmental variance function),

we modeled the variance using an exponential function to ensure

Genotype by Energy Expenditure Interaction with MS
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positivity, which is required since any variance is a squared term

[18,29]: s2
g~ exp agzcg EEð Þ

� �
, where ag and cg are parameters

to be estimated. An additional justification for the exponential

function is suggested by the alternative name of this approach,

namely the log-linear model of the variance: ln s2
g~agzcg EEð Þ.

That is, on taking the natural logarithm of the variance modeled as

an exponential function, we have the equation of a line. In this

form, the variance homogeneity null hypothesis obviously holds

for a slope-term equal to 0: cg~0. For the genetic correlation

function, we modeled the genetic correlation as an exponential

decay function of the pairwise differences in TDEE levels:

rg~ exp {l EEi{EEj

�� ��� �
, where l is a parameter to be

estimated as a function of the difference in TDEE levels between

any two individuals i and j. Here we also have an elegant

reexpression of the interaction null hypothesis, in this case

regarding the genetic correlation, in that a genetic correlation

equal to 1 is equivalent to l~0. This is because for l~0, we have

rg~ exp {l EEi{EEj

�� ��� �
~e0~1.

For reasons detailed in Diego et al. [29], the likelihood ratio test

statistics (LRTs) to test cg~0 and l~0 are respectively distributed

as x2
1, a chi-square random variable with 1 degree of freedom (d.f.),

and
1

2
x2

0z
1

2
x2

1

� �
, a 50:50 mixture of chi-square random variable

with a point-mass at 0, denoted by x2
0, and a chi-square with 1 d.f.

Prior to examination of these hypotheses, however, we first

confirmed if the overall GxEE interaction model provided a better

fit to the data than the standard so-called polygenic model. The

LRT for this comparison can be shown to be distributed as

1

2
x2

2z
1

2
x2

3

� �
[30].

Results

Table 1 presents basic descriptive information. Some relatives

were not able to fully engage in the data collection procedures. As

such, a total of 958 subjects, comprising 180 fathers, 253 mothers,

265 sons and 260 daughters, from 294 families were included. The

average family size was 3.3 subjects. Families are, on average,

young and the results are as expected as the mean values for all the

MetS traits were consistently higher in parents than in offspring.

Also, with the exception of HDL cholesterol, MetS indicators were

higher in fathers than in mothers. The MetS profiles of sons and

daughters were similar with daughters showing higher mean levels

of TC, HDL and TG.

All MetS indicators showed highly significant h2 estimates

ranging from 0.21 (TG) to 0.59 (HDL) (Table 2), meaning that

there are strong additive genetic factors affecting their expression

in family members that may justify a further specific analysis of

their genetic architecture.

To test for the influence of TDEE and PA on the expression of

MS indicators, the polygenic model was compared to the GxEE

model by means of a log-likelihood ratio test (see Table 3). The

GxEE interaction model is significantly better than the polygenic

model for WC, SBP, GLU, TC and TG, meaning that the GxEE

interaction model fits the data better than the polygenic model for

these five traits.

However, to verify if there is GxEE interaction, the full model

was compared to its constrained alternatives (i.e. setting

cg~0orl~0) for WC, SBP, GLU, TC and TG.

In Figure 1, we display the results for those traits that showed

significant variance heterogeneity and a correlation function that is

significantly different from 1. For WC, GLU, TC and TG,

significant GxEE interaction was due to rejection of the variance

homogeneity hypothesis; i.e., variance heterogeneity. For WC and

GLU, the null hypothesis that the genetic correlation (rG) equals 1

was also significantly rejected. Figure 1a highlights that, for GLU,

TC, TG, and WC, genetic variance increases with increasing

levels of TDEE. On the other hand, figure 1b demonstrates that,

for GLU and WC, the genetic correlation decreases as the

Table 1. Sample descriptive characteristics (means 6 standard deviations).

Fathers Mothers Sons Daughters

(n = 180) (n = 253) (n = 265) (n = 260)

Age (yrs) 45,3665,17 43,4964,47 14,6862,78 14,4062,80

TDEE ( kcal/day) 3561.796962.71 2788.376527.58 2280.576774.43 2024.856568.43

WC (cm) 92,34610,64 80,9868,99 72,74610,41 68,3968,56

SBP (mmHg) 131,7614,27 122,12616,14 117,60613,06 113,13610,49

GLU (mg/dl) 97,17613,19 87,77613,27 85,3969,10 83,2469,01

HDL (mg/dl) 44,58613,76 55,94614,37 47,88613,71 53,30612,85

TC (mg/dl) 196,72641,32 181,17632,17 140,64624,49 150,44626,42

TG (mg/dl) 140,336103,85 109,37662,63 62,55630,70 79,57650,00

Legend: WC – waist circumference; SBP – systolic blood pressure; GLU – glucose; HDL – high density lipoprotein; TC – Total cholesterol; TG – triglycerides.
doi:10.1371/journal.pone.0080417.t001

Table 2. Heritability estimates (h2) and corresponding 95%
confidence intervals (95%CI) of the different phenotypes in
the Portuguese Healthy Families Study

Trait h2 Std. Error p-value 95%CI

WC (cm) 0,34 0,07 ,0,001 0,22–0,45

SBP (mmHg) 0,40 0,07 ,0,001 0,27–0,51

GLU (mg/dl) 0,29 0,07 ,0,001 0,18–0,40

HDL (mg/dl) 0,59 0,06 ,0,001 0,48–0,69

TC (mg/dl) 0,51 0,07 ,0,001 0,39–0,62

TG (mg/dl) 0,21 0,08 0,002 0,09–0,33

Legend: WC – waist circumference; SBP – systolic blood pressure; HDL – high
density lipoprotein; TC – Total cholesterol; TG – triglycerides.
doi:10.1371/journal.pone.0080417.t002
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differences between TDEE level increases among family members.

It may be noticed that genetic correlation for GLU decays to 0

almost instantaneously. However, this is simply an artifact of the

two correlations being plotted on one scale and therefore the

genetic correlation that decreases at a faster rate seems to

immediately go to 0. This is clarified in the next figure.

Figure 2 illustrates that, for GLU and WC, GxEE interaction is

a joint function of genetic variance heterogeneity and a genetic

correlation function not equal to one. Thus, we express them

jointly as a covariance function in the vertical axis. Due to space

restrictions on the 3-dimensional plot, we abbreviated the

corresponding axes in figure 1 to TDEE and pair-wise differences.

Moreover, because the traits change at different rates, and to show

the correlation functions for both traits at the appropriate

resolution, the pair-wise differences are shown on different scales.

In fact, the GLU correlation function curve is decreasing at a

much faster rate than WC, forcing us to change the scale.

Discussion

The present report aimed to assess the genetic variance present

in MetS traits as well as to examine potential GxPA interaction

that has an effect on MetS traits. Our results confirm the

importance of genetics on MetS traits with all h2 being significant

and, more interestingly, highlight the importance of GxEE

interaction in the phenotypic determination of MetS traits.

To the best of our knowledge this is the first attempt to apply a

GxE interaction analysis to better understand the differential

relationship between TDEE and PA with MetS risk factors. A GxE

interaction effect is present when the phenotypic expressions of an

environmental factor or behavior is conditional to the genotype of

an individual. This study provides evidence that there is a genetic

basis for the variability in quantitative measures of the metabolic

syndrome that is mediated by energy expenditure and/or physical

activity.

The present findings confirm that MetS traits are highly

heritable in agreement with previous results [31,32]. HDL

(h2 = 0.59) was the most heritable of the MetS traits which is

consistent with results from elsewhere ranging from 0.46 in

Tehran Lipid and Glucose Study (TLGS), and 0.63 from the

Family Heart Study (FHS) population. On the other hand, TG

(h2 = 0.21), in disagreement with the data from TLGS (h2 = 0.36)

and FHS (h2 = 0.48) [31,33], was the least heritable trait. These

differences could be attributable to distinct genetic architectures,

namely gene frequencies and their value, as well as distinct

Table 3. Results of log-likelihood ratio tests (LRT) and
respective p-values contrasting a polygenic model vs a GEE
model for each of the MS indicators.

Trait Polygenic LnL GxPA LnL LRT p-value

WC –380,061 –319,731 120,660 ,0,0001

SBP –370,926 –364,625 12,601 0,004

GLU –444,331 –384,913 118,835 ,0,0001

HDL –340,745 –340,542 0,408 0,877

TC –357,813 –343,478 28,669 ,0,0001

TG –380,194 –331,080 98,228 ,0,0001

Legend: WC – waist circumference; SBP – systolic blood pressure; HDL – high
density lipoprotein; TC – Total cholesterol; TG – triglycerides; LnL – log-
likelihoods; LRT – Likelihood ratio test.
doi:10.1371/journal.pone.0080417.t003

Figure 1. Genotype X Total Daily Energy Expenditure genetic variance (a) and Genotype X Total Daily Energy Expenditure genetic
correlation (b).
doi:10.1371/journal.pone.0080417.g001
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environmental factors specific to each population. Also, distinct

analysis strategies (e.g., Tang and colleagues [31]) made adjust-

ments for a set of confounders that were not used in the present

report], and different sample sizes might explain some of the

variability in the TG heritability estimates.

It is well established that PA has a preventive effect on a variety

of morbidities associated with cardiovascular diseases [9]. For

instance, studies on familial hypercholesterolemia (FH) in Utah

families seem to demonstrate this very point. While FH, which

leads to early-onset coronary heart disease, is caused by mutations

in the LDL-receptor gene (LDLR), it was shown that heterozygous

carriers of the LDLR mutation lived into their eighth and ninth

decades in the 19th century but their descendants in the 20th

century, who were also heterozygous carriers, lived only into their

third and fourth decades [34,35]. These investigators documented

that the carriers who lived in the 19th century were relatively more

physically active and enjoyed a more nutritious diet than the

carriers who lived in the 20th century. However, it has been shown

that there is a considerable heterogeneity in the response to PA

leading to distinct signals in terms of cardiovascular risk factors

[36]. For example, in the HERITAGE Family Study, after 20

weeks of supervised training sessions, a significant mean 3.6%

increase in plasma HDL was observed together with a high inter-

variability in responsiveness to training, ranging from a mean

9.3% decrease in Quartile 1 of HDL-C response to a mean 18%

increase in Quartile 4. Moreover, the authors verified that only

15.5% of the variability was due to baseline variables and training

adaptations, concluding that only a minor extent of the adaptation

could be predictable by nongenetic factors. This complex and

controversial theme has been addressed in a recent paper by

Bouchard et al. [37] in which some participants, when exposed to

regular exercise, ended up having worsened metabolic profiles.

The preceding raises questions related to the importance of genetic

susceptibility in explaining the variability in the response to similar

levels of PA.

Our results showed that there is additive genetic variance

heterogeneity for GLU, TC, TG, and WC across TDEE levels,

and that for WC and GLU, the genetic correlation between

distinct levels of TDEE was different from 1. These results may be

related to work demonstrating that physical activity and inactivity

have anti- and pro-inflammatory effects, respectively [38,39]. It is

widely believed that the MetS and MetS-associated diseases such

as type 2 diabetes (T2D) and cardiovascular disease (CVD), are

caused in a large part by chronic sub-clinical inflammation

[40,41]. That we observed increasing additive genetic variance

heterogeneity for GLU, TC, TG, and WC with increasing TDEE

levels is consistent with upregulation in the genes involved in anti-

inflammatory processes. Recent work [42] showed significant

SNP–moderate to vigorous PA interactions on BMI-for-age Z-

scores in European-American at GNPDA2 and FTO genes, and in

Hispanic-American at LZTR2/SEC16B. In 2011, a robust meta-

analysis of 218,166 adults and 19,268 children found that, in

adults, PA attenuated the effect (p-value for interaction = 0.001)

of the minor (A2) allele of rs9939609 on obesity. Even though this

interaction failed to be statistically significant in children and

adolescents, in adults the minor allele of rs9939609 increased the

odds of being obese less in the physically active group (odds ratio

= 1.22/allele, 95% CI 1.19–1.25) than in the inactive group (odds

ratio = 1.30/allele, 95% CI 1.24–1.36). These results seem to

suggest that there are genes associated with increased MetS risk

Figure 2. Genetic covariance function for Fasting Glucose (a) and Waist Circumference (b). Total Daily Energy Expenditure units are
in kcal/day.
doi:10.1371/journal.pone.0080417.g002
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factors, such as obesity, that actually interact with different EE

levels. Further, that we observed a genetic correlation function

different from 1 across TDEE differences is consistent with the

activation of genes involved in pro- and anti-inflammatory

processes at relatively low and high PA levels, respectively [43].

We speculate that potential epigenetic changes driven by EE

might be linked to a major epigenetic modification - DNA

methylation - that suppresses gene expression by modulating the

access of the transcription machinery to the chromatin or by

recruiting methyl binding proteins [44]. In a recent paper by

Barrés et al. [45] global methylation values decreased after intense

exercise, even after controlling for the effect of hemoglobin mRNA

content. More specifically, the results highlighted that captured

methylated promoters for metabolic genes, previously linked to

type 2 diabetes [46], were lower after acute exercise, leading the

authors to suggest that acute exercise induces gene-specific DNA

hypomethylation in human skeletal muscle [45].

As mentioned earlier we were unable to find similar papers to

which we could compare our results and assess the suitability of

our interpretations. It is quite interesting that despite the great

wealth of data on PA and MetS, be it from descriptive and/or

interactions studies, results are still lacking on the complex and

divergent effects of PA on MetS traits given individuals genotypes.

Perhaps this may be due to the complex nature of MetS, the

statistical challenges that GxE interaction poses, and the necessity

of having large samples of families. Moreover, with the develop-

ment of DNA sequence analysis, and the possibility of running

genome wide associations scans (GWAs), many investigators have

devoted their attention to finding specific loci associated with the

phenotypic variability of MetS traits [47]. We feel as though it is

extremely important to be able to merge the new evidence that are

now being brought to life by GWAs with the results that are shown

in this report and that consubstantiate that there is an underlying

effect of genetic susceptibility in phenotypic expression of MetS

traits.

Notwithstanding the importance of the present results, the fact

that this study is based on a free health check-up, that may not be

representative of the general Portuguese population, is a limitation

as well as the relatively young and healthy sample of families may

limit the generalizability of the results to older individuals who are

more prone to develop MetS. Also, the lack of information about

resting metabolic rate may influence the PAEE results, although

previous work [46,48] with this 3-day diary never considered this

possibility. Another limitation is related to a lack of information on

nutritional habits, although this information is never easy to

evaluate. However, the large sample size, the reliance on

continuous data for MetS traits, the use of state of the art

statistical procedures and the novelty of the analysis in TDEE and

PA genetic epidemiology research, are strengths of the present

study.

In conclusion, the present results demonstrate that MetS trait

expression is significantly influenced by the way in which the

genotype ‘‘deals’’ with distinct TDEE levels. As such, PA may be

considered an environmental variable that promotes metabolic

differences between individuals that are distinctively active. This is

valuable information for health practitioners. More efforts should

be devoted to identify specific loci that control MetS traits and to

test if those loci are regulated or not by TDEE and/or PA.
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