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Abstract: Type 2 diabetes mellitus (T2DM) is a complex metabolic disorder of glucose homeostasis
associated with a status of insulin resistance, impaired insulin signaling, β-cell dysfunction, impaired
glucose and lipid metabolism, sub-clinical inflammation, and increased oxidative stress. Consuming
fruits and vegetables rich in phytochemicals with potential antidiabetic effects may prevent T2DM
and/or support a conservative T2DM treatment while being safer and more affordable for people
from low-income countries. Solanum anguivi Lam. fruits (SALF) have been suggested to exhibit
antidiabetic properties, potentially due to the presence of various phytochemicals, including saponins,
phenolics, alkaloids, ascorbic acid, and flavonoids. For the saponin fraction, antidiabetic effects
have already been reported. However, it remains unclear whether this is also true for the other
phytochemicals present in SALF. This review article covers information on glucose homeostasis,
T2DM pathogenesis, and also the potential antidiabetic effects of phytochemicals present in SALF,
including their potential mechanisms of action.

Keywords: type 2 diabetes; Solanum anguivi fruits; antioxidants; pathogenesis of diabetes; bioactivity;
oxidative stress; antidiabetic; glucose homeostasis

1. Introduction

Diabetes is a chronic metabolic disorder that is illustrated by either insufficient pro-
duction or the lack of response to insulin, a key hormone in the regulation of the body’s
metabolism [1]. The burden, due to diabetes is enormous, owing to its rapidly increas-
ing global prevalence, the devastating damage it can do to many body organs, and the
direct and indirect costs [2]. The estimated global prevalence of diabetes in people aged
20–79 years has risen from 6.4% (285 million) in 2010 to 9.3% (463 million) in 2019, and it is
predicted to increase to 10.9% (700 million) by 2045 if there is insufficient action to address
the pandemic [3]. Based on the World Bank income classification, high-income coun-
tries had the highest diabetes prevalence in 2019 at 10% (95.2 million), while low-income
countries had the least at 4% (14.5 million) [3].

People suffer from different types of diabetes, including type 1 diabetes mellitus
(T1DM), type 2 diabetes mellitus (T2DM), gestational diabetes mellitus, monogenic diabetes,
and secondary diabetes [4]. T2DM is the most common type of diabetes [4], and will,
therefore, be the focus of this review article. The present review provides information on
glucose homeostasis and how T2DM ensues (pathogenesis of T2DM). A few studies [5,6]
suggest antidiabetic properties of Solanum anguivi Lam. Fruits (SALF), due to the presence
of bioactive phytochemical compounds. Solanum anguivi Lam. is an ethnomedicinal plant
belonging to the family Solanaceae and genus Solanum Lam [7]. It is native to Africa,
probably occurring in all non-arid tropical African regions [8], and it has also been reported
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to be present in Asia and Australia [9]. It grows mostly in the wild, but sometimes,
e.g., in Uganda and Ivory Coast, it is a semi-cultivated vegetable [8]. The plants are
consumed as leafy and/or fruity vegetables [10]. However, only limited data regarding
its antidiabetic effect is available, which will be summarized in this review, as well as
the potential mechanisms of action for phytochemicals present in SALF that may lead to
antidiabetic effects.

2. Glucose Homeostasis

The pancreas maintains blood glucose levels within a very narrow range of 4.0–6.5 mmol/L [11]
mediated through the opposing and balanced actions of the hormones glucagon and insulin, referred
to as glucose homeostasis [12]. Glucagon and insulin are synthesized from the pancreatic
α- and β- cells of the islets of Langerhans, respectively [13]. The systemic glucose home-
ostasis is achieved by the coordinated functions of different organ systems, including the
skeletal muscle, the liver, the endocrine pancreas, the adipose tissue (Figure 1) [14], and the
hypothalamus is responsible for the neural regulation of these organ systems [15].

Figure 1. Normal glucose homeostasis and the pathogenesis of type 2 diabetes mellitus. This was
modified, according to Ludwig [16]. The green arrows show normal glucose homeostasis, while the
red arrows show the pathogenesis of type 2 diabetes mellitus. The black upward arrows represent an
increase, while the downward ones represent inhibition. High plasma glucose may result from a high
glycemic meal, or it may be during chronic hyperglycemia, leading to increased insulin production
or chronic hyperinsulinemia, respectively. The events that follow are shown by the green and red
arrows, respectively. The figure was drawn via https://app.diagrams.net/, and the pancreas, liver,
and muscle pictures were obtained from www.freepik.com.

Insulin and Glucagon as Mediators of the Glucose Homeostasis

The main stimulus for the insulin release from the pancreatic β-cells is an elevated
blood glucose level following the ingestion of glucose or a high-glycemic-index meal
(≥65 on the glucose scale [17]) [18]. The circulating plasma glucose is taken up into the
β-cells through the facilitative glucose transporter (GLUT) in an insulin-independent
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manner [19,20] (Figure 2). Once in the β-cell, glucose undergoes glycolysis and mitochon-
drial glucose oxidation, leading to an increased adenosine triphosphate (ATP)/adenosine
diphosphate (ADP) ratio and the subsequent closure of ATP-sensitive potassium (K+)
channels (KATP channels). This leads to the depolarization of the membrane, followed by
the opening of voltage-dependent calcium (Ca2+) channels (VDCCs), resulting in the influx
of Ca2+ and the eventual release of insulin [12,19,21,22]. Insulin binds to the α-subunit of
the insulin receptor, which enables ATP to bind to the β-subunit of the insulin receptor,
which in turn triggers the phosphorylation of the tyrosine kinase [23,24] (Figure 2). Sev-
eral intracellular proteins are then phosphorylated on tyrosine residues, such as insulin
receptor substrates (IRS) 1 and 2, leading to the activation of phosphatidylinositol-3-kinase
(PI3-K) [25,26]. This subsequently increases the translocation of GLUT-4 molecules on the
outer membrane of the insulin-responsive tissues [23,27], leading to an increased glucose
uptake. Insulin-mediated signaling further lowers blood glucose by reducing hepatic
glucose output (gluconeogenesis) by increasing the storage of glucose as glycogen in the
liver (glycogenesis) and inhibiting the release of free fatty acids (FFAs) from adipose tis-
sue (lipolysis) through promoting fat synthesis (lipogenesis) in the adipose tissue [28,29].
Moreover, the transcription factor peroxisome proliferator-activated receptor-γ (PPAR-γ)
promotes glucose uptake through an increased insulin sensitivity of the muscle, and a
lower level of circulating lipids through an up-regulated storage of triglycerides [30].

Figure 2. Insulin and glucagon secretion mechanisms. (A) = insulin release during high glucose concentration, (B) = insulin-
dependent glucose uptake, (I) = glucagon release during low glucose concentration, (II) conversion of glucagon to glucose.
GLUT = glucose transporter, VDDC = voltage-dependent calcium channel, ATP = adenosine triphosphate, TK= tyrosine
kinase, IRS = insulin receptor substrate, PI3-K = phosphatidylinositol-3-kinase, cAMP = cyclic adenosine monophosphate,
PKA = protein kinase A, G-1-P = glucose-1-phosphate, PGM = Phosphoglucomutase, G-6-P = glucose-6-phosphate, G-6-
Pase = glucose-6-phosphatase, PLC = phospholipase C and IP3 = inositol 1,4,5-triphosphate. The events are shown by
numbered steps using arrows: Red = entry, blue = resulting to, orange = exocytosis; while black upward arrow = increased
content. The green arrows were used for labelling.

Glucagon plays an important role in maintaining glucose homeostasis by promoting
the breakdown of glycogen to glucose (glycogenolysis) and gluconeogenesis, and inhibit-
ing glycogenesis, thereby acting as a glucose-mobilizing hormone [31,32]. It is released
from pancreatic α-cells, when blood glucose levels start to decrease [27]. Similar to insulin
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secretion, the release of glucagon is triggered by Ca2+ entry through VDCCs. During a
hypoglycemic state, low levels of glucose are taken up by GLUT-1 into the cell membrane of
α-cells, which subsequently induces glycolysis resulting in low levels of ATP [31,33], being
followed by the closure of the KATP channels, and thus, reduced efflux of K+ (Figure 2).
Consequently, VDCCs open, allowing an influx of Ca2+ which triggers the release of glyco-
gen from the α-cells [31,33]. Glucagon binds to the glucagon receptor, leading to a sequence
of events [34–39] that convert glycogen to glucose (Figure 2). In addition to the promotion
of glycogenolysis, glucagon inhibits glycogenesis in the liver simultaneously [34].

3. Type 2 Diabetes Mellitus

T2DM usually occurs in adults, but is increasingly seen in children and adoles-
cents [40]. In T2DM patients, the pancreas produces and releases insulin, but the cells
become resistant so that the insulin is ineffective, a state that is referred to as insulin resis-
tance [IR]. Thus, the provided insulin may be insufficient to compensate for IR over time,
a state that is referred to as relative insulin deficiency (ID) [41]. Both IR and ID lead to
high blood glucose levels. T2DM patients also exhibit an impaired regulation of glucagon
secretion, which is reflected in high levels during fasting in response to an oral intake of
glucose [31,42–44]. The underlying mechanisms of hyperglucagonemia are currently not
clear, but it may result from the impaired suppressive effect of insulin on the α-cells, due to
hypoinsulinemia and IR [31,45,46].

3.1. Pathogenesis of T2DM

T2DM is characterized by two fundamental defects: Impaired insulin action (IR)
in skeletal muscle, liver, and impaired adipocyte and β-cell function (Figure 1). It is
caused by a combination of genetic factors related to impaired insulin secretion and IR,
by environmental factors, such as obesity, lack of exercise, and stress, as well as by aging,
indicating that T2DM is a multifactorial disease [27,47]. Several mechanisms for T2DM
pathogenesis have been proposed, as described below.

3.1.1. Oxidative Stress and T2DM

Oxidative stress is defined as the excess formation and/or insufficient removal of
highly reactive molecules, that is, the reactive oxygen species (ROS) and reactive nitrogen
species (RNS) [48]. The imbalance between the generation of ROS or RNS and the activity
of the antioxidant defenses causes oxidative stress [49,50]. Mitochondria are integral to
normal cellular function as they are responsible for energy production in eukaryotes,
calcium homeostasis and also play a key role in the regulation of apoptosis [51,52]. Thus,
alterations in mitochondrial function are often associated with T2DM, thus reflecting the
centrality of energy homeostasis in β-cell physiology [53]. Clinical and experimental studies
have shown that oxidative stress, through free radical generation, plays a major role in the
onset of diabetes [54–56]. In high-sugar diets, mitochondria have more substrate available
to generate ATP, due to the increased supply of glucose [57], resulting in an overproduction
of their natural byproduct, ROS [15]. The increased ROS levels damage the infrastructure of
the cell and induce mitochondrial stress [57] (Figure 1). The elevated ROS levels may also
induce mitochondrial fission, which has been reported to cause mitochondrial dysfunction
and IR in the skeletal muscle [58,59]. Hyperglycemia may also stimulate oxidative stress
by the generation of ROS during the process of glycation, the non-enzymatic process
through which glucose forms covalent adducts with plasma proteins, forming glycation
end-products [60].

3.1.2. Insulin Resistance

The predisposing factor and best indicator for the development of T2DM in the
future is IR [57] (Figure 1). IR is classified into three categories, which are impaired insulin
response in target tissues, diminished insulin secretion by β-cells, and insulin antagonists in
the plasma [61]. IR is associated with an impaired insulin-dependent GLUT-4 translocation
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to the plasma membrane, which primarily arises from multifactorial defects in the normal
engagement of the canonical insulin signaling cascade [14,25,62,63].

Obesity has been proposed as an underlying cause for the development of IR [64].
Chronic overfeeding leads to the elevated ability of adipose tissue to store the excess
nutrients as triglycerides (possibly due to impaired insulin action), resulting in increased
concentrations of circulating FFAs and abnormal redistribution of lipids to other organs,
including the liver and skeletal muscle [64]. Elevated FFAs and intracellular lipids are
linked to the onset of peripheral and hepatic IR [65,66]. This may result from the inhibition
of insulin signaling by the FFAs and intracellular lipids, leading to a reduced insulin-
stimulated muscle glucose transport, possibly due to a decrease in the translocation of the
GLUT-4 [65,66]. Increased amounts of adipose tissue and visceral fat in obesity lead to
ectopic fat accumulation in the liver, muscle, and pancreas, and thus, IR ensues [67].

Aberrant hepatic insulin action is hypothesized to primarily drive IR, given that
higher circulating insulin levels are necessary to adequately control the blood glucose
levels [68]. In patients with T2DM and obesity, insulin fails to appropriately regulate
hepatic metabolism, leading to excess production of glucose despite accelerated rates of
lipid synthesis, a condition commonly referred to as selective hepatic IR [69]. Hepatic
IR is generally represented by the impaired suppression of hepatic glucose production,
which is associated with an elevated hepatic triglyceride content, a known characteristic
of non-alcoholic fatty liver disease (NAFLD) [70,71]. Other abnormalities associated with
hepatic insulin resistance that may cause dysregulation of the glucose metabolism include
the progression of simple steatosis (NAFLD) to fibrosis, and non-alcoholic steatohepatitis
(NASH) [70,71].

3.1.3. Pancreatic β-Cell Dysfunction/Failure

Several mechanisms describing the pathogenesis of pancreatic β-cell dysfunction/failure
have been reported. Hyperglycemia and high amounts of saturated fats in circulation from
diets or lipolysis of body fat have been suggested to trigger β-cell dysfunction, as well as
IR [72] (Figure 1). Chronic hyperglycemia and elevated FFAs lead to β-cell dysfunction
through various mechanisms, including the generation of ROS, increased intracellular
Ca2+, mitochondrial uncoupling, alterations in metabolic pathways, and the activation
of endoplasmic reticulum stress [72,73]. Chronic exposure of β-cells to FFA is associated
with impaired glucose-stimulated insulin secretion, a down-regulation of insulin gene
expression resulting in reduced insulin synthesis, and ultimately causes apoptosis of the
β-cells [73]. Chronic hyperglycemia causes an increased metabolic demand towards the β-
cells, which undergo compensatory insulin hypersecretion to maintain normoglycemia [74].
This may lead to increased β-cell mass and function [73], consequently, to β-cell exhaustion
and failure resulting in the development of T2DM [24,75,76]. Compensatory β-cell mass
expansion may also be stimulated by increased FFAs consumption through increased
production of glucagon-like peptide 1 (GLP-1) and its receptors as observed in dogs on
a high-fat diet [77]. In addition to chronic hyperglycemia and elevated FFAs, obesity
is a major risk factor for T2DM as it desensitizes glucose recipient organs to the action
of insulin (obesity-induced IR), leading to increased insulin demand resulting in β-cell
dysfunction [72].

4. Antioxidants and T2DM

Free radicals generated during biological oxidation reactions are reactive and simul-
taneously start the chain reaction, which may lead to damage or even to the death of
cells [78]. An antioxidant is a substrate that prevents the oxidation of a molecule by neu-
tralizing a free radical through the donation of an electron or by transferring a hydrogen
atom, and thus, reducing its damaging potential [79]. Antioxidants are classified as either
primary/chain-breaking/radical-trapping (slow-down/block autoxidation by competing
with the propagation reactions) or secondary/preventive (interfere with the initiation pro-
cess) [80–82]. The primary antioxidants (e.g., phenolic compounds, such as caffeic acid and
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tocopherol) rapidly react with peroxyl radicals preventing their reaction with oxidizable
substrates and consequently the propagation of the autoxidation chain [80,82]. Secondary
antioxidants (e.g., polyphenols, including flavonoids, such as quercetin [83]) may prevent
the occurrence of Fenton-type chemistry by blocking redox-active metal ions in an oxidized
form (e.g., Fe3+) through metal chelation [82,84].

Endogenous and Exogenous Antioxidants in Humans

The antioxidant defense grid in living systems consists of antioxidant molecules
that act at different levels and are classified as the first-line, second-line, third-line, and
fourth-line [79,85,86]. These are radical suppression or prevention, radical scavenging,
radical-induced damage repair, and adaptation (utilization of the signals required for free
radical production by reacting to prevent the formation or reaction of the radicals) [85],
respectively. First-line antioxidants include superoxide dismutase (SOD), catalase (CAT),
glutathione peroxidase (GPx), and glutathione reductase (GR) [85,87]. Second-line includes
hydrophilic antioxidants (such as ascorbic acid, uric acid, phenolics), and glutathione
and lipophilic antioxidants (such as vitamin E and ubiquinol) [85,88]. Third-line includes
proteolytic enzymes, lipases, DNA repair enzymes, and transferases [79,85,86].

The human endogenous antioxidant defense against free radicals and oxidative stress
includes enzymatic antioxidants, such as SOD, which catalyzes the dismutation of super-
oxide (O2

−) radical into either ordinary molecular oxygen (O2) or H2O2, as well as CAT
and GPx, which both remove H2O2 [87,89], and non-enzymatic antioxidants, such as lipoic
acid, glutathione, L-arginine, and coenzyme Q10 [87,90]. However, these endogenous
antioxidants may not be sufficient in some cases, such as chronic exposure to free radicals,
due to smoking and consumption of high nutrient diets. Thus, exogenous (dietary) an-
tioxidant consumption may help in the prevention of diseases associated with oxidative
stress [91]. Sources of dietary antioxidants include herbs, spices, medicinal plants [92],
fruits, and vegetables [93]. Due to the presence of antidiabetic phytochemicals [94], medici-
nal plants are used as antidiabetic remedies worldwide [95]. Fruits and vegetables are also
considered protective, due to various phytochemicals that are mainly responsible for the
plant’s color, smell, flavor, and bitterness [96], such as polyphenols, alkaloids, and saponins.
Phytochemicals are defined as bioactive plant chemicals that may provide desirable health
benefits that lower the risk of developing major chronic diseases [97], including T2DM.
This may be achieved by reducing cholesterol absorption, by directly lowering fasting
blood glucose levels, e.g., by inhibiting cortisol [98,99], and by stimulating the immune
system under different conditions [100]. The antioxidant activity of foods correlates with
the presence of phytochemicals [100]. Thus, in addition to the enzymatic antioxidants
(CAT, SOD, GPx) in humans that scavenge free radicals, some phytochemicals also act
as complementary antioxidants, due to their electrophilicity, ability to promote the gene
expression of antioxidant enzymes, and to positively modulate the actions of antioxidant
enzymes [101].

5. Solanum anguivi Lam. Fruit’s Antidiabetic Properties and Potential Mechanisms
of Action

Various researchers [92,102–105] have reported the presence of phytochemicals in
SALF, which include phenolics, flavonoids, saponins, alkaloids, coumarins, and vitamin
C. The phenolics in SALF include gallic acid, chlorogenic acid, caffeic acid [92], phenolic
acids [106], and tannins [102], as well as rutin and quercetin as representatives of the
flavonoids [92]. Triterpenoid saponins [102] and steroidal saponins or glycosides, such as
anguiviosides A to C [107], III, XI, XV, and XVI [108] have also been reported to be present
in SALF. In addition, the steroidal glycoalkaloids solamargine, anguivine, and isoanguiv-
ine have been described to be present in the SALF [109,110]. There is controversy about
whether Solanum indicum Linn. (S. indicum) is the same as Solanum anguivi Lam. (S. anguvi).
S. indicum has been reported as a synonym for Solanum anguivi by some authors [111–114],
while others have described them as different species [106,115,116]. Controversy also
exists regarding the safety of S. indicum L. fruit (SILF). Several authors have reported that
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SILF is safe, and thus, may be consumed as a vegetable [9,113,114,117–119], while one
author has reported that it is a poisonous berry [115]. Similar to SALF, SILF has been
reported to contain steroidal saponins/glycosides (isoanguivine, protodioscin, solasonine,
solamargine, and indiosides A–E), terpenoids, vitamin C, phenolics (gallic acid, catechin,
chlorogenic acid, caffeic acid, epicatechin), flavonoids (rutin, quercetin, isoquercitrin), gly-
coalkaloids (solamargine, solasonine) and coumarins [120–122]. The similarities between
the phytochemicals present in SALF and SILF may, therefore, indicate similarities in their
antidiabetic properties.

Previous studies have shown that SALF extracts possess antioxidant abilities in vitro,
such as radical scavenging capacity [92,105], reducing properties [Fe3+ to Fe2+], and iron-
chelating abilities [92,123]. SALF extracts have also been reported to inhibit lipid peroxi-
dation [92], which may be due to the presence of saponins as they have been reported to
inhibit lipid peroxidation in diabetic rats through the restoration of SOD and CAT [104].
Blood-glucose-lowering effects have also been exhibited in diabetic rats having been admin-
istered SALF extracts [5,6]. The antidiabetic properties (antioxidant activities, inhibition
of oxidative stress, and blood-glucose-lowering effect) of SALF may be attributed to the
presence of various phytochemicals in SALF. However, only one class of phytochemicals
present in SALF, that is, saponin, has been studied for its antidiabetic effects [5,104,124].
Since the antidiabetic properties of the other SALF phytochemicals (phenolics, flavonoids,
and alkaloids) have not been documented, we discuss their potential antidiabetic effects
and underlying mechanisms of action (summarized in Figure 3) in the context of other
medicinal plants with similar phytochemical patterns.

Figure 3. Potential mechanisms of action by Solanum anguivi Lam. Fruit phytochemicals in their
antidiabetic effects. PPAR = peroxisome proliferator-activated receptors, GLUT = glucose transporter,
IRS = insulin receptor substrate, AMPK = adenosine monophosphate-activated kinase, ACC = acetyl-
CoA carboxylase, PI3-K = phosphatidylinositol-3-kinase, VDCCs = voltage-dependent calcium
channels, GLP = glucagon-like peptide, PTP-1B = protein tyrosine phosphatase-1B, CAT = catalase,
SOD = superoxide dismutase, GSH = glutathione, A.O = antioxidant, upward black arrows = in-
creased, downward black arrows = inhibition of, blue arrows = mechanisms of action resulting in
reduced plasma glucose levels, stripped blue line = relationship between hypoglycemia and hypolipi-
demia. The figure was drawn via https://app.diagrams.net/, and the pancreas, liver, muscle, and
intestine pictures were obtained from www.freepik.com.

https://app.diagrams.net/
www.freepik.com
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5.1. Saponins

The total saponin content of SALF has been stated as 1.3 mg/100 g dry weight (DW)
and the triterpenoid content as 0.3 mg/100 g DW [102]; however, no reference standard
(n.r.s) was used for both analyses. Other authors have also reported the presence of
saponins in SALF, however, not the total saponin content [103,125]. Saponins extracted
from SALF have been stated to exhibit antioxidative properties in vitro, such as scavenging
radicals, reducing [Fe3+ to Fe2+], and iron-chelating abilities [104]. Furthermore, SALF
saponins have been reported to exhibit antidiabetic properties in diabetic rats, including the
reduction of blood glucose levels [5], and the inhibition of oxidative stress [5,104,124], which
may both be due to their ability to restore the endogenous antioxidant levels (i.e., SOD
and CAT levels) [5,104,124], as well as their antioxidative activities [104]. The antidiabetic
effect of SALF saponins may also be referred to as their antihyperlipidemic properties
and their ability to cause weight loss in diabetic rats [5]. SALF saponins have also been
reported to restore the plasma lipid profile in these rats, being reflected in lower levels of
total cholesterol (TC), triglycerides (TG), and low-density lipoprotein (LDL), and increased
levels of high-density lipoprotein (HDL) [5]. Relative ID and IR may negatively affect the
lipid profile as insulin plays a critical role in lipid homeostasis [126]. In T2DM patients,
elevated plasma levels of TG and lipoprotein lipase (LPL), as well as decreased HDL
levels, have been found, the latter being associated with defective LPL catabolism of TG-
rich lipoproteins [127]. Similar to diabetic rats, being exposed to SALF saponins [5], an
improvement of glucose homeostasis in the absence of weight gain has been suggested
to result in lowered TG and increased HDL levels [127]. In contrast, other authors have
suggested that hyperglycemia may not cause dyslipidemia, but rather abnormalities in
insulin action, and hence, a hypoglycemic effect may not improve the lipid profile per
se [128,129].

Another possible mechanism through which saponins from SALF may result in hypo-
glycemia may be through the regeneration of islets of Langerhans as suggested for Solanum
nigrum (S. nigrum) after being administered to diabetic rats [130]. Triterpenoid saponins
in SALF may also cause hypoglycemic and hypolipidemic effects by activating GLUT4
through improved IRS-1/PI3K/AKT regulation, and activated adenosine monophosphate-
activated kinase/acetyl-CoA carboxylase (AMPK/ACC) signaling, respectively, as shown
in diabetic mice by Stauntonia chinensis triterpenoids [131]. Additionally, SALF triter-
penoid saponins may lower plasma glucose levels by improving insulin secretion as a
result of the improved modulation of VDCCs, and thus, increasing glycogenesis, and
β-cell rejuvenation, as reported for Primula denticulate [132] and Momordica cymbalaria
Fenzl [133] triterpenoids.

5.2. Phenolics and Flavonoids

The total phenolic content (TPC) for SALF has been reported as 17.1 mg gallic acid
equivalent (GAE)/g dry weight (DW) [92], 1.52 mg/100 mg DW (1.52%) (n.r.s) [102], and
from unripe to very ripe stage, 9.6 to 5.5 mg/g DW (n.r.s) [103] and 11.6 to 4.5 mg/g
GAE DW [134], respectively. The total flavonoid content (TFC) of SALF has been doc-
umented as 9.5 mg QE/g DW [92], 0.5 mg/100 mg DW (0.5%) (n.r.s) [102] and 141.3 to
455.0 mg QE/100 g DW from unripe to very ripe stage, respectively [134]. Elekofehinti
et al. [92] described the contents for the SALF phenolic compounds gallic acid, chlorogenic
acid, caffeic acid, rutin, and quercetin as 17.5, 21.9, 16.6, 14.7, and 7.4 mg/g, respectively.
Stommel et al. [106] reported the contents (µmol/100 g DW) of SALF chlorogenic acid
isomers (1117–6232), isochlorogenic acid isomers (70–226), hydroxycinnamic acid amide
conjugates (14–286), caffeic acid derivatives (45–155), and acetylated chlorogenic acid iso-
mers (316–1148). The tannin content of SALF has been documented as 0.17 mg/100 mg
(n.r.s) [102] and 0.19 to 0.09 mg tannic acid equivalent/100 g DW, from unripe to ripe stage,
respectively [134]. Extracts from SILF and Solanum melongena (S. melongena) have been
stated to exhibit antidiabetic properties through inhibiting α-amylase and α-glucosidase
enzymes, which was attributed to the present phenolics [120,135]. The TPC and TFC of
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SILF were reported as 3.8 mg GAE/g DW and 1.7 mg quercetin equivalent (QE)/g DW,
respectively [120], while the TPC and TFC for S. melongena were only reported for the skin
and pulp separately. Glucose is a product from the hydrolysis of starch [136], which is cat-
alyzed by the enzymes α-amylase found in saliva and pancreatic juices, and α-glucosidase
found in the epithelium of the small intestine [137]. Hence, α-amylase and α-glucosidase
inhibitors slow the digestion of starch in the small intestine, which decreases the amount of
glucose entering the bloodstream leading to an improved insulin response [138]. Previous
studies reported the hypoglycemic effects of SILF [139] and S. melongena [140], and these
may have been mediated through inhibiting the α-amylase and α-glucosidase, due to the
presence of phenolic compounds. The TPC in SALF (mg GAE/g DW) is substantially
higher than in SILF [120], suggesting inhibiting properties of SALF regarding α-amylase
and α-glucosidase activity, which may be mediated by tannins as similar effects have been
reported for tannin-containing Terminalia chebula Retz [141].

Phenolics present in SILF, S. nigrum, S. melongena, have been reported to possess
antioxidant effects [120,135,140,142], which may also be true for SALF phenolics. Thus,
in addition to saponins, the antioxidative effect of SALF extracts may be induced by the
synergistic action of saponins and phenolics. Polyphenols, such as gallic acid, may also
be responsible for SALF’s antidiabetic effects. They may also be mediated through both a
reduction of plasma glucose levels and oxidative stress damage, by restoring antioxidant
enzymes, inhibiting α-amylase and α-glucosidase, as well as by maintaining a healthy lipid
profile as already shown in diabetic rats for Hibiscus sabdariffa gallic acid [143]. Furthermore,
SALF gallic acid may increase the expression of GLUT-4 and insulin sensitivity proteins,
such as PPAR-γ, through the activation of AKT as demonstrated for Emblica officinalis
derived gallic acid in diabetic mice [144], consequently leading to increased cellular glucose
uptake. Recent studies [145,146] have shown that polyphenols increase GLP-1, suggesting
them to be used together with GLP-1 agonists for the treatment of T2DM [147,148]. GLP-1,
an incretin hormone produced from proglucagon in the intestine and brain [31,147,149],
stimulates insulin release, the proliferation and neogenesis of pancreatic β-cells, and
inhibits glucagon release, food intake, and gastric emptying [149–151]. Potentially SALF
may stimulate GLP-1 secretion through its polyphenols, such as caffeic and chlorogenic
acid [145,152,153].

Flavonoids from SALF may also possess antidiabetic effects. The hypoglycemic effect
and the regeneration of islets of Langerhans in diabetic rats administered with extracts of
S. nigrum were referred to flavonoids in the extract [130], whose TFC has been reported
as 3.61 mg QE/g DW [154]. This could also apply to SALF flavonoids, which potentially
exhibit antioxidant properties, protect against oxidative damage and restore pancreatic
cells, which result in decreased levels of glucose in the blood. SALF quercetin may increase
glucose uptake in skeletal muscles by stimulating the insulin-independent AMPK pathway,
which has been demonstrated by quercetin-containing Vaccinium vitis-idaea in vitro [155].

5.3. Alkaloids

Alkaloids have also been reported to possess antidiabetic properties [156]. Although
SALF has been shown to possess alkaloids (0.05 mg/100 mg DW or 0.05% [102]), there is
very limited literature on the antidiabetic effects of alkaloids from Solanum fruits. However,
SALF alkaloids may lower blood glucose levels as shown for Aerva lanata alkaloids in
diabetic rats [157]. This may be through inhibiting α-amylase and α-glucosidase activities
as suggested for S. melongena alkaloids [158]. SALF alkaloids may also lower blood glucose
levels by inducing glucose uptake through inhibition of protein tyrosine phosphatase-1B
(PTP-1B) (a major negative regulator for insulin receptor signaling [159]) as demonstrated
in C2C12 skeletal muscle cells by alkaloids from Veratrum nigrum [160] and Catharanthus
roseus [161], and in β-TC6 pancreatic cells by alkaloids from Catharanthus roseus [161].
Additionally, SALF alkaloids may also alleviate H2O2-induced oxidative damage in β-cells
as shown by alkaloids from Catharanthus roseus in diabetic rats, due to its radical scavenging
capacity [161].
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6. Conclusions

Some studies have documented antidiabetic effects of SALF. For one group of phy-
tochemicals present in SALF, the saponins, the antidiabetic effect, and the underlying
mechanism have been documented. As SALF also contains other phytochemicals, such
as phenolics, flavonoids, and alkaloids, its antidiabetic effect may also refer to these
compounds, which have been shown to decrease blood glucose levels through, e.g., an
up-regulation of GLUT-4 and PPARγ, restoration of enzymatic antioxidants and β-cell
regeneration in other settings. However, to unravel the precise underlying mechanisms
of the potential antidiabetic effects of SALF, further studies are essentially needed. They
would provide information on whether the SALF antidiabetic properties may be due to a
potential synergistic action of saponins, and other phytochemicals present, or refer to the
saponin fraction only. Consequently, the results may also provide valuable information on
the potential use of SALF in T2DM management.
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