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Abstract Metaproteomic analysis of air particulate matter
provides information about the abundance and properties of
bioaerosols in the atmosphere and their influence on climate
and public health. We developed and applied efficient
methods for the extraction and analysis of proteins from glass
fiber filter samples of total, coarse, and fine particulate matter.
Size exclusion chromatography was applied to remove matrix
components, and sodium dodecyl sulfate polyacrylamide gel
electrophoresis (SDS-PAGE) was applied for protein fraction-
ation according to molecular size, followed by in-gel digestion
and LC-MS/MS analysis of peptides using a hybrid
Quadrupole-Orbitrap MS. Maxquant software and the
Swiss-Prot database were used for protein identification. In
samples collected at a suburban location in central Europe,
we found proteins that originated mainly from plants, fungi,
and bacteria, which constitute a major fraction of primary
biological aerosol particles (PBAP) in the atmosphere.
Allergenic proteins were found in coarse and fine particle
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samples, and indications for atmospheric degradation of pro-
teins were observed.
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Introduction

Primary biological aerosol particles (PBAP) including bacte-
ria, fungal spores, pollen, biogenic polymers, and others like
plant or animal fragments, are ubiquitous components of the
atmospheric aerosol [1-3]. They likely have an influence on
clouds and precipitation [4, 5] and have been linked to many
adverse health effects such as infectious, respiratory, and al-
lergic diseases [6—8]. Proteins, contained in PBAP from dif-
ferent sources and with distinct properties, are also known to
influence atmospheric microphysics and public health [9—11].

Proteins can be found in coarse mode particles (>2.5 pm
aerodynamic diameter) as well as in fine mode particles
(<2.5 um) [12]. It has been shown that bacteria are most
frequently observed in ~2—4 pum particles [13, 14], fungal
spores in the range of 2—10 um [15, 16], pollen grains between
10 and 100 um [1], and smaller pollen compartments, such as
pollen cytoplasmic granules (PCGs; subcellular compart-
ments) released from the rupture of pollen grains due to high
humidity and moisture, are in the range of 30 nmto 4 um [17,
18]. Proteinaceous material in different size modes of atmo-
spheric aerosols have different penetration depths into the hu-
man respiratory tract, i.e., fine mode particles are able to pass
through the upper respiratory tract and deposit in the small
airway and alveoli [19], thus affecting potential health
impacts.

Proteins in aerosol particles have been suggested to be
good tracers for PBAP in the atmosphere [20]. Many
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studies have focused on the measurement of total protein
content in airborne particles using biological assays, e.g.,
bicinchoninic acid (BCA) assay, nano-orange, and
Bradford assay and found proteins to account for up to
5 % of particles in mass concentration [21-23]. Some
specific proteins, mostly allergens, have been investigated
using immunoassays, such as enzyme-linked immunosor-
bent assay (ELISA) or Western blot, etc. For example,
Buters et al. [24] determined the major birch pollen aller-
gen Bet v 1 in ambient aerosols of different size fractions
with an allergen-specific ELISA. Miyajima et al. [25] de-
veloped a fiber-optic chemifluorescence immunoassay for
the detection of the airborne major dust mite allergen Der
f 1. Although these immunoassays have the advantage of
low detection limits and can quantify the targeted pro-
teins, the antigen specificity of these assays limits their
use in metaproteomic analysis of ambient aerosol parti-
cles. The term metaproteomics has been proposed for
the characterization of the entire protein complement of
environmental samples at a given point in time [26, 27].
Mass spectrometry-based metaproteomics has been suc-
cessfully applied in studies of soils, lake sediments, and
marine environments [28-31]. With regard to atmospheric
aerosols, bioaerosol mass spectrometry has been used for
the rapid identification of individual aerosolized microbial
particles [32, 33]. Moreover, metaproteomic analysis has
recently been applied to soils in Asian desert dust storm
deposition regions [34, 35].

In this study, we develop a method to characterize pro-
teins from atmospheric aerosol samples using a mass
spectrometry-based metaproteomics approach, providing
information about the taxonomic composition of
bioaerosols. To our knowledge, this approach has previ-
ously not been established and applied for atmospheric
aerosol samples. The critical step for protein identification
is to efficiently extract proteins from the air filter samples.
Besides considering the differences in protein properties
such as solubility, also interactions between proteins, par-
ticles, and filter material need to be overcome by the
extraction method. We evaluated the effects of soot parti-
cles and ammonium sulfate on protein recovery during
filter extraction using BCA assays and sodium dodecyl
sulfate polyacrylamide gel electrophoresis (SDS-PAGE).
Furthermore, aerosol samples of different particle size
fractions (total suspended, fine, and coarse particles) were
analyzed using nano-HPLC coupled with a Hybrid
Quadrupole-Orbitrap mass spectrometer after in-gel diges-
tion. The method developed in this study allows for the
characterization of aerosol proteins, simultaneously yield-
ing insights into atmospheric protein transformation pro-
cesses. A schematic overview of the analytical procedure
for protein identification in ambient aerosol samples is
shown in Fig. 1.
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Materials and methods
Reagents

Bovine serum albumin (BSA; A5611), phosphate-buffered
saline tablet (PBS; P4417), glycine (G7126), f3-
mercaptoethanol (M-6250), dithiothreitol (DTT; D5545),
iodoacetamide (IAM; 16125), acetonitrile (ACN; 34967), am-
monium bicarbonate (A6141), and trypsin from porcine pan-
creas (T6567) were supplied by Sigma-Aldrich (Germany).
Ten times Tris/glycine/SDS (161-0732) and two times
Lammli sample buffer (161-0737) were from Bio-Rad
Laboratories (USA). Trifluoroacetic acid (TFA; 400028) was
from Applied Biosystem (UK). Formic acid (28905) and C18
spin tubes (89870) for desalting were obtained from
ThermoFisher Scientific (Germany). Diesel particulate matter
(SRM 2975) was purchased from the National Institute for
Standards and Technology (NIST; USA). Ammonium sulfate
(>99 %) was obtained from Acros Organics. Sodium dodecyl
sulfate (H5113) was from Promega (USA). Glass fiber filters
(type MN 85/90, 406015, Duren, Germany) for sampling of
total suspended particles (TSP) and protein recovery tests dur-
ing the development of the extraction method were purchased
from Macherey-Nagel (Germany). A second set of glass fiber
filters (type A/A, 102-mm diameter) for sampling coarse and
fine particles was obtained from Pall Corporation (UK). High-
purity water (18.2 MQ m) was taken from an ELGA
LabWater system (PURELAB Ultra, ELGA LabWater
Global Operations, UK) and autoclaved before use if not spec-
ified otherwise.

Aerosol sampling

Aerosol samples were collected at the roof of the Max Planck
Institute for Chemistry (MPIC; Mainz, Germany) in 2010 and
2015; the sampling period was generally 7 days. Sampling
details are provided in Frohlich-Nowoisky et al. [15].
Briefly, coarse and fine aerosol particles were collected onto
a pair of glass fiber filters (prebaked at 500 °C overnight) by a
self-built high-volume dichotomous sampler [36] operated at
300 L/min. Coarse particles with aerodynamic diameters larg-
er than the cutoff diameter (=3 um) were collected through a
virtual impactor operated in line with the inlet (=30 L/min),
and fine particles with aerodynamic diameters smaller than the
cutoff were collected from the main gas flow perpendicular to
the inlet (=270 L/min). As a result of the air flow design of the
virtual impactor, 10 % of the fine particles are collected on the
coarse particle fraction. Furthermore, TSP samples were col-
lected on 150 mm glass fiber filters (baked overnight at
290 °C) using a self-standing high-volume sampler (Digitel
DHA-80) operated at 100 L/min. A list of all investigated air
filter samples is given in Electronic supplementary material
(ESM) 1 Table S1. The loaded samples were stored in
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Fig.1 Schematic overview ofthe
developed method for the
metaproteomic analysis of
atmospheric aerosol samples.
Aerosol filter samples were
extracted and subjected to size
exclusion chromatography to
remove sample matrix before
BCA assay and SDS-PAGE
analysis. Five molecular size
fractions were excised from SDS-
PAGE gels and in-gel digested
before nano-LC-MS/MS with a
Hybrid Quadrupole-Orbitrap
mass spectrometer. Proteins were
identified using the MaxQuant
software for database searches
against the Swiss-Prot database
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decontaminated aluminum foil bags at —80 °C. To detect pos-
sible contaminations from the samplers and sample handling,
blank samples were taken as well. Blank sample filters were
mounted in the sampler like for regular sampling, but the
pump was turned on only for up to 30 s.

Protein extraction

Figure S1 in ESM 1 illustrates the extraction method develop-
ment. The effects of the vial material, the extraction solvent
and technique, as well as the enrichment method on protein
recovery were investigated. In these experiments, 200 pg of
BSA dissolved in 100 uL. H,O were spiked on prebaked fil-
ters. The parameters of interest were varied individually, while
keeping the remaining parameters constant (see ESM 1 for
details). The corresponding effects were evaluated by BSA
recovery obtained by BCA assay, which has been widely ap-
plied for the measurement of total protein concentration in
ambient aerosol samples [22, 37], as outlined in
“Bicinchoninic acid assay”. All spiking experiments were per-
formed in triplicate.

The optimized extraction method (discussed in
“Development of extraction method”) was applied to aerosol
filter samples. Briefly, filter aliquots (~40 cm?) were cut out
from the whole filter and extracted twice with 2.0 mL 1x
Tris/Gly/SDS buffer in a 15-mL polypropylene (PP) vial by
sonication (frequency, 35 kHz; Bandelin, Sonorex Super 10P,
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Germany) for 1 h. It should be noted that low protein binding
microcentrifuge tubes (525-0134, VWR International,
Germany) were used in following steps in order to minimize
protein loss. After the first extraction, the extract was centri-
fuged (15,000 rpm, 15 min) and the supernatant was collected
before extracting the filter material the second time.
Subsequently, the supernatants were lyophilized separately
(Christ Alpha 2-4 LD, Germany). The dried residues were
resuspended in 500 uL H,O and subjected to size exclusion
chromatography (28-9180-08, PD Minitrap™ G-25, exclu-
sion limit 5 kDa, GE Healthcare, Germany) according to the
supplier’s instruction, before BCA assay and SDS-PAGE
analysis. Also, blank filter samples (see “Aerosol sampling™)
were treated in the same way.

Assessment of matrix interferences on BCA assay
and SDS-PAGE silver staining

The effects of ammonium sulfate and soot particles interfering
with protein concentration determination by BCA assay were
investigated. Experiments were conducted in triplicate using
aliquots of 26 mg ammonium sulfate, 0.4 mg soot with or
without spiking BSA solution (final concentration 250 mg/
L) in 500 uL Tris/Gly/SDS buffer, representing the estimated
mass of ammonium sulfate and soot collected on the ambient
filter samples based on a study by Poulain et al. [38], and the
average protein concentration on our filter samples as
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determined by BCA assay. The mixture was sonicated for 1 h
and afterwards centrifuged (15,000 rpm) for 15 min. The su-
pernatant (450 nL) was pipetted into a size exclusion column
(PD Minitrap™ G-25) while a 50-uL aliquot was kept as the
sample before size exclusion treatment. Both samples, before
and after size exclusion treatment, were analyzed by BCA
assay.

In addition, 0.4 mg soot samples with or without spiking
BSA (200 ng) in 500 pL Tris/Gly/SDS buffer were used to
investigate the effect of soot on SDS-PAGE silver staining.
The same procedures of sonication and size exclusion treat-
ment were performed as described above. Afterwards, the
eluate was lyophilized and resuspended in 40 puL. 1x Lammli
sample buffer for SDS-PAGE and silver staining, as detailed
in “SDS-PAGE and in-gel digestion”.

Bicinchoninic acid assay

The protein concentrations of spiked BSA and ambient aero-
sol filter sample extracts were determined with the BCA assay
(BCA1-1 KT, Sigma-Aldrich). In brief, the assay was per-
formed in 96-well microplates and calibrated with solutions
of BSA dissolved in the corresponding extractants. Volumes
of 10 uL of standard and sample solutions, respectively, were
pipetted into the microwells (three wells per sample solution),
and 200 pL freshly prepared working reagent was added. The
microplate was incubated at 60 °C for 15 min, and then cooled
to room temperature (~22 °C). The absorbance was measured
on a microplate photometer (Thermo Scientific Multiskan
EX) at 560 nm. Prebaked blank filters and sample handling
blanks were assayed according to the same procedure, and
results were used to correct laboratory and ambient filter re-
sults for blank values.

SDS-PAGE and in-gel digestion

SDS-PAGE was performed using a 4 to 20 % gradient Mini-
PROTEAN® TGX™ Gel (456-1093, Bio-Rad, USA).
Briefly, after lyophilization, the ambient filter sample extracts
were resuspended in 40 uL 1x Lammli sample buffer contain-
ing 2.5 % [3-mercaptoethanol, then incubated at 95 °C in a
thermomixer (Thermomixer Comfort, Eppendorf, Germany)
for 5 min prior to SDS-PAGE separation. A molecular weight
marker (Precision Plus Protein Unstained Standards, 161-
0363, Bio-Rad, USA) was used for molecular weight scale
calibration. Gels were run at a constant voltage of 110 V and
silver-stained with a Pierce Silver Stain for Mass
Spectrometry kit (24600, ThermoFisher Scientific, USA) ac-
cording to the supplier’s instruction. Subsequently, the gels
were scanned on a ChemiDoc MP Imaging system using the
Image Lab software (version 4.1, Bio-Rad).

The gels were cut into five fractions (F1-F5) as illustrated
in Fig. 3, corresponding to molecular weights of ~10-15 kDa
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(F1), ~15-25 kDa (F2), ~25-50 kDa (F3), ~50-100 kDa (F4),
and ~100-250 kDa (F5) for in-gel digestion. The excised
pieces were destained using the reagents and procedure pro-
vided in the Pierce Silver Stain for Mass Spectrometry kit. The
following in-gel digestion was conducted according to the
protocol of Shevchenko et al. [39]. Briefly, 10 mM DTT was
applied at 56 °C for reduction of disulfide bonds and 55 mM
IAM at room temperature in the dark for alkylation of cysteine
residues. Trypsin digestion was performed at 37 °C overnight.
Typically, 200 uL or more DTT, IAM, and trypsin solution
were added to completely cover the gel pieces in the corre-
sponding step, depending on the volume of gel matrix. After
digestion, peptides were extracted from the gel pieces by
adding 400 pL 5 % formic acid/ACN (v/v) and incubating
for 15 min at 37 °C. Subsequently, the supernatants were
collected and dried down by a SpeedVac concentrator
(Christ RVC 2-25, Germany). The dried extracts were dis-
solved in 100 uL 5 % ACN in H,O with 0.5 % TFA and
desalted with conditioned C18 spin tubes according to the
manufacturer’s instructions. Finally, the tryptic peptides were
eluted using 20 uL. 50 % ACN in H,O with 0.1 % formic acid
for MS analysis.

Nano-LC-MS/MS analysis

Peptide mixtures were analyzed with a Thermo Q Exactive
Plus Hybrid Quadrupole-Orbitrap mass spectrometer coupled
to an EASY nLC 1000 uHPLC system. Self-packed
NewObjective silica tip columns (25 cm length, 75 um inner
diameter) packed with C18 stationary phase material
(ReproSil-Pur 120 C18-AQ 1.9, 120 A pore size, 1.9 um par-
ticle size, Dr. Maisch) were used for peptide separation. The
column was operated in a column oven at 35 °C to reduce
back pressure and coupled to a nano-electrospray ion source
[40]. Eluents were H,O with 0.1 % formic acid (buffer A)
and 80 % ACN in H,O with 0.1 % formic acid (buffer B).
Peptides were eluted with a linear gradient from 2 to 5 %
buffer B for 2 min, 5 to 40 % B for 19 min, 40 to
95 % B for 4 min, and 95 % B for 5 min at a flow rate of
225 nL/min. Then the mobile phase was reset to initial
condition within 4 min and equilibrated for 4 min before the
next run. The sample injection volume was 9 puL. The Q
Exactive Plus Oribtrap was operated in a HCD Top 10 mode
with dynamic selection of the ten most intense peaks from
each survey scan (m/z 300-1650) with collision energy of
25 eV for fragmentation. The resolution for full scan (m/z
300-1650) was 70,000 and 17,500 for MS/MS scan.
Dynamic exclusion time was 20 s.

Database searches were performed with Maxquant (version
1.4.1.2, http://www.maxquant.org/) against the database
Swiss-Prot (release 2013 08, www.uniprot.org). Trypsin/P
was specified as a cleavage enzyme. Carbamidomethyl (C)
was set as a fixed modification. Variable modifications were
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acetyl (protein N-term) and oxidation (methionine (M)). Initial
peptide mass tolerance was set to 20 ppm, and fragment mass
tolerance was set to 4.5 ppm. Two missed cleavages were
allowed, and the minimum peptide length was seven amino
acids. The maximum false-discovery rate (FDR) was set to
0.01 for both the peptides and proteins. The maximal posterior
error probability (PEP), which is the individual probability of
each peptide to be a false hit considering identification score
and peptide length, was set to 0.1. Only proteins with a min-
imum of two identified peptides, one of which needs to be
unique, and without simultaneous detection in blank and wash
samples were regarded as positively identified.

Results and discussion
Development of extraction method

The effects of vial materials, extraction solvents and tech-
niques, as well as enrichment methods on protein recovery
from spiked filter samples were investigated (for details, see
“Protein extraction”; Fig. S1 in ESM 1). The presented ex-
traction method is primarily aimed at proteins that are already
released or easily extractable from pollen, fungal spores, bac-
teria, and other cells and cellular fragments in the primary
biological fraction of air particulate matter.

We first compared the influence of vial materials used for
extraction, i.e., PP and glass, on BSA recovery from glass
fiber filters. No significant difference in BSA recovery was
observed (Ayccovery ~1 %). Polypropylene vials were selected
for further method development steps. Physical extraction
methods tested were sonication and stirring. Sonication and
stirring were both carried out for 1 h at room temperature.
Protein recoveries of sonicated samples were 13 % higher than
of stirred samples. Sample enrichment methods tested were
freeze drying and protein precipitation using trichloroacetic
acid (TCA). Protein recovery of freeze drying was 22 %
higher compared with TCA precipitation. Trichloroacetic acid
precipitation is efficient for protein separation from sample
matrix but lower protein recoveries were obtained. Thus, for
maximum protein recovery, freeze drying was used for protein
enrichment. It should be noted that a commercial kit for pro-
tein extraction from soils (NoviPure® Soil Protein Extraction
Kit, Mo-Bio) was also tested but showed a comparatively low
recovery (8.5 3.6 %, data not shown) for BSA spiked on test
filters. Further tests and procedure optimizations for extraction
methods aiming to extract proteins also from intact cells col-
lected on air filter samples, including lysis methods, are re-
quired and shall be pursued in follow-up studies.

The comparison of extraction solvents was performed
among H,O (as reference), 50 % ACN in H,O (common
extraction solvent for organic aerosol constituents), and aque-
ous buffer solutions commonly used in aerosol protein

extraction (PBS) and biological research (PBS and Tris/Gly/
SDS). The highest protein recovery (88 =6 %) was observed
for Tris/Gly/SDS buffer (25 mM Tris, 192 mM glycine, 0.1 %
SDS in aqueous solution), followed by Gly/SDS (192 mM
glycine and 0.1 % SDS in aqueous solution), 0.1 % (w/v)
SDS in H,0, H,0, 10 % PBS in H,O, and 50 % ACN
in H,O, respectively, as shown in Fig. 2. Sodium dodecyl
sulfate (SDS), as an anionic detergent, can denature secondary
and non-disulfide-linked tertiary structures of proteins and
therefore facilitates the solubilization of otherwise water-
insoluble proteins as well as water-soluble proteins.
Watanabe et al. [41] reported that the amount of protein ex-
tracted from food increased 10- to 100-fold when the extrac-
tion solvent contained SDS and 3-ME and assumed that SDS
helps solubilize proteins by disrupting most of their non-
covalent bonds. Indeed, all extraction solvents containing
SDS resulted in a high protein recovery. Therefore, Tris/Gly/
SDS buffer was selected to enable extraction of water-soluble
and water-insoluble proteins and to minimize other potential
non-covalent interactions between proteins and components
(e.g., soot, dust) of ambient acrosol samples and the filter
material.

In summary, in the optimized method, samples were soni-
cated using Tris/Gly/SDS buffer as the extraction solvent,
followed by freeze drying of the obtained extracts for sample
enrichment.

BCA assay and SDS-PAGE silver staining analysis
of aerosol samples—interferences caused by ammonium
sulfate and soot particles

Previous studies have shown that aerosol components such as
ammonium sulfate and humic-like substances (HULIS) may
hamper protein determination by protein quantitation kits
[42]. They found that protein concentrations measured by
the protein quantitation kit (nano-orange assay) were six times
higher than the concentrations determined by hydrolysis of
proteinaceous material and concluded that the discrepancy
could be caused by matrix interferences. In addition, also soot
particles, which are mostly present in the fine fraction of at-
mospheric aerosols, may cause interferences in protein con-
centration determination by protein quantitation kits. Here, we
estimate the effects of ammonium sulfate and soot on protein
concentration determination by BCA assay (details in
“Assessment of matrix interferences on BCA assay and
SDS-PAGE silver staining”). Figure 3a illustrates that ammo-
nium sulfate and soot are causing signals in the BCA assay
(signals were converted into equivalent BSA concentrations)
and thus the calculated recovery of BSA was >100 % in
Fig. 3b, when ammonium sulfate or soot were present in the
protein solution.

Low molecular weight interfering substances, i.e., ammo-
nium sulfate, can be efficiently removed by size exclusion

@ Springer
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chromatography (SEC), as suggested by Franze et al. [22] and
illustrated in Fig. 3. The BCA assay signal caused by ammo-
nium sulfate is reduced by around one order of magnitude
after SEC, bringing the observed recovery of the BSA/
ammonium sulfate mixture close to 100 %. Also for soot
particles, a threefold reduction in the BSA equivalent concen-
tration was observed after SEC and >65 % of the interference
in the mixed BSA/soot sample could be removed. BCA assay
analysis of ambient aerosol samples also show a reduction of
BSA equivalent protein concentration of ~60-90 % after SEC
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Fig. 3 Influence of soot particles and ammonium sulfate on total protein
content analysis by BCA assay: a equivalent BSA concentration of soot
particle and ammonium sulfate standards in Tris/Gly/SDS buffer before
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(see Fig. S2 in ESM 1). This reduction in the observed signal
may either be caused by an over determination of the protein
content in the presence of the aforementioned interferences or
by the removal of proteins attached to soot particles. A com-
bination with other protein purification techniques, e.g., dial-
ysis or affinity chromatography, may further improve protein
concentration determination of aerosol samples by BCA
assay.

For SDS-PAGE analysis, no influence of ammonium sul-
fate was observed, but soot particles were found to affect the
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appearance of the gel after silver staining. Figure 4 lane A
shows the separation of an ambient aerosol (TSP) sample
extract after silver staining, whereby no clear bands could be
resolved over the strong background. Coomassie-stained
SDS-PAGE gels of filter extracts did not show any visible
bands (data not shown; EZBlue, G1041, Sigma-Aldrich,
Germany, detection sensitivity 5 ng), indicating that
overloading of gels is no major issue and silver staining was
selected because of its higher sensitivity (<1 ng protein) [43].
Additional experiments were performed to investigate
the influence of soot particles on the lane background
after silver staining (see Fig. 4; Fig. S3 in ESM 1). The back-
ground of lanes showing separations of samples with soot
standard (lane B and D in Fig. 4; lane B in Fig. S3 in ESM
1) appears in a darker color after silver staining compared with
the background of lanes without the addition of soot (lane C
Fig. 4; Fig. S3 in ESM 1). Furthermore, the intensities of the
protein bands were weaker in the presence of soot particles
(lane D in Fig. 4; lane B in Fig. S3 in ESM 1). However, the
location of the BSA monomer band remained unaffected by the
soot particles (lanes C and D in Fig. 4). It should be noted that
the soot standard used here might have different properties
than aged soot in the atmosphere, as soot morphology changes
and coatings by organic substances have been observed for
atmospherically aged soot particles [44]. Alternative or opti-
mized staining methods shall be investigated in follow-up
studies to minimize the effect of soot particles in the staining
step.

Soot particles were found to affect both BCA assay and
SDS-PAGE analysis of atmospheric aerosol samples and

A B C D
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Fig. 4 SDS-PAGE of filter extracts after silver staining, BSA and/or soot
in Tris/Gly/SDS buffer: Lane A, filter sample (Mz02c, TSP); lane B,
0.4 mg soot in 500 pL Tris/Gly/SDS buffer; lane C, 200 ng BSA in
500 uL Tris/Gly/SDS buffer; lane D, 200 ng BSA mixed with 0.4 mg
soot in 500 pL Tris/Gly/SDS buffer. Right lane, protein molecular weight
marker

should be considered when reporting the corresponding pro-
tein concentrations. Nevertheless, the soot particles did not
affect SDS-PAGE protein separation itself, thus in-gel diges-
tion of aerosol sample extracts and subsequent peptide LC-
MS/MS have been performed and will be discussed in the next
section.

Protein identification in ambient aerosol samples

Ambient aerosol samples collected in Mainz, Germany, a
sampling site in central Europe influenced by urban and rural
boundary layer air masses, have been analyzed. A list of the
identified proteins and their taxonomic classification is given
in ESM 2. The Maxquant output file for the observed peptides
of the identified proteins and protein groups, respectively, is
provided in ESM 3.

Five, twenty-one, and thirty-three proteins were successful-
ly identified in the coarse, fine, and TSP aerosol sample, re-
spectively. There seems to be a gap in the number of identified
proteins from the investigated aerosol samples compared with
the metaproteomic analysis of other environmental samples,
e.g., soils or sediments [28—31]. The low number of proteins
identified in this work might be related to the applied extrac-
tion method, for which the aims were outlined above. Also,
larger sample sizes (whole filters, longer sampling times)
might be used to increase the number of identified proteins,
considering the potentially low amounts of individual proteins
contributing to the total protein mass analyzed per filter ali-
quot (~250 pg) due to the diversity of protein sources includ-
ing various plants, fungi, and bacteria. Furthermore, as will be
discussed below, we observed the presence of partly degraded
proteins in the aerosol filter sample extracts, which may fur-
ther hamper protein identification. Note that the higher num-
ber of identified proteins in the fine fraction aerosol sample
compared with the coarse fraction aerosol sample is likely due
to the higher sampling flow rate of the fine fraction aerosol
sample. Protein databases (e.g., Swiss-Prot) only provide se-
quence information for a subset of known proteins [45].
Therefore, only those proteins listed in the databases can be
identified, which is particularly important for the identification
of fungal and bacterial proteins.

Many database-listed proteins of bacteria and fungi are
inferred from homology, i.e., indicating that the existence of
a protein is probable because clear orthologs exist in closely
related species, while no direct experimental evidence for the
existence of these proteins exists on a transcript or protein
level. For example, the genome of Neurospora crassa (a fungi
from the class of Sordariomycetes in the phylum of
Ascomycota) has been sequenced due to its use as a model
organism in biology [46], providing information about pre-
dicted protein-coding sequences. Still, proteins identified to
orginate from N. crassa, which was also found in air filter
samples collected in Mainz in March 2006 using DNA

@ Springer



6344

F. Liu et al.

analysis [15], are partly inferred from homology (entries 18, 19,
47, and 48 in ESM 2). For other identified proteins, experimen-
tal evidence is available at the transcript level (entries 2 and 20
in ESM 2), while experimental evidence at the protein level is
only available for one of them (entry 49 in ESM 2).

Some of the identified proteins are expressed by a variety
of organisms with only minor changes in the primary protein

structure (i.e., the amino acid sequence of the protein). Thus,
the taxonomic level to which identified proteins can be
assigned varies depending on the uniqueness of the measured
peptides among the database-listed proteins. In most cases
kingdom (83 %) and phylum (80 %) level assignments are
reasonable. The identified proteins mainly originated from
plants (68 % in TSP, 31 % in fine particles), microorganisms
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Fig. 5 Exemplary MS/MS spectra of the tryptic peptide TISSEDKPFNLR (a unique peptide of Beta-conglycinin, alpha chain from soybean) identified

in fraction F2 (a), F3 (b), and F4 (c) of the TSP sample (Mz02c)
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(fungi, bacteria, Amoebozoa, etc., 25 % in TSP, 50 % in fine
particles) and animals (7 % in TSP, 19 % in fine particles),
which is in line with the major categories of PBAP [1].
Notably, in the coarse particle sample one protein has been
assigned to a bacterium (Rhodococcus rhodochrous) [47],
which is used as a soil inoculant in agriculture, while potential
assignments of proteins identified in the fine particle and TSP
sample to the kingdom of bacteria were not unambiguous on
the kingdom level.

Also lower taxonomic ranks down to family and genus
level may be assigned, e.g., in the case of the well-studied
plant pollen proteins. Here, also seasonal influences are
reflected in the identified proteins. Particularly for the TSP
sample collected beginning of July 2015, several proteins
from different grass (Poaceae) genera were identified, which
is in accordance with the main grass flowering period from
May to July in central Europe [10]. Grass pollen proteins
identified were all allergens from the genera Lolium,
Dactylis, and Phleum. Notably, also nine proteins originating
from Glycine max (soybean), eight having a molecular weight
>20 kDa, were identified in the TSP sample. Potentially, the
occurrence of these proteins can be attributed to soy unloading
and industrial processing by a local manufacturing site pro-
ducing among others soy oil and soy flour. Soy flour dust is
known to contain high levels of proteins with MW >20 kDa
[48].

Allergenic proteins were found in TSP, coarse, and fine
particle samples. Polcalcin Phl p 7 from common timothy
(Phleum pratense), which is one of the most abundant sources
of airborne grass pollen [10], was identified in the TSP and
coarse particle sample, while for example, the major perennial
ryegrass (Lolium perenne) pollen protein Lol p 5a and the
hydrophobic seed protein (Gly m 1), an allergen from soybean
(G. max), were identified in the TSP and fine particle sample.
Allergens associated with different aerosol size fractions can

be inhaled and transported to different regions of the respira-
tory tract depending on their size (i.e., smaller particles can
enter deeper into the respiratory tract), and thus have distinct
health implications such as allergic asthma [49, 50].

The molecular weight-dependent proteomic analysis of
aerosol samples showed the presence of protein fragments in
the atmospheric aerosol sample extracts. SDS-PAGE gels
were divided into five molecular weight fractions (F1-F5,
see “Assessment of matrix interferences on BCA assay and
SDS-PAGE silver staining”) and some of the identified pro-
teins could be detected in multiple gel fractions (Table 1), i.e.,
also in fractions corresponding to lower MW than that of the
intact protein. For example, beta-conglycinin, alpha chain
from soybean (G. max), MW 70.3 kDa, was simultaneously
identified in fractions F2, F3, and F4 in the TSP sample.
Corresponding to its MW, the protein should only be detected
in fraction F4. Figure 5 shows exemplary MS/MS spectra of
TISSEDKPFNLR, a representative unique peptide of beta-
conglycinin, alpha chain, identified in the different MW frac-
tions, respectively. Tandem mass spectra (MS/MS) of other
(razor and unique) peptides of beta-conglycinin, alpha chain
are shown in Fig. S3 (ESM 1). In general, several processes
may lead to the observed protein degradation, including pro-
teolytic degradation during sample preparation and in the en-
vironment, as well as degradation by reactive oxygen species
(e.g., OH, HO,) [51] and acid-catalyzed hydrolysis [52] in the
environment. To differentiate between environmental protein
degradation and degradation during sample preparation, it is
planned to conduct experiments with and without the addition
of protease inhibitors [53]. Nevertheless, these first results
could motivate studies concerning the fate of proteins in the
atmosphere, especially under the rising air pollutant concen-
trations encountered in the Anthropocene, the present era of
steeply increasing human influence on planet Earth [54, 55].
Environmental protein degradation might be a source of

Table 1  Exemplary results of protein identification in SDS-PAGE molecular size fractions for the TSP and fine particle sample extracts
Sample ID (size  Protein name Family/species Sum of Unique MW (Unique) Peptide counts
range) peptides peptides (kDa)
F1 F2 F3 F4 F5
Mz02¢ (TSP) Glycinin G4 Fabaceae/Glycine max (soybean) 2 1 63.6 1(0) 2(1) 1(0) 10
Glycinin G1 Fabaceae/G. max (soybean) 7 4 55.7 43) 53) 3(1) 1)
Glycinin G2 Fabaceae/G. max (soybean) 8 4 544 10) 53) 42
Beta-conglycinin, Fabaceae/G. max (soybean) 9 6 70.3 2(12) 905 44
alpha chain
Beta-conglycinin, Fabaceae/G. max (soybean) 4 2 74.3 4(2)
alpha’ chain
Major pollen allergen  Poaceae/Lolium perenne 6 6 30.9 6(2) 2(2)
Lol p 5a (perennial ryegrass)
344b (<3 pm) ATP synthase subunit ~ Saccharomycetaceae (yeasts)/— 7 1 54.8 5(1) 3(1) 6(1) 3(0) 1(0)
beta
Elongation factor 2 Saccharomycetaceae (yeasts)/— 3 1 93.2 3() 1()

Molecular size fractions: F1 (~10-15 kDa), F2 (~15-25 kDa), F3 (~25-50 kDa), F4 (~50-100 kDa), F5 (~100-250 kDa)

@ Springer



6346

F. Liu et al.

peptides, amino acids, amino, and carbonyl compounds in the
atmosphere and thus contribute to various atmospheric pro-
cesses and ecosystem interactions of atmospheric aerosols
[56, 57].

Conclusions

Mass spectrometric identification of proteins in atmospheric
aerosol samples was carried out after development of a meth-
od optimized to extract proteins from air filter samples. Soot
particles contained in the aerosol samples were found to inter-
fere with BCA assay analysis, a common technique to mea-
sure total protein contents, as well as staining methods, i.e.,
silver staining, used to visualize SDS-PAGE results. The in-
terference of the soot particles could be minimized by
performing size exclusion chromatography of air filter sample
extracts.

The metaproteomic analysis presented here allows a first
profiling of proteins in atmospheric acrosols. More in-depth
analysis of specific post-translational modifications (PTM) of
health-relevant proteins (aeroallergens) in the atmosphere
(e.g., protein nitration) [58—61], requires specific and efficient
enrichment and purification methods, e.g., antibody-based af-
finity enrichment, which will be addressed in follow-up stud-
ies. Furthermore, improvements of protein databases, e.g., by
providing proteome information for a larger number of species
including fungi and bacteria present in the atmosphere are
needed to provide more complete information about the abun-
dance and proportions of different biological kingdoms pres-
ent in the aerosol metaproteome.

The molecular size-dependent analysis of proteins extract-
ed from the aerosol samples revealed the presence of
fragmented proteins in the sample extracts. Such fragments
may arise partly from proteolytic degradation during sample
preparation and degradation of proteins in the environment,
which will be examined in follow-up studies. Environmental
protein degradation processes might be of relevance for eco-
system interactions, e.g., nutrient cycling, as well as health
implications of protein-containing aerosols due to a potential
loss of protein activity upon degradation.

The presented profiles of extractable proteins in atmospher-
ic aerosol particles show that proteins encountered in ambient
air particulate matter mainly originate from plants, fungi, and
bacteria, which is in line with the major categories of PBAP.
Allergenic pollen proteins, e.g., from perennial ryegrass, were
found in coarse and fine particles, which can penetrate deep
into the lower part of the respiratory tract.

Complementary to antibody or DNA-based methods, the
metaproteomic analysis of atmospheric aerosol samples pro-
vides a tool to study bioparticles and allergens in air particu-
late matter. Potential applications include investigations of the

@ Springer

spatiotemporal variability of bioaerosol composition and cor-
responding implications for human health.
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