Lee et al. BMC Genomics (2020) 21:554
https://doi.org/10.1186/512864-020-06933-z

BMC Genomics

RESEARCH ARTICLE Open Access

Population analysis of the Korean native
duck using whole-genome sequencing data

Check for
updates

Daehwan Lee'", Jongin Lee'", Kang-Neung Heo?", Kisang Kwon', Youngbeen Moon', Dajeong Lim?,

Kyung-Tai Lee? and Jaebum Kim'"

Abstract

native ducks together with 15 other duck breeds.

genes in those regions were examined.

Background: Advances in next-generation sequencing technologies have provided an opportunity to perform
population-level comparative genomic analysis to discover unique genomic characteristics of domesticated animals.
Duck is one of the most popular domesticated waterfowls, which is economically important as a source of meat,
eggs, and feathers. The objective of this study is to perform population and functional analyses of Korean native
duck, which has a distinct meat flavor and texture phenotype, using whole-genome sequencing data. To study the
distinct genomic features of Korean native duck, we conducted population-level genomic analysis of 20 Korean

Results: A total of 1556 million single nucleotide polymorphisms were detected in Korean native duck. Based on
the unique existence of non-synonymous single nucleotide polymorphisms in Korean native duck, a total of 103
genes related to the unique genomic characteristics of Korean native duck were identified in comparison with 15
other duck breeds, and their functions were investigated. The nucleotide diversity and population structures among
the used duck breeds were then compared, and their phylogenetic relationship was analyzed. Finally, highly
differentiated genomic regions among Korean native duck and other duck breeds were identified, and functions of

Conclusions: This is the first study to compare the population of Korean native duck with those of other duck
breeds by using whole-genome sequencing data. Our findings can be used to expand our knowledge of genomic
characteristics of Korean native duck, and broaden our understanding of duck breeds.
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Background

In recent years, next-generation sequencing (NGS) tech-
nologies have dramatically improved in terms of cost,
speed, and productivity [1]. This trend has provided us
novel opportunities for large-scale population-level genome
analysis. As a result, many population-level genome pro-
jects, such as the 1000 bull genomes project [2], Bird 10 K
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project [3], and 100,000 genomes project [4], have been
launched. Recently, many population-level studies for vari-
ous species have also been conducted to identify unique
genomic features of a specific population of interest. For ex-
ample, analysis using sequencing data of a total of 89 indi-
viduals in polar bear and brown bear populations was
conducted to identify the divergence point of the two bear
breeds [5]. Different genomic characteristics related to ex-
treme environment adaptation have been studied for 77 in-
dividual sheep using whole-genome sequencing data [6].
Sequencing data of 57 platypuses living across eastern
mainland Australia and Tasmania were used to uncover
their dispersal and demographic history [7]. Also, various
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comparative analyses using whole-genome sequencing data
have been performed to compare wild and domestic animal
populations such as dog [8], pig [9], and chicken [10].

The duck is one of the most common domesticated
waterfowls and is economically important as a source of
meat, eggs, and feathers [11]. As a result, various genetic
studies have been conducted to discover economically
valuable genetic characteristics of duck breeds. For ex-
ample, three duck breeds, which were artificially selected
in China, were analyzed to identify the genetic features
related to artificial selection based on whole-genome se-
quencing data [12]. Positively selected genes and differ-
entially expressed genes involved with muscle growth
and lipid deposition were identified by comparing native
Pekin duck and Cherry Valley Pekin duck using whole-
genome and transcriptome sequencing data [13].

Korean native duck (KD), called Woorimatori, is a do-
mesticated duck that originated from the hybridized
ducks between mallard duck and indigenous Pekin duck,
and has been continuously improved since 1997 at Na-
tional Institute of Animal Science, Republic of Korea by
selecting individuals with excellent appearance, weight,
and productivity [14—16]. They resemble the appearance
of a mallard duck with glossy dark brown feathers, and a
dark green head in males (Fig. 1 and more
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characteristics in Additional file 1: Table S1). In
addition, they are general purpose type duck that has ex-
cellent economic efficiency and productivity. They have
a high crude protein, water retention capacity, and
unique meat flavor and texture with high polyunsatur-
ated fatty acids in breast meat and high essential fatty
acids, arachidonic acid [17]. Although some recent stud-
ies have investigated the unique characteristics of the
Korean native duck [17-20], whole genome-level studies
for the Korean native duck still lag behind other domes-
tic animals and duck breeds.

To address this, we apply a population-level genome ana-
lysis based on whole-genome sequencing data from popula-
tions of various duck breeds including KD. Specifically, we
sequenced the whole genomes of 20 KDs, collected whole-
genome sequencing data of 14 phenotypically diverse duck
breeds (Additional file 1: Table S1), and discovered single
nucleotide polymorphisms (SNPs) for 15 duck breed popu-
lations including KD. We discovered candidate genes re-
lated to the unique characteristics of KD based on the
existence of non-synonymous SNPs (nsSNPs) compared to
nsSNPs of other breeds. Additionally, we examined the
population structure of 15 duck breeds using various meth-
odologies such as principal component analysis (PCA), ad-
mixture, and phylogeny estimation. We also identified
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Fig. 1 Appearance of male and female Korean native duck. Pictures were obtained from the Poultry Research Institute, and the Animal Genetic
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genomic regions under high differentiation among duck
breeds and performed functional analysis of genes in those
regions. Our findings provide extensive knowledge of KDs
and proved an example of comprehensive analysis using
whole-genome sequencing data for native animals.

Results

Genome resequencing, SNP calling and annotation

We performed whole-genome resequencing of 20 Ko-
rean native ducks (KDs) at a mean coverage of 25.7x
(see Methods; Additional file 2: Table S2), and detected
single nucleotide polymorphism (SNP) for 123 individ-
uals of 15 duck breeds (see Methods). We also anno-
tated SNPs and summarized the results for 15 duck
breeds. A total of 15,557,752, 14,629,071, and 28,920,088
SNPs were discovered from KD, Pekin duck (PK), and
mallard duck (MD), respectively (Table 1). We also iden-
tified the number of SNPs in indigenous duck breeds
(Longsheng (LS), Jiding (JD), Loancheng white (LC),
Mawang (MW), Puitan black (PT), Shan (SM), Sansui
(SS), Shaoxing (SX), Taiwan (TW), Youxian (YX), Ji'an
red (JA), and Gaoyou (GY)), which ranged from 8,787,
171 to 10,667,745. We calculated transition to transver-
sion (Ti/Tv) ratios to assess the overall SNP quality. The
Ti/Tv ratio for KD, PK, and MD were 2.53, 2.51 and
2.51, respectively, and for the indigenous duck breeds
have shown the Ti/Tv ratio ranging from 2.53 to
2.56. We annotated all SNPs for 15 duck breeds with
19 functional categories, including synonymous, non-
synonymous, intron, untranslated regions, and inter-
genic (Additional file 3: Table S3).

Table 1 SNP statistics of 15 duck breeds

Duck breed No. of SNPs Ti/Tv ratio®

Korean native duck (KD) 15,557,752 2.53 (0.0045)
Mallard duck (MD) 28,920,088 2.51 (0.0131)
Pekin duck (PK) 14,629,071 2.51 (0.0231)
Longsheng Cui-duck (LS) 9,616,438 2.55 (0.0180)
Jinding duck (JD) 9,012,541 2.53 (0.0110)
Liancheng white duck (LC) 8,787,171 2.56 (0.0127)
Mawang duck (MW) 10,702,303 256 (0.0164)
Putian black duck (PT) 10,704,884 2.56 (0.0148)
Shan sheldrake (SM) 9917514 2.55 (0.0183)
Sansui duck (SS) 10,667,745 256 (0.0192)
Shaoxing duck (SX) 10,446,665 2.55 (0.0171)
Taiwan sheldrake (TW) 9,123,754 2.55 (0.0124)
Youxian sheldrake (YX) 10,644,149 2.56 (0.0214)
Ji'an red duck (JA) 10,061,461 2.55 (0.0181)
Gaoyou duck (GY) 9,980,748 2.55(0.0181)

Ti/Tv ratio is the ratio of the number of transitions to the number of
transversions and standard deviations are in parentheses
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Investigation of unique genomic characteristics of Korean
native duck

To investigate the unique genomic characteristics of the
Korean native duck (KD), we found 3062 KD genes con-
taining unique non-synonymous SNPs (nsSNPs) not ob-
served at the same position in other duck breeds (see
Methods; Additional file 4: Table S4). We performed
Gene Ontology (GO) enrichment analysis to find poten-
tial functions for these genes (see Methods). Among the
various biological processes, multicellular organismal
process (GO:0032501), developmental process (GO:
0032502), systems development (GO:0048731), anatom-
ical structure development (GO:0048856), cellular com-
ponent organization or biogenesis (GO:0071840),
multicellular organism development (GO:0007275), and
cellular component organization (GO:0016043), were
found to be highly enriched (Additional file 5: Table S5).
Enriched GO terms in the molecular function and cellu-
lar component category are also shown in Additional file
5: Table S5. In addition, we examined how the amino
acid composition of these genes differs from other duck
breeds. Among the 3062 genes, two genes (PNPLA8 and
ENO1I) are shown as examples in Fig. 2. In the case of
PNPLAS (Fig. 2a), only KD had serine as an alternative
allele with alanine as a reference allele, caused by a G >
T nsSNP at the position of 173,022,060. At other posi-
tions of PNPLAS8 (e.g. 172,992,007 and 173,022,120), sev-
eral breeds including KD had different amino acids as
alternative allele caused by missense variant. Similarly,
the ENOI gene had a locus which exhibited a G>C
nsSNP only in KD. This G > C nsSNP at position 5,912,
196 in the eighth exon leads to arginine as an alternative
allele with glycine as a reference allele in KD (Fig. 2b).
The ENOI gene also had other positions where amino
acid changes occur due to missense variant in various
duck breeds.

We further filtered the above KD genes and obtained
KD-specific genes which have only KD unique nsSNPs,
not with nsSNPs of the other duck breeds (see
Methods). A total of 103 KD-specific genes were found
(Additional file 6: Table S6). We also conducted Gene
Ontology enrichment analysis for these genes, but there
are no significantly enriched functions. Among them,
however, GRIK2 known to be related with domestication
[21] was included in the gene list. Figure 2c shows an
example of the change of amino acid composition in the
GRIK2 gene. The T > C nsSNP in this gene led to threo-
nine as an alternative allele with isoleucine as a reference
allele, which has only occurred in KD.

Nucleotide diversity, population structure and
phylogenetic relationship analysis

After filtering out SNPs using various criteria such as
minor allele frequency, genotype rate and the Hardy-
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Fig. 2 Examples of KD genes (a and b) and KD-specific gene (c). Top panel shows gene structure with the direction of transcription (blue arrow).
Bottom panel indicates positions of non-synonymous SNPs and comparison of amino acids among different duck breeds. Note that the positions
of bottom panel in A and B represent examples among all nsSNP positions. Below the bottom panel indicates sequence ontology predicted by
Snpkff. Two different amino acids corresponding to two nucleotide variants are shown together with a slash delimiter. Duck_Ref: IASC
AAS_PekingDuck_PBH1.5, Korean native duck: KD, Pekin duck: PK, mallard duck: MD, Gaoyou duck: GY, Longsheng Cui-duck: LS, Shaoxing duck:
SX, Ji'an red duck: JA, Sansui duck: SS, Putian black duck: PT, Mawang duck: MW, Youxian sheldrake: YX, Shan sheldrake: SM, Jinding duck: JD,
Taiwan sheldrake: TW and Liancheng white duck: LC

Weinberg equilibrium (see Methods), we obtained a
total of 8,769,869 SNPs from 123 individuals of 15 duck
breeds. We first calculated the mean nucleotide diversity
() [22] for each of 15 duck breeds using the filtered
SNPs (Table 2; Methods). MD showed the highest
value (0.1698), which is clearly larger than the values of
other duck breeds (from 0.1028 to 0.1384). The lowest 1t
value was observed in LC (0.1028), and the 1t value of
KD was 0.1338 which is higher than PK (0.1221). We
next used two approaches to identify the population
structure of 15 duck breeds. First, we conducted

Table 2 Nucleotide diversity (1) of 15 duck breeds

Duck breed Mean nucleotide diversity (Stdev)
Korean native duck (KD) .1338 (0.0325)
Mallard duck (MD) 1698 (0.0267)
Pekin duck (PK) 1 (0.0306)
Longsheng Cui-duck (LS) 210 (0.0444)
Jinding duck (JD) 0.1111 (0.0426)
Liancheng white duck (LC) 0.1028 (0.0404)
Mawang duck (MW) 0.1384 (0.04871)
Putian black duck (PT) .1379 (0.0479)
Shan sheldrake (SM) 1262 (0.0463)
Sansui duck (SS) 1383 (0.0480)
Shaoxing duck (SX) 41 (0.0471)
Taiwan sheldrake (TW) 03 (0.0424)
Youxian sheldrake (YX) 0.1364 (0.0476)
Ji'an red duck (JA) 0.1288 (0.0465)
Gaoyou duck (GY) 1276 (0.0460)

principal component analysis (PCA) to identify genomic
relationships among 15 duck breeds. By the first two
principal components, 15 duck breeds were divided into
three major clusters (Fig. 3a). KD and PK breeds were
very tightly clustered together, whereas the MD breed
was loosely stretched. The remaining cluster included all
indigenous breeds (LS, JD, SM, SX, YX, MW, SS, LC,
PT, TW, GY, and JA). More detailed relationships be-
tween the other principal components are provided in
Additional file 7: Fig. S1. Second, we analyzed the popu-
lation structure of 15 duck breeds using ADMIXTURE
to estimate admixture proportion and individual ances-
try based on the called genotypes (see Methods; Fig. 3b).
At K =2, similar to the results of PCA, KD and PK were
distinguished from the rest of the breeds. Additionally,
from the results at K=3, we identified a division be-
tween MD and all indigenous breeds. When K =5, we
found that KD and PK were separated and observed a
subdivision in MD. At K=5, we observed genomic rela-
tionships among the 15 duck breeds consistent with the
results of PCA. We then constructed a maximum likeli-
hood tree using a subset of 12,566 high-quality SNPs to
identify the phylogenetic relationships among 15 duck
breeds (Fig. 3c). We confirmed that most of the individ-
uals in the same breeds were grouped into one cluster,
and these results were also consistent with the PCA result
in terms of the first two principal components (Fig. 3a).

Population differentiation analysis

To identify the differentiated genomic regions among
duck populations, we calculated the Z-transformed Fst
(ZFst) values based on SNPs in 40 Kb sliding genomic
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Fig. 3 Population structure analysis of 15 duck populations (Pekin duck: PK, mallard duck: MD, Gaoyou duck: GY, Longsheng Cui-duck: LS,
Shaoxing duck: SX, Ji'an red duck: JA, Sansui duck: SS, Putian black duck: PT, Mawang duck: MW, Youxian sheldrake: YX, Shan sheldrake: SM,
Jinding duck: JD, Taiwan sheldrake: TW and Liancheng white duck: LC). a The principal component analysis plot of 15 duck populations with the
first two components. b Population genomic structures obtained by the number of clusters K (from 2 to 5). Each individual is represented with a
vertical line. The length of each colored segment represents a relative membership to different clusters. ¢ Maximum-likelihood phylogenetic tree
of 15 duck populations. Color of each branch corresponds to the color in the PCA plot for each duck population
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regions with 10 Kb steps (see Methods). We investigated
the population differentiation among the KD, PK, and
MD populations based on the estimated tree topology
(Fig. 4 and Additional file 8: Fig. S2). In total, we identi-
fied 309 and 107 highly differentiated genomic regions
(ZFst > 5) with 101 and 54 genes across autosomal chro-
mosomes for the KD versus PK population and the KD
versus MD population, respectively. In the case of the
KD versus PK population, some highly differentiated

regions included the MITF gene related to melanocyte
differentiation (GO:0030318) and pigmentation (GO:
0043473), and the B3GALT1 gene associated with lipid
glycosylation (GO:0030259) (Fig. 4). In the case of the
KD versus MD population, the MTNRIA and ITPR2
genes were observed in highly differentiated regions (Fig.
4). These genes were related to melatonin receptor activ-
ity (GO:0008502), and calcium-release channel activity
(G0O:0015278), and inositol 1,4,5-trisphosphate-sensitive
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calcium-release channel activity (GO:0005220), respect-
ively. Additionally, we identified 99 highly differentiated
genomic regions with 53 genes for the KD versus other
14 duck population (Additional file 9: Fig. S3). In this
case, genes related with hydrolase activity (GO:0016787)
and growth factor activity (GO:0008083), such as
ABHDI7A and TGFB3, were observed in several differ-
entiated genomic regions.

Discussion

In this study, we performed whole-genome resequencing
of 20 individual Korean native ducks (KD) using high-
throughput next-generation sequencing technologies,
and conducted a comparative analysis with 14 duck
breeds based on single nucleotide polymorphism (SNP)
data. The 14 duck breeds were selected because they are
well categorized according to their phenotypes, and their
relationship among Pekin duck (PK), mallard (MD), and
indigenous duck breeds is well studied [23].

Similar to previous studies [24-26], we called SNPs of
each duck breed by mapping sequencing data to a duck
reference genome, and applying various filtering steps,
such as duplicate read handling, local realignment, and
removal of low-quality calls, to ensure the high-quality
of SNPs. We detected and annotated a total of 51,154,
530 high-quality SNPs from the 15 duck breeds, and
identified two types of gene sets based on the existence
of non-synonymous SNPs (nsSNPs) in order to find
unique genetic characteristics of the KD breed compared
to other duck breeds. One is the KD genes which con-
tain loci where only KD has nsSNPs (but can have loci
with nsSNPs only found in other breeds), and another is
the KD-specific genes which have loci with nsSNPs only

found in KD. Among the 3062 KD genes, the PNPLAS8
gene is involved in energy mobilization and lipid storage
in adipocyte tissue [27], and the ENOI gene plays a role
in the glycolysis pathway as an enzyme which is related
to fatty acid synthesis [28]. Although no significantly
enriched function has been identified in the 103 KD-
specific genes, these genes may underlie a difference be-
tween KD and other breeds. For example, the GRIK2
gene, which encodes a subunit of a glutamate receptor,
(i) has a crucial role in synaptic plasticity, (ii) is involved
in learning and memory, and (iii) plays an important role
during rabbit domestication [21].

The mean nucleotide diversity (1) of duck breeds was
between 0.1028 to 0.1384, and MD showed exceptionally
higher nucleotide diversity than domesticated breeds.
KD has a higher nucleotide diversity (0.1338) than PK
(0.1221), which may be because the breeding history of
KD (since late 1990s) is shorter than PK (since the Ming
Dynasty) [14, 23]. We also performed population ana-
lyses of 15 duck breeds including KD, and found similar
patterns for duck breeds used in the previous study [23].
In addition, our results show that the KD breed has a
close genomic relationship and shared admixture history
with the PK breed. This can be explained by the domes-
ticaton history of KD, which was formed with hybridized
ducks of indigenous PK and wild mallard duck in the
late 1990s and has been improved to current KD (Woor-
imatori) population [14, 16].

We conducted differentiation analysis to discover what
makes the difference among KD, PK, and MD breeds,
and identified several candidate regions covering highly
differentiated SNPs with respect to KD versus PK and
KD versus MD. In the highly differentiated regions
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between KD and PK, we found several phenotype-
related genes such as B3GALT1, FHIT, and MITF. The
B3GALTI1 gene is related to lipid glycosylation (GO:
0030259) which affects lipid accumulation [29]. The
FHIT gene is associated with body mass index [30]. The
MITF gene plays an important role in the melanogenesis
pathway [31, 32] and is involved in functions such as
melanocyte differentiation (GO:0030318) and pigmen-
tation (GO:0043473). This gene may explain why KD
has glossy dark brown feathers while PK has white
plumage [14, 23]. Also, we found two interesting
genes, MTNRIA and ITPR2, in highly differentiated
regions between KD and MD. Sequential genetic vari-
ation in the MTNRIA gene is associated with the re-
productive behavior of a local Greek sheep breed and
goat [33, 34], and also some SNPs in this gene may
affect duck reproduction [35]. The ITPR2 gene plays
a crucial role in the regulation of intracellular calcium
transportation and the process of eggshell calcification
related to eggshell quality [36]. We suggest that these
genes in the highly differentiated regions could be
candidates for improving reproductivity, meat quality,
and egg quality. Additionally, we investigated differen-
tiated genomic regions among KD and other 14 duck
breeds, and found 53 genes including ABHDI7A,
SSH2 and TGFB3 associated with palmitoyl-(protein)
hydrolase activity (G0O:00008474), hydrolase activity
(GO:0016787) and growth factor activity (GO:
0008083). Genes related with these functions may
have created difference between KD and other 14
duck breeds. Zhou et al. compared populations of
MD, PK, and indigenous-breed ducks, and found a
regulatory mutation in a long-distance upstream re-
gion of the IGF2BP1 gene [23]. The long-distance
mutation may have a potential to induce continuous
expression of the IGF2BPI gene, which is related to
large body size in PK. The long-distance regulatory
region and the IGF2BP1 gene were not included in
the differentiated genomic regions obtained from the
comparison between KD versus PK and KD versus
MD in our study.

Conclusions

In summary, our study represents the first population-
level analysis of 15 duck breeds including Korean native
duck (KD) based on whole-genome sequencing data.
Our results include candidate genes associated with
unique characteristics of KD, and the genetic relation-
ship among the 15 duck breeds. As a result, our research
provides a comprehensive overview of the population
structure and genetic diversity of 15 duck breeds, and
will help further investigate the genetic information
underlying commercially valuable traits in the KD breed.
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Methods

Sequencing and library preparation

We generated whole-genome resequencing data from a
population of Korean native duck (KD; N = 20). The Ko-
rean duck samples were collected from Myeongbawi-
nongsan (Yongin, Korea) in compliance with relevant
guidelines, using protocols approved by the Committee
on the Ethics of Animal Experiments of the National In-
stitute of Animal Science (Permit Number: NIAS2015—
775). Each sequenced sample was prepared according to
the Ilumina protocols (TruSeq DNA Sample Prep Kit
v2 Support (FC121-2001)). Briefly, one microgram of
genomic DNA was fragmented by Covaris, the fragmen-
ted DNA is repaired, and an ‘A’ is ligated to the 3" end.
[lumina adapters are then ligated to the fragments, and
the sample is size selected aiming for 400 ~ 500 base pair
products. The size selected product is PCR amplified,
and the final product validated using the Agilent Bioana-
lyzer. After that, selected DNA was sequenced using the
HiSeq2000 platform (Illumina, San Diego, USA) by
Macrogen (Seoul, Republic of Korea).

Read alignment and variant calling

To generate single nucleotide polymorphism (SNP) data,
we collected public sequencing data of various breeds of
duck (Pekin; PK (N =30), Mallard; MD (N =37), and
twelve Chinese indigenous breeds; Gaoyou (GY), Long-
sheng (LS), Shaoxing (SX), Ji'an red (JA), Sansui (SS),
Putian black (PT), Mawang (MW), Youxian (YX), Shan
(SM), Jinding (JD), Taiwan (TW) and Liancheng white
(LC) (N = 3 for these breeds)) from the NCBI SRA data-
base (https://www.ncbi.nlm.nih.gov/sra; Additional file 2:
Table S2 for accession numbers of the data). A total 103
public sequencing data of various duck breeds and 20
resequencing data of KD were aligned to the
chromosome-level duck reference genome (assembly
version IASCAAS_PekingDuck_PBH1.5; accession num-
ber GCF_003850225.1) downloaded from the NCBI
RefSeq database [37] using BWA-MEM (v0.7.17) with
default parameters [38]. After aligning, SAMtools (ver-
sion 1.3.1) was used for converting SAM to BAM for-
mat, sorting, and indexing process [39]. Filtering of
duplicate reads which mapped to the same position on
the reference genome, and generation of quality matrices
for mapping were processed using the MarkDuplicates
program in the Picard tool (v2.17.11; http://broadinsti-
tute.github.io/picard). Local realignment was performed
using the Genome Analysis ToolKit (GATK v3.8.1) tool
[40]. Because publically available duck SNPs did not yet
exist, the first SNP calling procedure was performed
using HaplotypeCaller without the recalibration step.
The output was filtered as follows: “QD < 2.0, MQ <
40.0, FS > 60.0, MQRankSum < -12.5, ReadPosRankSum
< -8.0”. Then, the recalibration step was performed with


https://www.ncbi.nlm.nih.gov/sra;
http://broadinstitute.github.io/picard
http://broadinstitute.github.io/picard

Lee et al. BMC Genomics (2020) 21:554

filtered SNPs as the database of known SNPs, and the
second SNP calling procedure proceeded with recali-
brated data using HaplotypeCaller. Finally, raw calling
data was filtered using the same criteria as in the previ-
ous filtering step.

SNP annotation, KD-specific gene identification, and
functional analysis

We built a database with the NCBI RefSeq gene annota-
tion data (duck annotation release 103) of the reference
duck assembly (IASCAAS_PekingDuck_PBH1.5) [37], and
performed variant annotation for the final SNPs of 15
duck breeds using SnpEff v4.3 [41]. We also calculated the
transition-to-transversion ratio (Ti/Tv) to evaluate the
quality of the SNPs. Using the annotated SNP informa-
tion, KD genes with unique non-synonymous SNPs
(nsSNPs), which were not observed at the same position
in other duck breeds, were identified. Note that these
genes can have unique nsSNPs of other duck breeds or
common nsSNPs among other duck breeds. Therefore, we
further reduced those KD genes to KD-specific genes
which have only KD unique nsSNPs, not with nsSNPs of
other duck breeds. Functional analysis of the above KD
genes and KD-specific genes was performed by g:Profiler
with default parameters [42].

Nucleotide diversity, population structure and selective
sweep analysis

SNP data was filtered with PLINK (v1.90) using the fol-
lowing criteria: “--geno 0.01 —maf 0.05 --hwe 0.000001”
[43]. For each duck breed, the nucleotide diversity (i)
was calculated for each of 40 Kb sliding genomic win-
dows (with 10 Kb steps) using the filtered SNPs by the
populations program in Stacks (v2.53) with default pa-
rameters [44]. In this calculation, only autosomal chro-
mosomes were used, and mean nucleotide diversity from
all genomic windows were reported. Principal compo-
nent analysis (PCA) was performed using GCTA
(v1.24.4) [45]. First, a genetic relationship matrix was
calculated with the “--make-grm” option, and then four
principal components were estimated with the “--pca 4”
option. The ggplot2 R package was used to visualize the
PCA plot [46]. The ancestry of each individual was esti-
mated by ADMIXTURE (v1.3.0) [47] with 200 bootstrap
replicates and the number of ancestral clusters K ran-
ging from 2 to 6. The estimated ancestry for each cluster
was visualized by CLUMPAK [48]. A phylogenetic tree
was constructed based on the SNPs filtered by PLINK
(v1.90) with “--indep-pairwise 50 5 0.2” option to reduce
SNP redundancy caused by linkage disequilibrium using
SNPhylo [49]. A total of 12,566 high-quality SNPs were
used to build a maximum likelihood phylogenetic tree
using SNPhylo with default parameters, and 1000 boot-
strap replicates. To investigate differentiated regions
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among the various duck populations, the mean Fst value
was calculated using VCFtools (v.0.1.13) [50] for 40 Kb
sliding genomic windows with 10 Kb steps in autosomal
chromosomes, and it was Z-transformed as follows:
ZFst = (Fst — p Fst)/ o Fst, where Fst is the Fst in a win-
dow, pu Fst is an average Fst over all windows, and o Fst
is a standard deviation of Fst values of all windows [51].
Genes in the genomic regions with high Z-transformed
Fst value (>5) were used to identify their functions in
terms of gene ontology. The results of population differen-
tiation were visualized in the form of a Manhattan plot by
the gqgman R package [52]. Functional analysis was per-
formed by g:Profiler with default parameters [42].
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