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P H Y S I C A L  S C I E N C E S

Elastic turbulence generates anomalous flow resistance 
in porous media
Christopher A. Browne and Sujit S. Datta*

Many energy, environmental, industrial, and microfluidic processes rely on the flow of polymer solutions through 
porous media. Unexpectedly, the macroscopic flow resistance often increases above a threshold flow rate in a 
porous medium, but not in bulk solution. The reason why has been a puzzle for over half a century. Here, by directly 
visualizing flow in a transparent 3D porous medium, we demonstrate that this anomalous increase is due to the 
onset of an elastic instability in which the flow exhibits strong spatiotemporal fluctuations reminiscent of inertial 
turbulence, despite the small Reynolds number. Our measurements enable us to quantitatively establish that the 
energy dissipated by pore-scale fluctuations generates the anomalous increase in the overall flow resistance. Be-
cause the macroscopic resistance is one of the most fundamental descriptors of fluid flow, our results both help 
deepen understanding of complex fluid flows and provide guidelines to inform a broad range of applications.

INTRODUCTION
Diverse applications, ranging from groundwater remediation (1) 
and oil recovery (2, 3) to filtration (4) and chromatography (5), rely 
on the viscous-dominated flow of polymer solutions through disor-
dered three-dimensional (3D) porous media. One of the most fun-
damental descriptors of such flows is the “apparent viscosity” app, 
which quantifies the macroscopic resistance to flow through the tor-
tuous pore space. At low flow rates, the apparent viscosity matches 
the dynamic shear viscosity of the bulk solution, . Above a thresh-
old flow rate, however, app abruptly increases for many polymer 
solution—even though the shear viscosity  of the bulk solution de-
creases with increasing shear rate (3, 6–9). The reason for this anom-
alous increase has remained a puzzle ever since it was first reported 
over half a century ago (10).

This anomalous increase in flow resistance is often thought to 
reflect the accumulated extension of individual polymer molecules as 
they are transported through constrictions of the pore space (11–15), 
although direct validation of this idea remains lacking. Some recent 
simulations (16) and experiments in ordered 2D geometries (7, 17–20) 
have instead suggested that this anomalous increase in flow resist-
ance is linked to the onset of an elastic instability, arising from the 
buildup of polymer-induced elastic stresses during transport. These 
instabilities are well studied in a range of simplified geometries (21–32) 
and can generate chaotic flow fields reminiscent of those observed in 
inertial turbulence (20, 28, 33)—often termed “elastic turbulence.” 
However, whether this phenomenon arises in disordered 3D po-
rous media, and, if so, how exactly it influences macroscopic trans-
port, is still debated; typical 3D media are opaque, precluding direct 
characterization of the flow in situ. Indeed, while magnetic resonance 
measurements of the diffusivity of a secondary fluid phase have 
hinted that elastic turbulence can arise in disordered 3D porous rocks 
(34), direct verification remains lacking. Furthermore, recent experi-
ments in model 2D media indicate that geometric disorder, inherent 
in most naturally occurring media, can instead suppress the onset 
of elastic turbulence (35), casting doubt on this mechanism entirely; 
however, other experiments have shown that this suppression is 

sensitive to the specific choice of 2D geometry (36), and thus, disor-
der may not generally suppress elastic turbulence. In addition, while 
studies in 2D provide a straightforward way to visualize the flow 
and thereby yield powerful insights, such models differ in their con-
nectivity, porosity, and complexity from 3D pore spaces. Therefore, 
it is unclear how results obtained in 2D can be extrapolated to 3D 
media. As a result, despite its fundamental importance and strong 
impact in applications, why the macroscopic flow resistance of 
polymer solutions anomalously increases in porous media is still 
unknown.

Here, by directly visualizing the flow of a polymer solution in a 
transparent 3D porous medium, we demonstrate that this anoma-
lous increase is indeed dominated by the added dissipation aris-
ing from elastic turbulence. We find that the transition to unstable 
flow in each pore is continuous, arising because of the increased 
temporal persistence of discrete bursts of instability above an onset 
flow rate; however, this onset value varies from pore to pore. Hence, 
unstable flow is spatially heterogeneous across the different pores of 
the medium, with unstable and laminar regions coexisting. Guided 
by these findings, we quantitatively establish that the energy dissi-
pated by unstable pore-scale fluctuations generates the anomalous 
increase in flow resistance through the entire medium. Our results 
thus help resolve this long-standing puzzle. Moreover, by linking 
the onset of unstable flow at the pore scale to flow resistance at the 
macroscale, our work yields generally applicable guidelines for pre-
dicting and controlling polymer solution flows.

RESULTS
Anomalous increase in macroscopic flow resistance 
coincides with the pore-scale onset of elastic turbulence
Bead packings are established models of disordered 3D porous me-
dia, with demonstrated reproducibility in pore size statistics and 
flow properties that can often be generalized to other more complex 
media (37). Therefore, as a model porous medium, we use a consoli-
dated random packing of borosilicate glass beads (Fig. 1A) of porosity 
 ≈ 0.41. The polymeric fluid used is a dilute solution of 18-MDa 
partially hydrolyzed polyacrylamide (HPAM) in a viscous aqueous 
solvent, formulated to precisely match its refractive index to that 
of the glass beads, thus rendering the medium transparent when 
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saturated. Additionally dispersing a dilute fraction of 200-nm- 
diameter fluorescent latex microparticles, which act as flow tracers, 
therefore enables measurement of the 2D fluid velocities u in the 
pore space via particle image velocimetry using confocal microsco-
py (Materials and Methods). We characterize the macroscopic flow 
behavior by injecting the polymer solution into the medium at a 
constant volumetric flow rate Q and measuring the corresponding 
steady-state pressure drop 〈P〉t across the medium; the angled brack-
ets indicate an average over time t. For a Newtonian fluid, the rela-
tionship between these quantities is given by Darcy’s law: 〈P〉t/L = 
(Q/A)/k, where  is the fluid dynamic shear viscosity measured 
using shear rheology (figs. S1 to S3) and L, A, and k are the length, 
cross-sectional area, and absolute permeability of the medium, re-
spectively. For a polymer solution, for which the viscosity can change 
depending on flow conditions, this relationship is still used in prac-
tice, but with  replaced by the apparent viscosity     app   ≡   〈P〉  t   / L _ (Q / A ) / k    
that represents the macroscopic flow resistance. To facilitate com-
parison to the bulk shear viscosity, we therefore represent the pres-
sure drop measurements by plotting the reduced apparent viscosity 
    app   / (   ̇    I  )  as a function of the interstitial shear rate     ̇    I   ≡  Q / (A) _ 

 √ 
_

 k /   
    de-

fined using the characteristic pore flow speed Q/(A) and length 
scale   √ 

_
 k /     (38, 39); because all the other parameters are independent-

ly known, this relationship provides a direct mapping from the 
measured pressure drop to the apparent viscosity. As expected, at 
low flow rates,     app   = (   ̇    I  ) . However, above a critical flow rate cor-
responding to      ̇   I   ≈ 4  s−1, app increasingly exceeds  (    ̇   I  ) , eventually 
peaking at  ≈ 6(   ̇    I  ) , as shown in Fig. 1B; the corresponding pres-
sure drop data reflect the same behavior, as shown in fig. S4. This 

anomalous increase and eventual peak in the macroscopic flow re-
sistance parallels previous reports (3, 6–10).

Simultaneous visualization of the pore-scale flow provides a clue 
to the underlying reason for this anomalous increase. Figure  1 
(C to F) shows the velocity field within an example pore measured 
at two different times. At low flow rates, for which     app   = (   ̇    I  ) , the 
flow is laminar and steady over time (Fig. 1, C and D, and movie 
S1). Notably, concomitant with the anomalous increase in flow re-
sistance, we observe strong spatial and temporal fluctuations in the 
flow at high flow rates (Fig. 1, E and F), despite the negligible influ-
ence of inertia in the flow, as indicated by the Reynolds number 
Re ≲ 10−4 ≪ 1. As shown in movie S2, the fluid pathlines continually 
cross and vary over time, indicating the emergence of an elastic in-
stability. These flow fluctuations are chaotic, with spatial and tem-
poral power spectra that decay as power laws (figs. S5 and S6)—a 
defining feature of elastic turbulence (33,40). Our visualization thus 
reveals that elastic turbulence does arise in 3D porous media, contrary 
to previous suggestions based on studies in 2D media that the disor-
dered structure of the medium suppresses elastic turbulence (35).

The pore-scale transition to fully unstable flow is 
continuous, with an onset that varies from pore to pore
To further characterize the conditions under which elastic turbu-
lence arises in this pore, we subtract the temporal mean from each 
velocity vector, point by point, to focus on the fluctuations u′ = u − 
〈u〉t. Near the onset of the anomalous increase in flow resistance, 
flow fluctuations (blue in Fig. 2, A and B) manifest as intermittent, 
abrupt bursts that coexist with the base laminar flow (purple in 
Fig.  2B), but quickly decay (movie S3). Well above this onset, 

Fig. 1. Pore-scale visualization reveals that the anomalous increase in flow resistance coincides with the onset of elastic turbulence. (A) Our porous medium is a 
lightly sintered random packing of borosilicate glass beads confined in a quartz capillary with a square cross section. We inject the polymer solution containing fluores-
cent tracers into the medium using a syringe pump and simultaneously image the flow in situ using a confocal microscope while measuring the pressure drop across the 
medium using differential pressure transducers. (B) Above a threshold flow rate, parameterized by the characteristic shear rate     ̇    I   , the macroscopic pressure drop, repre-
sented by the reduced apparent viscosity     app   / (   ̇    I  ) , anomalously increases and deviates from the prediction of Darcy’s law given by the shear viscosity of the bulk solu-
tion. (C to F) Flow visualization in an example pore; applied flow is left to right. Arrows indicate the vector field, and colors indicate the velocity magnitude u = ∣u∣ 
normalized by its value averaged spatially over the pore and temporally over the entire duration of the experiment, 〈u〉t, x = 〈∣u∣〉t, x. (C and D) At a low flow rate, the flow 
does not change over time. (E and F) At a higher flow rate, the flow exhibits strong spatiotemporal fluctuations characteristic of elastic turbulence.
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however, these fluctuations (blue-green-yellow in Fig. 2C) still 
coexist with the laminar flow but persist over time (Fig. 2D and 
movies S4 and S5); moreover, their normalized magnitudes are 
considerably larger (fig. S7). Further examples corroborating this 
finding with higher-speed imaging are shown in Fig. 2  (E and F) 
and fig. S5. Similar behavior is observed in the intermittent transi-
tion to inertial turbulence: For sufficiently large Re, discrete bursts 
of unstable flow appear and decay, persisting for longer durations as 
Re increases (41). Thus, the transition to inertial turbulence is, in many 
cases, thought to be a non-equilibrium transition characterized by a 

continuously growing turbulent fraction (42, 43). Our results sug-
gest the tantalizing possibility that the pore-scale transition to fully 
unstable flow—in this case, driven by an elastic instability—may 
similarly be a continuous non-equilibrium transition, as suggested 
recently in simulations (44).

We test this hypothesis by measuring the fraction of time Ft a 
pore spends in the unstable state, as is often done to characterize the 
transition to inertial turbulence (43), for 12 different pores over a 
broad range of flow rates. This quantity characterizes flow intermit-
tency; in particular, as Ft increases, unstable bursts become more 

Fig. 2. The pore-scale transition to elastic turbulence is a continuous non-equilibrium transition between distinct flow states. (A and B) Near the onset of elastic 
turbulence, flow fluctuations are intermittent and short lived; (A) shows the normalized magnitude of flow fluctuations in a given pore at a given time, while (B) shows how 
the fluctuations in the red box vary over time. (C and D) Well above the onset of elastic turbulence, flow fluctuations are stronger and persist over time. (E and F) Continuous 
higher-speed imaging in another pore, also above the onset of elastic turbulence, again shows that flow fluctuations persist over time, even at short time scales. (G) The 
fraction of time Ft a pore spends in an unstable state (u′/〈u〉t,x > 0.2) continually grows above a threshold flow rate, parameterized by the threshold Weissenberg number Wic. 
Different pores are characterized by different values of Wic, as shown by the probability density function (PDF) in (H); however, they all exhibit a similar transition to elastic 
turbulence, as shown by the collapse of the measurements of Ft in (G) when the imposed WiI is rescaled by Wic for each pore. The inset shows the power-law scaling Ft ∼ 
(WiI/Wic − 1)0.4; the exponent is obtained from the best fit to the data, with an uncertainty of ±0.1 determined by varying the instability threshold by ±10%.
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persistent over time, lasting for longer durations. Eventually, Ft = 1 
corresponds to the turbulent state in which the flow is always unsta-
ble. Because the unstable flow is driven by polymer elasticity rather 
than fluid inertia, we describe the pore-scale transition to elastic tur-
bulence using the characteristic Weissenberg number defined using 
the macroscopic imposed flow conditions,   Wi  I   ≡  N  1  (   ̇    I   ) / 2(   ̇    I  ) ; 
this parameter compares elastic stresses quantified by the first nor-
mal stress difference N1 to viscous stresses quantified by the shear 
stress  and represents the upper limit of the spatially varying local 
Weissenberg number (fig. S8). It can also be related to the largest 
destabilizing term in a linear stability analysis of the creeping flow 
limit of the Cauchy momentum equation for a viscoelastic fluid 
(23). For each pore, at low WiI, the flow is laminar and unchanging 
in time, with Ft = 0. Above a critical value Wic, however, the pore is 
unstable for a nonzero fraction of time, and Ft smoothly increases 
above zero. It eventually saturates at unity for WiI ≫ Wic, indicat-
ing that the elastic turbulence has fully developed. Notably, this 
transition is general: While the critical value Wic varies from pore 
to pore (Fig. 2G), presumably because of the disordered structure 
of the pore space, Ft grows similarly with the rescaled WiI/Wic for 
all 12 pores, as shown by the different colors in Fig. 2G, indicating 
a continuous transition. We observe some scatter in the data, pos-
sibly due to the influence of polydispersity in polymer properties 
and local correlations in the flow between neighbors; investigat-
ing these effects will be a useful direction for future work. How-
ever, in all cases, the data for WiI near Wic appear to follow the 
power- law scaling Ft ∼ (WiI/Wic − 1)0.4 (Fig. 2G, inset). Thus, the 
pore-scale transition to elastic turbulence is a continuous transi-
tion reminiscent of the intermittent transition to inertial turbu-
lence (41, 44).

An unexpected consequence of the pore-to-pore variability in 
Wic, which ranges from Wic,min ≈ 2.6 to Wic,max ≈ 4.4 (Fig. 2H), is 
that the occurrence of elastic turbulence is spatially heterogeneous 
throughout the medium. In particular, because some pores become 
unstable at different values of WiI than others, unstable pores coex-
ist amid stable, laminar pores for WiI in this range. An example is 
shown in Fig. 3, which displays the normalized root mean square of 
the flow fluctuations u′ over time,   u  rms  ′   /  〈u〉  t,x   , for three different 
pores. At low flow rates and therefore WiI, all three pores are stable, 
as shown in the first column. As flow rate and WiI is increased, pore 
A (2.6 < Wic ≤ 3.2) becomes unstable first, while pores B and C re-
main stable, as shown in the second column. At a higher WiI, pore 
B (3.2 < Wic ≤ 3.6) next becomes unstable, as shown in the third 
column. Last, at an even higher WiI, pore C (3.9 < Wic ≤ 4.4) also 
becomes unstable, as shown in the last column. Hence, as WiI in-
creases from ≈2.6 to 4.4, an increasing fraction of pores become 
unstable. This observation that single pores exposed to the same 
macroscopic flow rate become unstable in different ways provides a 
fascinating pore-scale analog of “molecular individualism” (45), in 
which single polymers exposed to the same extensional flow elon-
gate in different ways; we therefore term it “porous individualism.” 
Monitoring a larger field of view spanning multiple pores on a side 
confirms that the flow states in neighboring pores are not apprecia-
bly correlated (fig. S9).

Simplified power balance enables pore-scale flow 
fluctuations to be linked to macroscopic transport
How does this variability in the occurrence of elastic turbulence af-
fect the macroscopic flow resistance? Motivated by the similarities 

between elastic and inertial turbulence revealed by our pore-scale 
imaging, as well as by previous studies in a range of simplified ge-
ometries (20, 28, 33), we hypothesize that the flow fluctuations that 
arise in elastic turbulence impart additional viscous dissipation to 
the flow—akin to fluctuations in inertial turbulence. We quantify this 
hypothesis using the power density balance for viscous-dominated  
flow (46)

  − ∇ · Pu =  : ∇ u  (1)

where the left-hand side represents the rate of work done by the 
fluid pressure and the right-hand side represents the rate of viscous 
energy dissipation per unit volume; here,  and ∇u are the stress 
and velocity gradient tensors, respectively. Averaging Eq. 1 over 
time and the entire volume V of the medium then provides a rela-
tion for the time-averaged pressure drop 〈P〉t across the medium

     P  t   ─ 
L   =    〈  〈 : (s +  ) 〉  t   〉  V    ─ Q / A    (2)

where s = (∇u + ∇uT)/2 and  = (∇u − ∇uT)/2 are the strain rate 
and vorticity tensors, respectively. In principle, Eq. 2 provides a di-
rect link between the measured pore-scale flow field, quantified on 
the right-hand side, and macroscopic pressure drop, given on the 
left-hand side, as explored in recent simulations (16). However, in 
practice, evaluating the right-hand side of Eq. 2 requires knowledge 
of the full dependence of stress  on polymer strain history in 3D 
(47), which is currently inaccessible in our experiments.

Nevertheless, two features of the flow, further detailed in Materials 
and Methods, motivate the development of a simplified version of 
Eq. 2 that permits us to examine the influence of unstable pore-scale 
flow fluctuations on macroscopic transport. First, while the flow 
fluctuates strongly over a broad range of time scales, the majority of 
the measured spectral power is contained in fluctuations occurring 
over a duration longer than the characteristic polymer relax-
ation time  (fig. S6). Hence, we approximate the measured time- 
dependent flow as being quasi-steady over the polymer relaxation 
time, enabling us to adopt a generalized Newtonian fluid approach 
(47) in which the stress is parameterized by the shear viscosity s, 
which is a function of the local strain rate, and the extensional vis-
cosity e, which is a function of accumulated strain in the quasi- 
steady flow field. Second, analysis of the measured flow field indicates 
that the Hencky strain accumulated by fluid elements over the poly-
mer relaxation time is much smaller than 1 (fig. S10), whereas the 
polymer contribution to extensional viscosity is known to become 
appreciable only when Hencky strain exceeds ≈2 to 3 (48). Thus, 
while local polymer extension drives the onset of the unstable flow, 
accumulated extension is likely not a strong contributor to the global 
viscous dissipation as is often suggested (11–15); we therefore ne-
glect any polymer contributions to the extensional viscosity and 
take the Newtonian limit of the Trouton ratio Tr ≡ e/0 = 3.

These assumptions then allow us to decompose the strain rate 
tensor into the sum of a base laminar component s0 and an addi-
tional component due to velocity fluctuations s′ and the vorticity 
tensor similarly into two components 0 and ′, ultimately yielding 
an expanded form of Eq. 2 (46)

      〈ΔP〉  t   ─ ΔL   ≡   
 η  app  (Q / A)

 ─ k   ≈     
η(  γ ̇    I   ) (Q / A)

 ─ k   


   

Darcy’s law

    +      
〈χ 〉  t,V  

 ─ (Q / A)   

⏟
   

Fluctuations

   +  

⎧
 

⎪
 ⎨ 

⎪
 

⎩
    
Strain

  history  
effects

   

⎫
 

⎪
 ⎬ 

⎪
 

⎭
     (3)
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The first term on the right-hand side of Eq. 3, which arises from 
homogenization over the entire porous medium, represents Darcy’s 
law for a laminar, steady flow. The second term represents the addi-
tional contribution to the macroscopic pressure drop from viscous 
dissipation by the solvent induced by the unstable flow fluctuations, 
much like the dissipation arising from chaotic fluctuations in iner-
tial turbulence (49); 〈〉t ≈ 〈s′:s′〉t quantifies the rate of added 
viscous dissipation per unit volume due to pore-scale flow fluctua-
tions, where  is the time-averaged shear viscosity of the polymer 
solution (46). The final term represents additional contributions 
arising from the full dependence of stress  on polymer strain histo-
ry in 3D that are not considered in our generalized Newtonian fluid 
approach. We provide an estimate for the magnitude of this term in 
fig. S12; exploring the influence of these additional complexities will 
be a valuable extension of our work.

Viscous dissipation due to flow fluctuations generates 
the anomalous increase in flow resistance
Equation 3 provides a way to quantitatively link the pore-scale flow 
fluctuations arising in elastic turbulence and the anomalous increase 
in macroscopic flow resistance. In particular, as a first step toward this 
goal, we will neglect the third term on the right-hand side of the Equa-
tion in what follows and examine the influence of the first two terms. 
All the components of these first two terms are controlled or can be 
directly determined in our experiments (Materials and Methods).

We directly measure the rate of added dissipation 〈〉t using flow 
visualization in each pore; an example is shown in Fig. 4A. Consistent 
with our expectation, the rate of local viscous dissipation sharply 
increases by nearly three orders of magnitude at the onset of elastic 
turbulence and continues to increase as WiI increases above Wic 

(Fig.  4A, green/yellow regions). These measurements, performed 
for each pore, thereby enable us to directly test the validity of our 
simplified form of Eq. 3, assuming spatially isotropic, but not ho-
mogeneous, fluctuations within each pore (46). In particular, we 
directly compute 〈〉t,V by averaging 〈〉t over the imaged area of 
each pore and then averaging over all the imaged pores. As antici-
pated, the overall rate of added dissipation increases as a greater 
fraction of pores becomes unstable (Fig.  4B, symbols), consistent 
with the power-law scaling shown by the green curve. Incorporat-
ing this empirical relationship for 〈〉t,V in our simplified form of 
Eq. 3 then yields a final prediction for the dependence of the appar-
ent viscosity app on the imposed WiI (Fig. 4C, green curve) that is 
derived directly from our pore-scale imaging of the unstable flow 
fluctuations. Our prediction shows excellent agreement with the 
macroscopic pressure drop measurements (Fig. 4C, symbols) with-
out using any fitting parameters. This agreement confirms that the 
anomalous increase in the macroscopic flow resistance is primarily 
due to the added dissipation arising from the flow fluctuations gen-
erated by pore-scale elastic turbulence.

A simple picture for the sigmoidal variation of app with flow rate, 
observed in our experiments (Fig. 1B) and in numerous previous 
studies (3, 6–10), thereby emerges. At low flow rates, corresponding 
to WiI < Wic,min, all of the pores in the medium are laminar and 
steady over time; thus,     app   = (   ̇    I  ) . As flow rate is increased, WiI 
eventually exceeds Wic,min ≈ 2.6 in our experiments, causing an in-
creasing fraction of pores to become unstable. The added viscous 
dissipation due to the flow fluctuations in these pores then causes 
app to increasingly exceed  (   ̇    I  )  (Fig. 4C, 8th to 12th points). Even-
tually, as WiI exceeds Wic,max ≈ 4.4  in our experiments, all of 
the pores are unstable. Further increases in WiI do not appreciably 

Fig. 3. The occurrence of elastic turbulence is spatially heterogeneous throughout a porous medium, reflecting porous individualism. Images show the normal-
ized magnitude of root mean square flow fluctuations over 60 min in different pores and at different flow rates, parameterized by WiI. Applied flow is left to right. Pore A 
becomes unstable at the lowest flow rate, as shown by the red line in the first row. Pore B becomes unstable at the next highest flow rate, shown by the red line in the 
second row. Pore C becomes unstable only at even higher flow rates.
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generate additional flow fluctuations, and app saturates (Fig.  4C, 
last point). The steepness of the increase of app with flow rate there-
fore reflects the distribution of the different Wic; while these values 
depend on the complex 3D geometry of each pore and are challeng-
ing to predict a priori (23), reducing the polydispersity of the medi-
um likely sharpens the distribution of Wic and thus steepens the 
increase in app, consistent with the results of studies in 2D obstacle 
arrays (50). As the flow rate is further increased, we expect that app 
eventually converges back to  (   ̇    I  ) , reflecting the increased relative 
influence of viscous dissipation from the base laminar flow—although 
strain history effects, inertia, and chain scission will likely also play a 
role in this regime, imparting new complexities to the flow.

DISCUSSION
Although it is well documented (3, 6–10), the anomalous flow resist-
ance exhibited by polymer solutions in porous media has evaded 
explanation for over half a century. Many have speculated that this 
phenomenon is due to the onset of elastic turbulence, given that 
elastic instabilities have been reported to generate increased flow 
resistance in a range of simplified geometries (7, 17–21, 33). How-
ever, a quantitative link between the associated flow fluctuations in 
a porous medium—if they exist—and the macroscopic flow resistance 
has remained elusive. Indeed, whether elastic turbulence even arises 
in disordered 3D porous media has been recently called into ques-
tion (35). Our experiments help to resolve this uncertainty by pro-
viding the first visualization of elastic turbulence in disordered 3D 
porous media. Furthermore, by quantitatively linking the pore-
scale features of elastic turbulence to macroscopic transport, our 
work establishes that the energy dissipated by unstable pore-scale 
fluctuations generates the anomalous increase in flow resistance. 
More broadly, our findings that the pore-scale transition to elastic 

turbulence is a continuous non-equilibrium transition akin to the 
intermittent transition to inertial turbulence, and that the result-
ing dissipation similarly controls macroscopic transport be-
havior, highlight the connections between these distinct forms of 
turbulence.

For simplicity, our analysis does not consider the full polymer 
strain history in 3D. Instead, motivated by the observations that the 
flow is quasi-steady and does not appreciably accumulate strain 
over a polymer relaxation time, we use a generalized Newtonian flu-
id model that successfully captures ≈90% of the measured peak in 
the flow resistance, as well as the overall sigmoidal shape of     app  (    ̇   I  ) . 
This close agreement suggests that while local polymer extension 
generates unstable flow fluctuations, the resulting viscous dissipa-
tion of the fluid itself is the primary contributor to the overall flow 
resistance—not the polymer extensional viscosity, as is often thought 
to be the case (11–15). Similar behavior has been considered in 
analyses of elasto-inertial turbulence, where polymer stretching is 
thought to be highly transient and localized (51). However, we do 
observe slight discrepancies between our model prediction and the 
pressure drop measurements, particularly at the largest flow rates 
tested (last two points in Fig. 4C); we anticipate that strain history 
effects play a non-negligible role in this regime, as suggested by a 
calculation of the added contribution due to the steady-state exten-
sional viscosity (fig. S12). Incorporating these effects into our anal-
ysis will be an important next step.

We expect our results to particularly affect geological applica-
tions involving polymer solution flows in porous media, given that 
polymers with relaxation times  as long as ∼10 s (7) are regularly 
used to aid the removal of trapped nonaqueous liquids from sub-
surface formations during groundwater remediation (1) and oil re-
covery (2, 3). Our results suggest that elastic turbulence may arise in 
these settings: We find that the transition to unstable flow occurs 

Fig. 4. Anomalous increase in macroscopic flow resistance is determined by the added viscous dissipation due to unstable flow fluctuations. (A) The rate of 
added viscous dissipation 〈〉t directly measured from flow visualization for the example of pore A sharply increases above the onset of elastic turbulence. (B) Averaging 
the spatially averaged 〈〉t over all pores imaged yields the overall added viscous dissipation, which increases as a power law ∼(WiI/Wic − 1)2.6 above the macroscopic 
threshold Wic ≈ 2.6, as shown by the green curve. (C) The measured power-law fit to 〈〉t,V enables prediction of the macroscopic apparent viscosity app via the power 
balance Eq. 3, as shown by the green curve and detailed in the Supplementary Materials; the uncertainty associated with the fit to 〈〉t,V [shaded region in (B)] yields an 
uncertainty in this prediction, as shown by the shaded region. Points indicate the independent measurements of app from the macroscopic pressure drop.
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for  Wi ≳  Wi  c   ≈      ̇   I   ∼ 1 , corresponding to interstitial shear rates 
    ̇    I    and flow speeds Q/A exceeding ∼0.1 s−1 and ∼0.1 m s−1, respec-
tively (32)—well within the range encountered in the field. Thus, by 
deepening fundamental understanding of how macroscopic trans-
port behavior depends on imposed flow conditions and solution 
properties, our analysis yields guidelines for predicting and con-
trolling polymer solution flows in such settings. Moreover, because 
such flows also play key roles in determining separation perform-
ance in filtration (4) and chromatography (5), improving heat and 
mass transfer in microfluidic devices (17, 52, 53), and enabling ex-
trusion-based manufacturing (54), we expect these results to inform 
a broader range of applications.

MATERIALS AND METHODS
Porous medium fabrication and physical characteristics
Our porous medium is a granular packing of borosilicate glass 
beads with diameters Dp ranging from 300 to 355 m (Mo-Sci). We 
pack these grains into a quartz capillary with a square cross section 
of area A = 3.2 mm by 3.2 mm (VitroCom), tap them for a minute 
to densify, and then lightly sinter the medium in a furnace at 1000°C 
for 3 min. In addition, we shave down the ends of the packing to 
provide flat inlets and outlets. This protocol forms a rigid, consoli-
dated, disordered granular packing with a porosity  ≈ 0.41, pore 
throat diameter dt ≈ 0.16Dp ≈ 52 m, and tortuosity ≈2, as we previ-
ously measured using confocal microscopy (55, 56). The length of 
the medium along the imposed flow direction is L = 8.1 cm. To 
control and characterize flow in the pore space, we glue inlet and 
outlet tubing into the inlet and outlet of the medium, respectively, 
with valves for pressure taps. We determine the medium permeabil-
ity k = 79 m2 using Darcy’s law, using the values of the pressure 
drop measured at the lowest (laminar) flow rates; this permeability 
is in good agreement with our previous measurements of similar 
porous media (56) and with the prediction of the established Kozeny- 
Carman relation (57).

Polymer solution preparation and characterization
Our polymer solution is made by dissolving 18-MDa HPAM 
(30% carboxylated monomers; Polysciences) and NaCl (Sigma- 
Aldrich) in ultrapure Millipore water and then diluting with 
glycerol (Sigma-Aldrich) and dimethyl sulfoxide (DMSO; Sigma- 
Aldrich) to obtain a solution whose refractive index is precisely 
matched to that of the glass beads. The final solution of 300–
parts per million (ppm) HPAM, 82.6 weight % (wt %) glycerol, 
10.4 wt % DMSO, 6 wt % water, and 1 wt % NaCl has a measured 
refractive index of 1.479. All solutions are used within 1 month of 
preparation.

We characterize all flow properties using shear rheology mea-
surements of a 1-ml sample of the polymer solution. We use a cone-
plate geometry in an Anton-Paar MCR301 rheometer, using a 1° 
5-cm-diameter cone set at a 50-m gap. We measure the shear stress 
 and first normal stress difference N1 over a range of shear rates   
 ̇   = 0.1  to 50.1 s−1, which spans the range of characteristic intersti-
tial shear rates encountered during the flow experiments in porous 
media, calculated as     ̇    I   ≡ Q / (A  √ 

_
 k  ) , where Q is the volumetric 

flow rate of polymer solution, A is the capillary cross-sectional area, 
 is the medium porosity, and k is the absolute permeability of the 
medium. To assess reproducibility, we collect data from four differ-
ent samples and find identical results for all four samples. Both the 

shear stress and first normal stress difference vary with shear rate 
according to power laws  (   ̇  ) ≈  A  s    (   ̇ )      s     and   N  1  (   ̇  ) ≈  A  n    (   ̇ )      n    , where 
 and N1 have units of Pa,    ̇    has units of s−1, As = 0.369 Pa · ss, s = 
0.934 ± 0.001, An = 1.46 Pa · sn, and n = 1.23 ± 0.04 (fig. S1). The 
shear stress varies approximately linearly with shear rate, indicating 
that shear thinning effects are small because of the high viscosity of 
the background solvent, which is approximately  = 0.2 times the 
measured solution viscosity. However, for accuracy, we use the 
rate-dependent shear viscosity  (  ̇   ) ≡ (  ̇   ) /   ̇    in all calculations. 
We define the zero shear viscosity using the lowest tested interstitial 
shear rate,     0   ≡  [(  ̇   ) /   ̇  ]     ̇    I  =0.14  s   −1    = 0.419 Pa · s .

We use shear rheology of the diluted polymer solution to char-
acterize molecular properties. In particular, shear rheology mea-
surements of a dilution series at different polymer concentrations c 
(fig. S3) yield the pure solvent viscosity s = 0.226 ± 0.009 Pa · s and 
the intrinsic viscosity [] = (3 ± 1) × 10−4 ppm−1. This quantity di-
rectly yields an estimate of the polymer overlap concentration c* as 
established previously (58), c* ≈ 0.77/[] = 600 ± 300  ppm, and 
therefore, our experiments use a dilute polymer solution at ≈0.5 
times the overlap concentration. We also use this quantity to esti-
mate the mean polymer radius of gyration Rg using the relation c* ≈ 
(Mw/V)/NA, where Mw is the polymer molecular weight,  V = 4  
R g  3  / 3  is the volume occupied by a single polymer molecule, and NA 
is Avogadro’s number (59), yielding Rg ≈ 220 nm. We independent-
ly verify this estimate using dynamic light scattering of a dilute 10-
ppm HPAM solution in the same index-matched solvent used in 
the flow experiments; we measure a mean hydrodynamic radius Rh 
ranging from 40 to 320  nm, which corresponds to Rg ≈ 160 to 
210 nm using the shape factor  ≡ Rg/Rh ≈ 1.3 to 1.7 established 
previously (60).

We define the Reynolds number comparing inertial to viscous 
stresses as  Re ≡ (Q / A )  d  t   / (  ̇  ) , where  is the density of the sol-
vent. In our porous media experiments, Re ranges from 2.5 × 10−6 
to 1.6 × 10−4, indicating that viscous stresses dominate over inertial 
stresses.

We describe the influence of elasticity using the Weissenberg num-
ber, which compares elastic stresses to viscous stresses. As is con-
ventionally done, we define this parameter as  Wi ≡  N  1  (  ̇   ) / 2(  ̇  ) . 
In our porous media experiments, Wi is greater than one, ranging 
from 1.6 to 5.1, indicating that elastic stresses dominate. Moreover, 
the corresponding values of the elasticity number El ≡ Wi/Re, which 
compares elastic stresses to inertial stresses, range from 3.3 × 104 to 
6.7 × 105, much greater than one. Our experiments thus probe the 
elasticity-dominated flow regime. Using the shear rheology mea-
surements, we also calculate the rheological relaxation time  (  ̇   ) =  
Wi _   ̇     =    N  1  (  ̇  ) _ 2(  ̇   )   ̇    , whose value ranges from 0.2 to 3 s, in good agreement 
with previous experiments (40).

To assess possible degradation of polymers due to unstable flow 
in the porous media (61), we also characterize the rheology of the 
same polymer solution before and after performing flow experi-
ments at the highest flow rate tested, Q = 5 ml/hour. We do not find 
observable variation in the shear rheology, indicating that polymer 
degradation due to the unstable flow is minimal (fig. S2).

Characterization of flow in the porous medium
Before each experiment, we remove air bubbles under vacuum and 
then fill the medium with water. We then displace the water with 
the miscible polymer solution, injected into the medium at a con-
stant flow rate Q using a Harvard Apparatus PHD 2000 syringe 
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pump, for at least 3 hours to equilibrate the solution in the medium 
before flow characterization. After each subsequent change in flow 
rate, the flow is given 1 hour to equilibrate before characterization.

We measure the pressure drop across the medium P using an 
Omega PX26 differential pressure transducer, averaging measure-
ments obtained over 60 min; the temporal fluctuations in these 
measurements are minimal, and as a result, the corresponding error 
bars in Fig. 1B are smaller than the symbol size.

To visualize the pore-scale flow in situ, we seed the polymer 
solution with 5 ppm of fluorescent carboxylated polystyrene tracer 
particles (Invitrogen), Dt = 200 nm in diameter; the particles have 
excitation between 480 and 510 nm with an excitation peak at 505 nm, 
and emission between 505 and 540 nm with an emission peak at 
515 nm. Particles are tracked using a 488-nm excitation laser and 
detected with a 500- to 550-nm sensor. To visualize the pore space, 
we also dye the solution with 0.5 ppm of rhodamine red dye, which 
has an excitation wavelength between 480 and 600 nm with an exci-
tation peak at 560 nm, and emission between 550 and 700 nm with 
an emission peak at 580 nm. The dyed pore space is imaged using a 
561-nm excitation laser and detected with a 570- to 620-nm sensor. 
Choice of these fluorescent markers allows us to image both the 
pore space and the dynamic flow within it at high resolution, with 
no observable cross-talk or bleed through on the laser channels. The 
particles can be considered faithful tracers of the streamlines because 
their advection dominates over diffusion, as described by the particle- 
scale Péclet number Pe ≡ (Q/A)Dp/𝒟 > 105 ≫ 1, where 𝒟 = kBT/30Dt = 
6 × 10−3 m2/s is the Stokes-Einstein particle diffusivity.

We monitor the flow in individual pores using a Nikon A1R+ 
laser scanning confocal fluorescence microscope. We use a 10× ob-
jective interrogating a 318 m by 318 m field of view with the con-
focal resonant scanner at a temporal resolution of 30 frames per 
second and a spatial resolution of 0.62 m from an optical slice of 
8 m thickness at a depth of ∼200 m within the medium. To mon-
itor the slow changes in the flow field over time, we record the flow 
in 2-s intervals every 4 min for 60 min. We repeat this measurement 
for 9 pores randomly chosen near the inlet of the medium and 10 
pores randomly chosen near the outlet; we do not observe notice-
able differences in the results obtained depending on position along 
the medium. We then measure the 2D velocity field within each 
pore, with spatial discretization x = 7.74 m, using particle image 
velocimetry for each frame (62). Gradients are computed using a 
finite central difference scheme, adjusted as needed at the boundar-
ies (46). We observe minimal fluctuations over the course of each 
2-s interval, so we average the velocity field obtained in each such 
interval to give a quasi-steady snapshot of the velocity field at each 
time point separated by 4 min, u(x, t) ≡ (u(x, t), v(x, t)), where the 
position vector x ≡ (x, y). Of the 19 pores imaged, 12 exhibit a 
well-defined critical Wic below which the pore-scale flow is stable 
and laminar, above which the pore-scale flow is unstable. For the 
other seven pores (≈37%), we cannot determine a clear Wic within 
the range of Wi explored in our experiments; thus, the analysis in 
Fig. 2 (E and F) omits these pores. The analysis in Fig. 4, however, 
does not.

Power spectral density of unstable flow fluctuations
To characterize the spatial and temporal scales associated with un-
stable flow fluctuations, we monitor the fluctuations in two pore 
above the instability onset (WiI = 3.9 and 4.4) for 60 s (movie S5 and 
fig. S5). We use the measured time-dependent velocity field to directly 

compute the frequency- and wave number–dependent power spectral 
density of flow fluctuations, as shown in fig. S6. Both show power- 
law decays with exponents ∼1.1 to 1.4 and ∼0.8 to 1.1, respectively. 
While these differ from some other previous reported exponents for 
elastic turbulence, they are consistent with the range of values ob-
served for elastic turbulence in various other studies exploring dif-
ferent geometries and polymer solutions, which report exponents 
∼1 to 4.6 (33, 35, 36, 40, 44, 63–66) and ∼1 to 3 (33, 40), respectively. 
Investigating how these exponents vary across different geometries 
and solutions will be a useful direction for future work. The com-
plementary cumulative density function of the power spectral den-
sity (shown in fig. S6) indicates that the majority of the measured 
spectral power is contained in fluctuations occurring over a dura-
tion longer than the characteristic polymer relaxation time , moti-
vating the assumption of quasi-static polymer stress fields over the 
time scale of polymer relaxation.

Measurement of Hencky strain
We assess the role of extensional viscosity by directly computing the 
strain history of sample fluid elements along Lagrangian paths in 
the flow field measured in three representative pores. For a selected 
fluid element voxel, we use the measured time-dependent 2D veloc-
ity field to compute its propagation; specifically, using the pixel- by-
pixel local velocity dx/dt = u(x, t), we compute the time to move to 
the next voxel as t ≈ x/u(x, t), where x is the pixel size and u(x, t) 
is the local velocity magnitude. For this computed pathline, we then 
compute the accumulated Hencky strain over one polymer relax-
ation time   = Wi /    ̇    I   = 0.3 to 1  s as   =  ∫0       ̇  (x, t ) dt . We perform 
this measurement for five different starting locations throughout a 
pore for each of the 15 quasi-steady flow field snapshots, and repeat 
this set of 75 measurements for three different pores, to obtain a 
representative distribution of Hencky strains. The resulting distri-
butions for each flow rate show that Hencky strains are much smaller 
than 1 (fig. S10), suggesting that extensional viscosity effects can be 
neglected, which typically arise when  ≳ 2 to 3 (48).

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at https://science.org/doi/10.1126/ 
sciadv.abj2619
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