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2Sahlgrenska Academy, University of Gothenburg, 413 45 Göteborg, Sweden
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6Unit of Hematology, Department of Medicine, Södra Älvsborg Hospital, 504 55 Borås, Sweden
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Diffuse large B-cell lymphoma (DLBCL), the most common lymphoma, is a heterogeneous disease where the outcome for patients
with early relapse or refractory disease is very poor, even in the era of immunochemotherapy. In order to describe possible
differences in global protein expression and network patterns, we performed a SILAC-based shotgun (LC-MS/MS) quantitative
proteomic analysis in fresh-frozen tumor tissue from two groups of DLBCL patients with totally different clinical outcome: (i)
early relapsed or refractory and (ii) long-term progression-free patients. We could identify over 3,500 proteins; more than 1,300
were quantified in all patients and 87 were significantly differentially expressed. By functional annotation analysis on the 66
proteins overexpressed in the progression-free patient group, we found an enrichment of proteins involved in the regulation and
organization of the actin cytoskeleton. Also, five proteins from actin cytoskeleton regulation, applied in a supervised regression
analysis, could discriminate the two patient groups. In conclusion, SILAC-based shotgun quantitative proteomic analysis appears
to be a powerful tool to explore the proteome in DLBCL tumor tissue. Also, as progression-free patients had a higher expression of
proteins involved in the actin cytoskeleton protein network, such a pattern indicates a functional role in the sustained response to
immunochemotherapy.

1. Introduction

The outcome for diffuse large B-cell lymphoma (DLBCL)
patients with early relapse or with refractory disease, even
in the era of immunochemotherapy, is dismal and very few
are alive after 2 years. Today, the only prognostic tool used in
clinical practice to risk-stratify DLBCL patients is the Inter-
national Prognostic Index (IPI), based on clinical variables at
diagnosis (age, performance status, disease stage, extranodal
disease, and lactate dehydrogenase in serum) [1] which also
has been found to be valid in the immunochemotherapy era,
where 3-year progression-free survival ranges from 87% in
low-risk patients to 55% in high-risk patients [2]. However,
IPI has limitations, and the index seems to be less useful

in the identification of the individual high-risk patient [3].
Thus, there is a need for reliable biological markers that
can identify these high-risk patients. More than a decade
ago, based on the results from global gene expression pro-
filing, two subtypes of DLBCL with different outcomes were
described: germinal center B-like (GCB) and activated B-
like (ABC) [4], the former with significantly better survival.
Furthermore, a simplified gene expression analysis including
only 6 genes (LMO2, BCL6, FN1, CCND2, SCYA3,and BCL2)
could also discriminate between these subtypes [5, 6]. Yet,
as these methods are so far not standardized, attempts have
been made to translate the results from the gene expres-
sion analyses to clinically applicable immunohistochemical
staining methods. The most important study showed that
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it was possible to subclassify DLBCL into GCB or non-
GCB type using only 3 proteins (CD10, bcl-6, and MUM-
1) [7], but the clinical value of these findings has been
contradictory [8–10]. In addition, there are many studies
pointing out that the mRNA levels do not necessarily reflect
the protein expression of cells and tissues, for example, due
to posttranscriptional regulation, as well as differences in
mRNA and protein turnover rates. Also, the reproducibility
of immunohistochemical staining for the most important
biomarkers in DLBCL is limited [11, 12]. Instead, another
way to search for potential protein biomarkers in DLBCL
could be by a proteomic analysis. In recent years, different
proteomic approaches have been applied, mostly on cell
lines or in animal models, to investigate the proteome in
DLBCL tumor material [13–19]. So far, none of the studies
have addressed the prognostic challenge in DLBCL, that is,
identification of high-risk patients. However, it was recently
shown that a SILAC-based quantitative proteomic analysis
of different DLBCL cell lines could differentiate between
the GCB and ABC subtypes [14]. Even if stable isotope
labeling with amino acids in cell culture (SILAC) is a precise
method of quantitative proteomics it has been restricted to
cell lines that could be metabolically labeled [20]. Recently,
this technique has however been improved by using a mix
of multiple SILAC-labeled cell lines as an internal standard,
achieving amuch higher protein quantification precision and
also enabling a comparison of proteins not only in cell lines
but also in tumor tissue [21]. The aim of our study was to
use quantitative shotgun LC-MS/MS proteomic analysis with
the SILAC-based technique in fresh-frozen tumor tissue in
two groups of DLBCL patients who have been treated with
modern immunochemotherapy with totally different clinical
outcome, that is, (i) early relapse/refractory patients and
(ii) long-term progression-free patients, in order to explore
possible alterations in global protein expression and protein
network patterns.

2. Material and Methods

2.1. Selection and Preparation of Tissue Samples. We iden-
tified all adult patients with de novo DLBCL diagnosed
between January 2004 and December 2008 at the Sec-
tion of Hematology of Sahlgrenska University Hospital and
treated with curative intent immunochemotherapy regimens
(i.e., R-CHOP: the monoclonal CD20-antibody rituximab
plus cyclophosphamide, doxorubicin, vincristine, and pred-
nisone). We obtained clinical information from the patient
casebook including treatment and progression-free and over-
all survival. Then, we determined two subgroups on the basis
of response to initial treatment: (i) patients with primary
refractory disease or relapse within 1 year after completion
of treatment and (ii) patients considered cured, that is,
progression-free with a follow-up of at least 5 years. For the
proteomic analysis, five patients from each subgroup were
selected based on the availability of freshly frozen pretreat-
ment tumor tissue samples. To avoid obvious morphologic
differences between the two groups, the pathologists care-
fully examined the tumor tissue samples and only samples

with evenly distributed blasts without signs of necrosis or
abundant visual stroma. In addition, the pathologists had
no clinical data for the individual patient when analyzing
the tissue sample. Clinical characteristics are described in
Supplemental Table 1 (see Supplementary Material avail-
able online at http://dx.doi.org/10.1155/2015/841769). Ethical
approval for the study was obtained from the Regional Ethics
Review Board, Göteborg.

2.2. Cell Culture and Preparation of a SILAC Reference Mix.
To enable quantification of a broader number of proteins,
cell lines established from four human diffuse large B-cell
lymphoma patients (Karpas 422, WSU-NHL, SU-DHL5, and
SU-DHL8) and from one EBV-negative Burkitt’s lymphoma
cell line (DG-75) were metabolically labeled with stable
isotopes. Cells were cultured for at least six cell doublings
in SILAC-RPMI Flex medium (Invitrogen) supplemented
with 2 g/L glucose, 2mM L-glutamine, 100U/mL penicillin,
100U/mL streptomycin, 0.1mg/mL 13C

6
-lysine, 0.1mg/mL

13C
6
-arginine, and either 10% (WSU-NHL and DG-75) or

20% (Karpas 422, SU-DHL5 and SU-DHL8) dialyzed fetal
calf serum. Full incorporation of labeled amino acids was
assessed by mass spectrometry. Fully labeled cells were
harvested, washed in PBS, and counted; cells were pelleted
by centrifugation in portions of 50 million cells and frozen at
−80∘C. Fiftymillion cells from each cell line were thawed and
lysed in 500 𝜇L SDS (4% sodium dodecyl sulfate) lysis buffer,
10mMdithiothreitol (DTT), and 0.1M Tris-Cl pH 7.6, heated
at 95∘C for 5 minutes, sonicated for 20–40 seconds, and cen-
trifuged at 16,000 g for 10 minutes to remove cell debris. The
protein concentration was determined in the supernatants
with the Pierce 660 nm protein assay supplemented with the
Ionic Detergent Compatibility Reagent (Thermo Scientific).
Equal amounts from each of the five cell extracts were mixed
to produce a SILAC referencemix.Themixwas aliquoted and
stored at −80∘C.

2.3. Sample Preparation. From each OCT- (optimal cut-
ting temperature-) embedded DLBCL tumor tissue sample,
ten cryosections of 100𝜇m were cut and transferred to
polypropylene tubes for protein extraction. Tissue sections
were washed twice with 500 𝜇L of PBS (10mM phosphate,
150mM NaCl pH 7.2) to remove residual OCT and homog-
enized in 500𝜇L SDS lysis buffer (10mM DTT, 4% SDS,
and 0.1M Tris-Cl pH7.6). Cellular debris was removed by
centrifugation at 16,000 g for 10 minutes at +4∘C and the
protein concentration was determined in the supernatant
using the Pierce 660 nm protein assay supplemented with the
Ionic Detergent Compatibility Reagent. Protein extracts were
stored at −80∘C pending analysis.

Prior to protein fractionation, an aliquot corresponding
to 30 𝜇g of protein from each tissue sample was mixed
with an aliquot corresponding to 30 𝜇g of protein from the
SILAC reference mix. Proteins were separated on NuPAGE
4–12% Bis-Tris gels (Life Technologies), gels were fixed
in methanol/acetic acid, and proteins were visualized by
colloidal coomassie staining (Life Technologies), all following
the recommendations of the manufacturer. Gel lanes were
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divided into 15 equally sized pieces and subjected to trypsin
in-gel digestion. The slices were washed in water : acetonitril
(1 : 1), dehydrated in acetonitril, and reduced by addition
of 10mM dithiothreitol in 50mM ammonium bicarbonate
(+56∘C for 45min), followed by alkylation with 55mM
iodoacetamide in 50mM ammonium bicarbonate (30min at
room temperature in the dark). Sequencing-grade modified
trypsin (Promega Corp, Madison, WI, USA) dissolved in
50mM ammonium bicarbonate was added and the digestion
was performed overnight at +37∘C. All steps of the in-
gel digestion were automated and performed using C-18
microfilter 96-well plates (MFNSC18 from Glygen Corp.,
Columbia, MD, USA) on a Beckman Coulter BioMek 2000
workstation. In a final step, peptides were bound to the C18
resin of the microfilter plate, washed with 0.2% formic acid,
and eluted in two times 50 𝜇L of 60% acetonitrile and 0.1%
formic acid. In parallel, protein mixtures were also processed
by the filter aided sample preparation (FASP) procedure [22].
An aliquot corresponding to 200𝜇g of protein from each
tissue sample was mixed with an aliquot corresponding to
200𝜇g of protein from the SILAC reference mix and the
mixture was suspended in a total volume of 500𝜇L of SDS
lysis buffer (4% SDS, 10mM DTT, and 0.1M Tris-Cl pH 7.6).
Proteins were reduced, carbamidomethylated, and trypsin-
digested following the procedure described by Geiger et al.
[23]. Peptides were eluted from the FASP filter devices in two
times 40𝜇L of 40mM ammonium bicarbonate.The resulting
peptides were fractionated by strong anion exchange sepa-
ration using the Top Tip strong anion exchanger (TT2PSA,
Glygen), essentially following the procedure described by
Wisniewski et al. Peptides were finally desalted on C18 spin
columns (Macro Spin C18 Columns from Nest Group). All
peptide mixtures were evaporated to dryness and stored at
−80∘C until analysis.

2.4. Liquid Chromatography-TandemMass Spectrometry (LC-
MS/MS) Analysis. Samples were redissolved in 20 𝜇L 0.1%
formic acid and analyzed by online nanoflow liquid chro-
matography (LC) (Ettan MDLC, GE Healthcare) coupled to
nanoelectrospray ionization (nano-ESI) mass spectrometry
(MS) on a LTQ-FT Ultra (Thermo Fisher Scientific) instru-
ment. Peptide mixtures were separated on a 150 × 0.075mm
fused-silica reversed-phase column (Zorbax 300SB-C18, Agi-
lent Technologies) using 240min (FASP samples) or 120min
(1D SDS-PAGE samples) gradients at a flow rate of 200–
300 nL/min. The mass spectrometer was operated in a data-
dependent mode to automatically switch between MS and
MS/MS acquisition. Survey MS spectra (from m/z 350 to
1500) were acquired in the FT-ICR at a resolution of 50,000,
and up to the 10 most intense ions in each FT scan were
fragmented and analyzed in the linear ion trap (LTQ).

2.5. Protein Identification and Quantification. Raw data, con-
taining full-scan spectra acquired in profile mode and cen-
troid MS/MS spectra, from the analysis of tryptic peptides,
were merged and processed using the MaxQuant software
version 1.2.0.18 [24]. Default settings were used for feature
extraction and first search for recalibration was performed

against the human first search database provided with the
software. The Andromeda search engine [25] integrated into
the MaxQuant package was used for peptide identification
and searches were performed against the human subsection
of the UniProtKB database. Parameters for identification and
quantification were set as follows: variable modification: oxi-
dation of methionine and acetylation of the N-terminal; fixed
modification: carbamidomethylation of cysteine, MS/MS
tolerance 0.5Da; peptide and protein false discovery rate
(FDR) was set to 0.01 and for SILAC labeled samples the
heavy label was set to arg6 and lys6. SILAC protein ratios
are determined as the median of all peptide ratios assigned
to the protein. For quantification a minimum peptide ratio
count of two was set for each protein. To ensure that the
Log2 values of the normalized protein H/L ratios followed
a normal distribution and were centered to zero; histograms
were plotted. A two sample 𝑡-test was performed to determine
significant differences in protein ratios between the groups,
Perseus module (version 1.2.0.17) available in the MaxQuant
environment.

2.6. Validation by Western Blotting. Expression levels of
selected proteins were validated by immunoblot analysis of
tumor protein extracts from all patients. Equal amounts (10
or 30 𝜇g depending on primary antibody used) of protein
were separated on NuPAGE 4–12% Bis-Tris gels in 1xMES
buffer (Life Technologies), transferred to nitrocellulosemem-
branes (Hybond ECL, GE Healthcare Life Sciences), and
incubated overnight at +4∘C with the primary antibody.
For signal detection, membranes were incubated with HRP-
conjugated secondary antibody (anti-mouse or anti-rabbit)
developed with the Super Signal West dura reagent (Pierce)
and the signal was recorded by the LAS-3000 luminescent
image analyzer (Fujifilm). Primary antibodies used were
anti-moesin (ab3196), anti-CAP1 (ab133655), anti-annexinVI
(ab52221), and anti-beta II tubulin (ab103667) from AbCam
(Cambridge, UK) and secondary antibodies were anti-mouse
IgG-HRP (W4021) or anti-rabbit IgG-HRP (W4011) from
Promega (Wisconsin, USA). The SILAC reference mix was
used as a control.

2.7. Multivariate Statistical Analysis by Principal Component
Analysis (PCA) and Partial Least-Squares Discriminant Anal-
ysis (PLS-DA). In order to identify potential outliers among
the analyzed samples, a PCA analysis was performed using
the Log2-transformed H/L ratios for the 1,305 proteins for
which a quantitative value was determined in all of the
10 patient samples and the SILAC reference cell line mix.
Variables were standard normal variate (SNV) normalized
and used as input in a PCA using the SIMCA software
(version 13.0.2.0, Umetrics, Sweden). The residual standard
deviation, DModX (residual distance, root mean square),
was calculated to identify deviations between the data and
the principal component model. For selected proteins, a
supervised partial least-squares regression analysis was per-
formedusing the PLS-DAmodule of the SIMCAsoftware and
the input variables were the H/L ratios determined for the
proteins.
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2.8. Protein Network and Functional Analysis. The differ-
entially expressed proteins in our study were analyzed
using the DAVID (Database for Annotation, Visualization
and Integrated Discovery) Bioinformatic resources version
6.7 (http://david.abcc.ncifcrf.gov), the PANTHER (Protein
ANalysis THrough Evolutionary Relationships) system ver-
sion 7 (http://www.pantherdb.org), and the STRING (Search
Tool for the Retrieval of Interacting Genes/Proteins) version
9.1 (http://string.embl.de/). The list of Uniprot Accession IDs
was loaded into the online tool to extract and summarize
functional classification. InDAVID, to identify proteins in the
most important biological functional groups, the Functional
Annotation Clustering tool was used with an EASE threshold
of 0.01. Also, to rank the overall importance of proteins,
DAVID uses the term “enrichment score”; a higher score
for a group indicates that the proteins are involved in
more important terms (enrichment score of 1.3 is equivalent
to nonlog scale 0.05). PANTHER performs a classification
of genes and proteins and provides gene ontology terms,
biological processes, molecular function, and pathways. We
also used the STRING database for physical and functional
interactions among the identified proteins. STRING uses a
score to define interaction confidence; all interactions with
a confidence score >0.7 (high confidence) were collected.

3. Results

3.1. Proteomic Analysis: Identification of Differentially
Expressed Tumor Proteins Using LC-MS/MS. Proteins were
extracted from cryosections of frozen tumor biopsies. For the
proteomic analysis, five DLBCL patients from each subgroup
were selected based on the availability of freshly frozen
pretreatment tumor tissue samples. The relative abundance
of the extracted proteins was determined by comparison to
protein extracts from DLBCL cell lines cultured in medium
containing heavy isotope labeled amino acids. To improve
coverage and maximize the number of identified/quantified
proteins, extracted proteins were processed according to
two different workflows. First, proteins were separated by
denaturing polyacrylamide gel-electrophoresis and in-gel
digested peptides were extracted for further analysis. In
parallel, protein extracts were subjected to in-solution
digestion according to the FASP protocol followed by
peptide fractionation on a strong anion-exchange resin.
Proteins were identified by mass spectrometric analysis
of tryptic peptides on an LTQ-FTICR hybrid instrument
and the relative quantities were calculated based on the ion
intensities. The two workflows were run in parallel but the
raw data were merged and data processing was performed in
one single batch.The experimental workflow is schematically
outlined in Figure 1.

In total, 3,588 unique protein groups were identified
at 1% FDR, among which B-cell lineage specific markers
(e.g., CD20, CD22, CD40, and CD79a) were present as well
as proteins involved in B-cell receptor mediated signaling
(e.g., mitogen-activated protein kinase 3 (MAPK3), spleen
tyrosine kinase (SYK), Bruton’s tyrosine kinase (BTK), and
protein kinase C (PKC)) (Supplemental Table 2). Recently,

a thorough proteome investigation of established DLBCL
cell lines has been performed [14], and a comparison of
the proteins identified in our study revealed a substantial
overlap with 2,572 proteins being identified in both studies;
this constitutes 72% of the proteins identified in our study.We
successfully quantified 3,027 (84%) of the identified proteins
in at least one of the samples. Identification and quantification
in all samples were obtained for 1305 proteins and 87 of
these proteins were significantly (Student’s 𝑡-test, 𝑃 < 0.05)
differentially expressed between the two patient groups (the
most functionally relevant proteins are described in Table 1
and all 87 proteins are given in Supplemental Table 3). Sixty-
six proteins were overexpressed in the group of progression-
free patients; 21 proteins were instead overexpressed in the
relapsed/refractory group.

3.2. Validation by Western Blotting. We performed Western
blotting to validate the differences seen in the proteomic
analysis for moesin, annexin VI, and CAP1, proteins cho-
sen due to their functional characteristics within the actin
cytoskeleton network and with sufficient peptide abun-
dance/expression. For these 3 proteins, we could confirm the
LC-MS/MS data in the two patient groups (Figure 2).

3.3. Multivariate Data Analysis. In order to evaluate the
quality of the data, an unsupervised principal component
analysis (PCA) was performed. The results showed that all
samples werewithin the 95% confidence interval of themodel
and no outliers could be detected. Since this type of analysis
requires a full dataset withoutmissing data, we used the Log2-
transformed H/L ratios for the 1,305 proteins for which a
quantitative value was determined in all of the 10 patient
samples as well as in the DLBCL cell lines. Next, Log2-
transformed H/L ratios for five proteins, that is, moesin,
CAP1, actin regulatory protein-G (CAP-G), annexin A6, and
programmed cell death protein 4, were used as input variables
in a supervised partial-least-squares regression analysis (PLS-
DA). The proteins were manually selected based on their
involvement in regulation of actin cytoskeleton dynamics in
combination with the MS-characteristics, for example, ion
intensity and a sufficient number of identified peptides. The
group variable was progression-free patients versus patients
with refractory disease/early relapse. The PLS-DA model
separated the two groups, indicating a discriminating value
judged by the R2VY[2] (=0.84) and Q2VY[2] (=0.7) values
(Figure 3).

3.4. Protein Network and Functional Analysis. To gain
insights into the biological context, all the 87 differentially
expressed proteins were subjected to functional characteri-
zation using the bioinformatics software DAVID and PAN-
THER. The DAVID database system, when using an EASE
threshold of 0.01, specified 5 functional annotation clusters,
ranging from the highest enrichment score: (i) 11 proteins
involved in regulation of actin cytoskeleton, (ii) 31 proteins
involved in mitochondrial or transmembrane protein net-
works, (iii) 7 proteins involved in antigen processing, (iv) 22
proteins involved in membrane and intracellular transport,
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Figure 1: The experimental workflow.

and (v) 21 intraluminal proteins (Table 2). Using PANTHER
we classified the proteins according tomolecular function (the
function of the protein by itself or with directly interacting
proteins at a biochemical level) and biological process (the
function of the protein in the context of a larger network
of proteins that interact in a process at the level of the
cell or organism). For molecular function, the main areas
were binding (33.3%), catalytic activity (31.4%), and tran-
scription regulator activity (7.8%) (Figure 4(a)). Regarding
analysis of biological processes, proteins involving metabolic
process (24.8%), cellular process (15.2%), and transport
(10.3%) were the three main groups (Figure 4(b)). Finally,
by using STRING database, we could graphically visualize

protein-protein interactions and protein networks (Figure 5).
Three more tightly connected protein clusters could be
suggested: (a) HLA-A/HLA-B/B2M/IRF4/IFI30/CD44, (b)
COPA/COPB2/COPG/AP2A2, and (c) ACTR2/ARPC1B/
ARPC5/CAP1/DNBL. The total number of interactions
between the proteins was highly enriched (𝑃 < 0.00001), as
was interactions in the regulation of the actin cytoskeleton
network (𝑃 = 0.0043).

4. Discussion

In this study we could identify, by using SILAC-based LC-
MS/MS quantitative proteomic analysis, over 3,500 proteins
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Table 1: The most functionally relevant differentially expressed proteins.

Protein name ID Fold change
(cur/rel) 𝑃 value Function

WAFL Q5T1M5 6.50 0.021 Regulation of actin and microtubule dynamics
STAT1 P42224 5.87 0.034 Inducer of apoptosis; negative regulation of NF-kappaB signalling
Tetraspanin CD82 P27701 5.15 0.014 Attenuation of plasma membrane-dependent actin organization
EHD4 Q9H223 4.02 0.037 Regulation of endocytic transport
Integrin beta-2; CD18 P05107 3.31 0.048 Transmembrane cell adhesion molecule
Drebrin-like protein Q9UJU6 3.19 0.019 Actin-binding
ARP2/3 subunit 16 O15511 2.94 0.006 Regulation of actin cytoskeleton
Rac-associated protein-1 Q7L576 2.81 0.041 Regulation of actin cytoskeleton
Saposin C P07602 2.50 0.020 Antiapoptotic effect via PI3K pathway
SHIP-1 Q92835 2.44 0.038 Involved in B cell receptor signaling pathway
CD11c; integrin alpha P20702 2.31 0.005 Transmembrane cell adhesion molecule
ARP2/3 subunit 18 O15143 2.15 0.030 Regulation of actin cytoskeleton
Annexin A6 A6NN80 2.08 0.029 Stabilizing cortical actin cytoskeleton
Kindlin-3 Q86UX7 2.03 0.043 Activation and binding partner of integrins
Protein flightless-1 homolog Q13045 2.01 0.007 Actin binding
CAP1 Q01518 2.00 0.025 Regulation of actin cytoskeleton
MAPK1 P28482 1.92 0.032 Involved in B-cell receptor signaling pathway
ARP2 P61160 1.90 0.035 Regulation of actin cytoskeleton
Syndapin-2 Q9UNF0 1.87 0.014 Linkage of membrane trafficking with the cytoskeleton
Moesin P26038 1.82 0.027 Actin-binding; stabilizing microtubules at cell cortex
Proteasome MECI-1 P40306 1.77 0.041 Involved in activation of NF-kappa𝛽 in B cells
JNK/SAPK-inhibitory kinase Q9H2K8 1.49 0.046 Involved in B-cell receptor signaling pathway via MAPK
Caspase 3 P42574 1.42 0.047 Induction of cell apoptosis
STAG2 Q8N3U4 1.30 0.043 Tumor suppressor
eIF-2A protein kinase P19525 0.14 0.021 Conserving protein synthesis under environmental stress
CNOT1 A5YKK6 0.34 0.032 Counteracts ER-induced stress apoptosis
NOC3 Q8WTT2 0.35 0.003 Ribosomal; essential for cell division
SKAR Q9BY77 0.37 0.048 Promotion of cell growth via mTOR and PI3K signaling pathway
eRF3a P15170 0.39 0.038 Inhibition of apoptosis via survivin
PDCD4 Q53EL6 0.51 0.003 Tumor suppressor via mTOR signaling pathway
MUM-1 Q15306 0.54 0.044 Transcription factor; poor prognostic marker in DLBCL
TAF15 Q92804 0.58 0.001 DNA-binding; induces rapid cell proliferation
RCC1 P18754 0.58 0.015 Chromatin regulator; involved in C-myc transcriptional activation

IKZF1 Q13422 0.61 0.044 Transcription factor; poor prognostic marker in acute
lymphoblastic leukemia

SKI protein Q13573 0.77 0.022 Protooncoprotein

in fresh-frozen tumor tissue from patients with DLBCL.
In addition, we were able to quantify more than 3,000 of
the identified proteins in at least one of the samples. The
total number of identified and quantified proteins in our
study is higher than that reported from the few previous
proteomic studies performed so far on tumor tissue from
DLBCL patients [16, 17, 26]. However, in these three studies,
two-dimensional gel electrophoresis technique for protein
separation was used, which partly could explain the lower
number of both identified and quantified proteins. Instead,
by using gel-free quantitative shotgun LC-MS/MS proteomic

analysis with a SILAC-based method on DLBCL cell lines,
the sensitivity has recently been found to be considerably
higher; the number of identified proteins ranged from 6,569
to 7,756, and quantified proteins ranged from 2,103 to 6,223
[14, 15]. Since cultured cells allow completemetabolic labeling
of the whole proteome, analysis of individual tumor cell lines
may, at least from a methodological point of view, be more
preferable when undertaking quantitative proteomic studies.
Yet, analyses of tumor cell lines do not necessarily reflect the
tumor biology seen in vivowhere, for example, the tumor cells
also interact with their microenvironment. In that respect,
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Table 2: Annotation clusters according to DAVID using an EASE score of 0.01.

Name Number of proteins 𝑃 value
Annotation cluster 1 Enrichment score 3.07

Actin binding 8 0.00012
Cell projection 7 0.00032
ARP2/3 protein complex 3 0.00072
Cytoskeletal protein binding 9 0.0072

Annotation cluster 2 Enrichment score 2.96
Mitochondrial inner membrane 4 0.000079
Hydrogen ion transmembrane transporter activity 6 0.00015
Inorganic cation transmembrane transporter activity 7 0.0002
Respiratory chain 5 0.00029
Monovalent inorganic cation transmembrane transporter activity 6 0.00029
Membrane-associated complex 4 0.00039
Cytochrome-c oxidase activity 4 0.00051
Oxidoreductase activity, acting on heme group of donors, oxygen as acceptor 4 0.00051
Heme-copper terminal oxidase activity 4 0.00051
Oxidative phosphorylation 4 0.00051
Transmembrane protein 11 0.00058
Electron transfer 4 0.0015
Generation of precursor metabolites and energy 8 0.0019
Huntington’s disease 7 0.0029
Oxidoreductase 9 0.0036
Mitochondrion 11 0.0039

Annotation cluster 3 Enrichment score 2.81
Antigen-processing and presentation of peptide antigen 4 0.0005
MHC class I 3 0.00087
Heterodimer 5 0.0012
Antigen processing and presentation of peptide antigen via MHC class I 3 0.004

Annotation cluster 4 Enrichment score 2.78
Vesicle coat 5 0.000073
Retrograde vesicle-mediated transport, Golgi to ER 4 0.00021
Cytoplasmic membrane-bounded vesicle 12 0.00038
Membrane-bounded vesicle 12 0.0005
Membrane coat 5 0.00053
Golgi vesicle budding 3 0.0014
Cytoplasmic vesicle 12 0.0014
Melanosome 5 0.0019
Pigment granule 5 0.0019
Membrane budding 3 0.0036
Golgi membrane 6 0.005
Golgi apparatus 13 0.0051
Membrane organization 8 0.0055

Annotation cluster 5 Enrichment score 2.45
Nucleolus 12 0.0027
Intracellular organelle lumen 21 0.003
Organelle lumen 21 0.004
Membrane-enclosed lumen 21 0.005
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Figure 2: Western blot validation of differences found in the pro-
teomic analysis (for moesin, annexin A6, and CAP1). “Progression-
free” represents patients with a follow-up of at least 5 years and
“refractory/early relapse” represents patients with primary refrac-
tory disease or relapse within 1 year after completion of treatment.
The SILAC-reference mix was used as a control and normalization
was performed by loading of equal amounts of protein into each lane
of the gel. Molecular weight in kDa of the closest migrating band of
the SeeBlue marker is indicated in the margin of each panel.
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Figure 3: A supervised partial least-squares regression analy-
sis (PLS-DA) including five selected proteins involved in actin
cytoskeleton (moesin, CAP1, CAPG, annexin A6, and PDCD4)
discriminates the two patient groups. Green dots are patients 1–5
(early relapse/refractory patients) while blue dots are patients 6–10
(progression-free patients).

tumor cell lines could perhaps have a more limited role when
searching for proteins associated with treatment response,
refractoriness, and clinical outcome. Thus, whereas studies
on cell lines certainly can be hypothesis generating, it would
in that aspect perhaps be more adequate to study human
tumor tissue. However, with previous techniques, it has been
difficult to perform a relative quantification of the proteome
from tissue samples. By using the same approach as in the
original super-SILAC paper, the protein identification and
quantification sensitivity in our study seems to be in the same
range as when breast cancer tissue and breast cancer cell
lines were investigated: approximately 5,000 protein groups

were then identified and about 4,300 of themwere quantified.
However, merely identifying a large number of proteins is
obviously not enough to pursue possible biomarkers. Yet, as
it is well known that a number of alterations in signaling
pathways and other cellular processes are involved in the
pathogenesis of DLBCL [27, 28], it seems unlikely that
single or few biomarkers could mirror the complexity in this
disease. Instead, from a biological point of view, it would be
more interesting to study patterns or networks of proteins
to further understand underlying mechanisms of disease
progression and drug resistance. As such, using a SILAC-
based LC-MS/MS quantitative proteomic approach appears
to be a powerful tool to explore the whole proteome in fresh-
frozen tumor tissue from patients with DLBCL. This could
broaden the possibilities of using a proteomic platform for
finding proteins of differentiating and, hopefully, prognostic
significance in this disease.

In our study, about a third of the total number of
identified proteins could be quantified in all patients. Among
these, we could identify proteins expectedly found in DLBCL
tumor tissue, such as B-cell lineage specific markers and
proteins involved in the B-cell receptor-signaling pathway.
We found that 87 of the quantified proteins were differentially
expressed between the two groups of patients, where more
proteins were overexpressed in the progression-free patient
group (66 versus 21). Among the 66 proteins overexpressed
in the progression-free patient group, we found a high
proportion of proteins involved in the regulation and orga-
nization of the actin cytoskeleton, for example, annexin A6,
members from ARP2/3 complex, drebrin-like protein, CAP1,
moesin, and WAFL (WASP and FKBP-like) protein. Indeed,
by inserting the differentially expressed proteins into the
DAVID database, the most enriched annotated cluster was
actin-binding proteins or proteins involved in regulation
of actin cytoskeleton.Similarly, the STRING database found
that interactions in the regulation of the actin cytoskeleton
network were highly enriched (𝑃 = 0.0043). The STRING
database analysis also found that the proteins IRF4, B2M,
IFI30, HLA-A, HLA-B, and CD44 were another closely
connected group of proteins. Most of them are involved in
MHC class I signaling and while B2M, IFI30 and HLA-A
and HLA-B were all overexpressed in the progression-free
group, IRF4 was higher in the relapsed/refractory group.
Individually, IRF4 (or MUM-1) has previously been reported
to be a negative prognostic marker in DLBCL [7]. CD44,
a cell-surface glycoprotein, which was overexpressed in
the progression-free group, has been described as negative
prognostic marker in DLBCL in the prerituximab period,
but immunochemotherapy seems to have diminished this
prognostic impact [29]. Yet, as these proteins were previously
described in DLBCL, we decided to further investigate
proteins involved in the actin network. Accordingly, we then
applied five proteins (annexin A6, CAP1, CAP-G, moesin,
and programmed cell death protein 4), selected due to their
involvement in the regulation of actin cytoskeleton and with
a sufficient number of identified peptides, in a supervised
regression analysis, which allowed a discrimination of the two
patients groups. In addition, by using immunoblotting, we
could confirm three of these proteins (annexinA6, CAP1, and
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Figure 4: By using the PANTHER database system, the differentially expressed proteins were classified according to molecular function (a)
and biological process (b).

moesin) to be overexpressed in the progression-free patient
group.

The actin cytoskeleton is essential for many cellular
processes, including cell migration, cytokinesis, vesicular
trafficking, endocytosis, and morphogenesis. Dysregulation
of the actin cytoskeleton is noted in a variety of diseases, such
as autoimmune disorders, neurodegenerative diseases, and
cancer metastasis [30, 31]. Annexin A6 is a cytosolic protein
that binds to negatively charged phospholipids at the plasma
membrane. It interacts with a large number of signaling pro-
teins and members of the actin cytoskeleton and is believed
to be a key player that links the actin cytoskeleton with
the activity of transmembrane proteins [32]. Also, annexin
A6 has an inhibitory effect on Ras/MAPK signalling which
implies that it could function as a tumor suppressor [33].
The ARP (actin-related protein) 2/3 complex nucleate actin,
which leads to the formation and remodeling of cortical actin
networks, a configuration also crucial for endocytosis [34].
This complex requires nucleation-promoting factors, mainly
belonging to the WASP (Wiskott-Aldrich syndrome protein)
family. It has previously been reported that WASPs can act as
a suppressor or enhancer for cancer malignancy, depending
on the clinical or experimental setting [35]. One of theWASP
family members is the protein WAFL involved in regulation
of early endocytic transport at the intersection of actin
and microtubule dynamics [36]. Another major protein that
control actin dynamics is CAP (adenylyl cyclase-associated

protein). CAP has two isoforms, CAP1 and CAP2, where
CAP1 is ubiquitously expressed in almost all cells [37]. The
primary activity for CAP1 is the ability to bind and sequester
actin monomers and, depending on cell context, CAP1 can
either promote or inhibit cell motility [38]. Moesin is an
actin-binding protein belonging to the ERM (ezrin, radixin,
and moesin) family. Moesin regulates cell shape changes
during cell division and binds and stabilizes microtubules
at the cell cortex, thereby mediating the signaling between
microtubules and the actin cortex [39]. Interestingly, there
is accumulating evidence that the actin cytoskeleton has an
important role in B-cell activation and actin remodeling
appears to be essential for downregulation of B-cell receptor
(BCR) signaling [40]. As BCR signaling is implicated as a
pivotal pathway for lymphoma development [28], it is tempt-
ing to speculate if an overexpression of actin-modulating
proteins could induce a negative effect on the BCR signaling
pathway, which could be of functional benefit for patients
when treated with immunochemotherapy.

Furthermore, differentmembers of the actin cytoskeleton
protein network have been reported to be involved in the
mechanisms behind drug resistance against vincristine, a
drug included in the standard R-CHOP-regimen used for
treatment in DLBCL. A proteomic analysis of a mouse
xenograft model of acute B-cell lymphoblastic leukemia has
shown that alterations in the actin cytoskeleton are involved
in in vivo vincristine resistance [41]. Indeed, among 19
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Figure 5: Visualization of network interactions between the 87 differentially expressed proteins by using the STRING database. The figure
shows the confidence view and stronger associations are represented by thicker lines. The total number of interactions between the proteins
was highly enriched (𝑃 < 0.00001), as was interactions in the regulation of the actin cytoskeleton network (𝑃 = 0.0043). Proteins involved in
the actin network and actin modulation, which were all overexpressed in the progression-free group, are highlighted with green boxes.

proteins displaying altered expression, 11 of them were asso-
ciated with modulators of the actin cytoskeleton, and most
of them were downregulated, for example, moesin, CAP-
G, HSP70, and ezrin. Even though the authors stated that
the exact mechanism by which a disrupted actin cytoskele-
ton can induce cellular resistance to antimicrotubule drugs
remains to be determined, they concluded that a normal
actin cytoskeleton is required for antimicrotubule cellular
action of vincristine. Furthermore, Liu et al. most recently
performed a proteomic study on fresh-frozen tumor tissue
from DLBCL patients divided into two groups: low and
high sensitivity to the CHOP chemotherapy regimen [17].
In their study, by using 2-DE and MALDI-TOF/TOF-MS

technique, they found that the actin-binding protein ezrin
was overexpressed in the high-sensitivity group, as were also
the actin-interacting protein pleckstrin and the cytoskeleton-
associated annexin V, suggesting that proteins involved in
the actin cytoskeleton could be of importance for CHOP
chemosensitivity. In addition, it has recently been reported
that themonoclonal CD20-antibody rituximab, which is used
in combinationwithCHOP, induces polarization of theCD20
receptor to cap at the B-cell surface which augmented its ther-
apeutic function in NK-cell-mediated antibody-dependent
cellular cytotoxicity (ADCC) [42]. Unexpectedly, they found
that this action of rituximab was not just only to cluster
its CD20 ligand, but also to rearrange several proteins,
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specifically moesin and ICAM-1, toward the cap. They could
then show that an intact microtubule network was required
for this CD20 capping.

Taken together, a higher expression of proteins involved
in the modulation of the actin cytoskeleton network in
DLBCL cells could imply functional importance both for
an efficient rituximab-mediated target cell killing by ADCC
and for an adequate response to the CHOP regimen, which
possibly might explain a better clinical outcome for DLBCL
patients when treated with immunochemotherapy. Con-
versely, the absence of such a pattern could instead indicate
resistance or refractoriness to the R-CHOP regimen. Even
though intriguing, further studies are needed to confirm and
develop these findings.

5. Conclusions

In summary, we found that by using SILAC-based shotgun
LC-MS/MS quantitative proteomic analysis we could identify
and quantify a large number of proteins in fresh-frozen tumor
tissue from patients with diffuse large B-cell lymphoma.
This could broaden the possibilities of using a proteomic
platform for finding proteins of differentiating and, hopefully,
prognostic significance in this disease. Our data also indicate
that a higher expression of proteins involved in the regulation
of the actin cytoskeleton could be of functional importance
for a sustained response to immunochemotherapy. As further
studies are needed to confirm our findings, we are currently
expanding the number of patients, both using fresh-frozen
and formalin-fixed paraffin-embedded tissue, to more pre-
cisely determine differentiating protein patterns of possible
functional and prognostic value in this disease.
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