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INTRODUCTION

Statistics have shown that the incidence rate of breast cancer 
(BC) is 24 per 100,000 in women in Iran [1]. The annual number of 

new BC cases is projected to increase from 5,000 in 2000 to 15,000 
in 2030 [2]. BC has a poor prognosis in Iran; it is the third leading 
cause of death from cancers, accounting for 16% of cancer deaths 
[3]. Most BC patients are diagnosed at advanced stages in Iran [3]. 

The incidence and mortality of BC have been attributed to 
many individual-level risk factors [4-9]. Regardless of these risk 
factors, it has been found that the incidence and mortality of BC 
are associated with place-based and area-based risk factors [9,10]. 
While many studies in other countries have considered the spatial 
patterns of BC at the census tract or zip code level [9,11,12], spa-
tial patterns in the incidence of BC have been studied only at the 
provincial level in Iran [13-15]. For example, the overall incidence 
of BC in the population living in Tehran province was 31.5 per 
100,000, which is greater than the rates observed in other prov-
inces [16]. Therefore, studies should focus on identifying spatial 
patterns of BC incidence on finer geographic scales to understand 
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health needs and to optimize health care allocation [9-11]. 
When studying the spatial patterns of disease on a finer geo-

graphic scale, however, some challenges must be considered. Esti-
mated rates and observed associations can involve a degree of bias 
due to spatial autocorrelation, population size heterogeneity, and 
small-area effects [17]. Two methods, empirical spatial Bayesian 
smoothing and the Besag, York, and Mollie (BYM) spatial model, 
have been used to offset these challenges by considering spatial 
autocorrelation and spatial heterogeneity among geographic units 
[11,18,19]. 

With these issues in mind, our objectives in this study were (1) 
to estimate the smoothed standardized incidence ratio (SIR) 
among neighborhoods in Tehran, and (2) to identify clusters of 
higher or lower than expected incidence of female BC in Tehran. 

MATERIALS AND METHODS 

Study area 
A retrospective study design was used in Tehran, the capital of 

Iran. This city has 22 districts. The geographical units of the study 
were 374 neighborhoods in the city of Tehran. 

Data sources
Information about incident cases of female BC in Tehran from 

March 2008 to March 2011 was obtained from the cancer registry 
of the Ministry of Health of Iran. Patients’ street of residence was 
geocoded to the neighborhood. The population of women aged 15 
and over in each neighborhood was obtained from the national 
census of 2006 and 2011. 

Statistical analysis
Raw standardized incidence ratio 

The number of the observed events in each neighborhood fol-
lows a Poisson distribution, 

                            Oi~Poisson(Ei θi)                                        (1)  
where Oi, Ei, and θi are the observed number, of casesnumber, 

the expected number of cases, and the relative risk for neighbor-
hood i, respectively. The number of expected events is calculated 
as follows:

                                                                                                         (2)

where ni is the number of women aged 15 and over in neigh-
borhood i 
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, and yi is the observed num-
ber of events in the neighborhood i. The SIR can be calculated by 
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refers to the idea that due to spatial components, the local estimates 
of disease risk for neighboring areas are assumed to be correlated. 
The effect of overdispersion due to spatial autocorrelation on the 
results is strong if the small-area problem is present [18]. 

To offset these challenges, hierarchical models such the BYM 
model have been introduced [18]. In the BYM model, unmeasured 
spatial factors are controlled for using suitable random effects, as 
shown in equation:

                                    log(θi)= α + ui + vi                                                            (3)

where α is a the log-relative risk baseline, and vi and ui indicates 
random random-effects components regarding to spatial and non-
spatial factors. 

Spatial autocorrelation across neighborhoods (vi) is induced by 
the conditional autoregressive (CAR) model. The CAR model 
represents risk factors with spatial structures, so that specific risk 
estimates of a given area will tend to shrunk shrink toward a local 
mean. The CAR model within the BYM model is as follows:

                                                                                                       (4)

where
                                                                                                       (5) 

If areas i and j are neighbors of each other, the weight is equal to 
1, and otherwise the weight is 0. 

The random effect of ui represents risk factors with non-spatial-
ly structures, so such that that the specific risk estimate of a given 
area will tend to shrunk shrink toward a the global mean of the 
study area. This component in the BYM model is as follows:

                          ui~N(0, τu
2)                                             (6)

The parameters 
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We implemented a Markov-chain Monte Carlo (MCMC) simu-
lation for estimating all parameters in the BYM model. The Gibbs 
sampler as a specific MCMC was used to produce random sam-
ples through the parameter space. The convergence of the model 
was evaluated by Brooks-Gelman-Rubin statistics [18]. This statis-
tic method evaluates MCMC convergence by comparing the with-
in-chain variance to the between-chain variance, with values close 
to 1 indicating the degree of convergence [18]. We ran the MCMC 
model with 100,000 iterations, ignoring the first 5,000 iterations as 
burn-in. Iterations started from overdispersed initial values on 2 
parallel chains. OpenBUGS version 3.2.3 (http://www.openbugs.
net/w/Downloads) was used to implement the BYM model.
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of the SIR is spatial empirical Bayesian (SEB) methodsanalysis. 
The SEB method causes the rates in neighborhoods in areas with-
out clear spatial patterns and in those in areas with obvious spatial 
patterns to be shrunk toward the global mean and local mean of 
the study area, respectively [21]. In this method, the posterior prob-
ability of θi does depend on the data Oi and Ei from the other re-
gions (j≠ i). In other words, the parameters of the prior distribu-
tion are not fixed, and will beare estimated empirically and based 
on all available data. Smoothing raw SIRs with empirical bayes Bayes-
ian methods was done using  second-order queen weights in Ge-
oDa.

Detection and identification of breast cancer clusters
Neighborhood variation in the incidence of BC (regardless of 

staging), and in early and late stages at diagnosis were determined 
by the purely spatial scan statistic in a discrete Poisson model, us-
ing SaTScan version 9.4.2 (Harvard Medical School, Boston, MA, 
USA). The analysis requires the number of cases, population counts, 
and the geographical coordinates (longitude and latitude) for each 
location. The standard purely spatial scan statistic imposes a cir-
cular window (spatial cluster) on the map and it moves across the 
study area to compare the number of disease cases in a geograph-
ic area (θin) with disease cases outside that area (θout). Since the re-
sults of this analysis can be sensitive to model parameters, parti
cularly window size, the maximum spatial cluster size is defined 
using the Gini coefficient [22]. It has been argued that the Gini 
coefficient is a very intuitive and systematic way to identify the 
best collection and non-overlapping of clusters [22]. 

The number of cases in each location was Poisson-distributed, 
so we applied the exponential model-based spatial scan statistic 
using SaTScan. The likelihood ratio statistic (LRS) of the Poisson 
distribution (under the test hypothesis; Ho: θin = θout; Ha: θin ≠ θout) 
for a specific window is proportional to 1:

                                                                                                           (7)     

where C is the total number of BC cases, c is the observed num-
ber of BC cases within a window, E[c] is the crude expected num-
ber of cases within the window under the null hypothesis, and C−
E[c] is the expected number of cases outside the window.  

The statistical significance of the detected clusters was evaluat-
ed using randomization testing or Monte Carlo hypothesis testing 
because the exact distribution of the LRS was unknown. Under 
the null hypothesis, a large number of random datasets was gen-
erated and the LRS value for each random dataset was computed. 
The Monte Carlo p-value of a window was computed as 
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where Rbeat  is the number of random datasets with a LRS higher 
than the LRS in the real dataset and R is the total number of ran-
dom datasets.  A window shows statistical significance at α= 0.05 
when its LRS is higher than approximately 95% of the LRS values 
of the random dataset. The windows with the most statistically 
significant likelihood ratios were defined as the most likely, sec-
ondary, and tertiary clusters, respectively. The p-values of < 0.05 

using 999 permutations were considered to indicate statistical sig-
nificance within the Moran index and spatial clusters. Sufficient 
statistical power was ensured by the use of 999 replications in the 
Monte Carlo simulation. All cartographic manipulations and dis-
plays were performed in ArcGIS version 10.3 (Esri, Redlands, 
CA, USA). 

RESULTS 

There were 4,175 incident BC cases in the study area from 2008 
to 2011, and of them, 3,080 were successfully geocoded to the neigh-
borhood. The number of BC cases ranged from 0 to 86 across 
neighborhoods in Tehran. The highest incidence of female BC 
was found in northern Tehran (Figure 1). Based on the Moran in-
dex, the null hypothesis of zero spatial autocorrelation was reject-
ed for the number of BC (Moran index, 0.08; p< 0.05).

Spatial distribution of breast cancer
The results of the three methods we used (raw SIR, the BYM 

model, and the SEB method) indicate neighborhood-level ine-
quality in the incidence of female BC in Tehran. The neighbor-
hoods with higher than expected incidence of BC were in districts 
1, 2, 3, 5, 6 and 7, in northern and central Tehran. The neighbor-
hoods with lower than expected rates were in districts 15, 16, 17, 
18, 19, 20, 21, and 22, in southern and southwestern Tehran (Fig-
ure 2). 

Figure 2A displays the estimated raw SIR of female BC in Teh-
ran from 2008 to 2011. The median (interquartile range [IQR]) of 
female BC based on the raw SIR was 0.52 (1.33). The estimated 
raw SIR ranged from 0 to 14.84. In 82 neighborhoods, the raw 
SIR was 0 because no BC cases occurred in these neighborhoods; 
moreover, 37% of the neighborhoods had SIR values greater than 
1. The smoothed SIRs using the SEB method are illustrated in Fig-
ure 2B. The median (IQR) of female BC based on the SEB meth-
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cases in a geographic area (θin) with disease cases outside that area (θout). Since the results of this 154 

analysis can be sensitive to model parameters, particularly window size, the maximum spatial 155 

cluster size is defined using the Gini coefficient [22]. It has been argued that the Gini coefficient 156 

is a very intuitive and systematic way to identify the best collection and non-overlapping of 157 

clusters [22].  158 

The number of cases in each location was Poisson-distributed, so we applied the exponential 159 

model-based spatial scan statistic using SaTScan. The likelihood ratio statistic (LRS) of the 160 

Poisson distribution (under the test hypothesis; Ho: θin=θout; Ha: θin ≠ θout) for a specific window 161 

is proportional to 1: 162 

(7)                                          � �
�����

� � ���
�������

���
 163 

where C is the total number of BC cases, c is the observed number of BC cases within a window, 164 

E[c] is the crude expected number of cases within the window under the null hypothesis, and C 165 

−E[c] is the expected number of cases outside the window.  166 

The statistical significance of the detected clusters was evaluated using randomization testing or 167 

Monte Carlo hypothesis testing because the exact distribution of the LRS was unknown. Under 168 

the null hypothesis, a large number of random datasets was generated and the LRS value for each 169 

random dataset was computed. The Monte Carlo p-value of a window was computed as ���������� , 170 

where �����	is the number of random datasets with a LRS higher than the LRS in the real dataset 171 

and R is the total number of random datasets. A window shows statistical significance at �=0.05 172 

when its LRS is higher than approximately 95% of the LRS values of the random dataset. The 173 

windows with the most statistically significant likelihood ratios were defined as the most likely, 174 

secondary, and tertiary clusters, respectively. The p-values <0.05 using 999 permutations were 175 

Figure 1. The number of observed female breast cancer cases across 
neighborhoods in Tehran, 2008-2011.
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Table 1. High- and low-risk clusters for female BC incidence using spatial scan statistics in Tehran (2008-2011)

Optimal 
Gini coef-

ficient
MSC Clusters 

detected
Involved 
districts

At-risk 
popula-

tion

Observed  
cases (O)

Expected 
cases (E)

Annual 
cases per 
100,000

O/E RR1 p-value

Total BC incidence (n=3,080)
   Areas with high  
      rates

0.47 0.04 Primary 3, 6 58,039 217 55.37 126.4 3.92 4.14 <0.001
Secondary 3, 4 29,134 145 27.79 165.9 5.22 5.43 <0.001
Tertiary 4, 8 45,449 161 43.36 118.1 3.71 3.86 <0.001

   Areas with low  
      rates

Primary 17, 18, 19 111,902 6 106.75 1.8 0.05 0.05 <0.001
Secondary 16, 20 124,216 27 118.50 7.2 0.23 0.22 <0.001
Tertiary 14 113,341 23 108.12 6.8 0.21 0.21 <0.001

BC, breast cancer; MSC, maximum size cluster; RR, relative risk.
1Calculated as the observed cases divided by the expected cases within the cluster divided by the observed cases divided by the expected cases 
outside the cluster.

od was 0.50 (1.13). As expected, there was a degree of shrinkage 
in the estimated SIR, such that in 2 neighborhoods the value of 
SIR was 0 and the range of SIRs was narrowed. The median (IQR) 
of female BC based on the BYM model was 0.60 (1.14), with no 
neighborhoods having a SIR of 0 and 30% of the neighborhoods 
having a SIR greater than 1 (Figure 2C). 

Spatial clusters of breast cancer 
Table 1 presents the characteristics of the most likely clusters of 

BC. Figure 3 displays the geographic pattern of the most likely 
clusters of BC. There was a statistical dispersion in the detected 
clusters of female BC incidence (Gini index, 0.47). The clusters 
with a higher than expected incidence of BC were found in the 

Figure 2. The estimated standardized incidence ratio (SIR) of 
female breast cancer incidence in Tehran, 2008-2011. (A) Raw 
SIRs, (B) using the  spatial empirical Bayesian method, and (C) 
using the Besag, York and Mollie (BYM) spatial model. 

District boundaries
Neighborhood boundaries

A

0.00 (82)
0.04-0.28 (58)
0.29-0.60 (58)
0.61-0.99 (41)
1.01-2.11 (72)
2.12-14.84 (63)

Raw SIRS (n)

B

0.00-0.14 (63)
0.15-0.29 (63)
0.30-0.61 (62)
0.62-0.98 (53)
1.006-1.84 (71)
1.90-12.35 (62)

Smoothed SIRs from empirical Bayesian (n)

C

0.04-0.13 (67)
0.14-0.24 (59)
0.25-0.51 (65)
0.52-0.99 (69)
1.03-1.83 (52)
1.86-13.59 (62)

Smoothed SIRs from BYM model (n)
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northern, northeastern, and central parts of the study area. Lower 
than expected incidence clusters of BC were found in the south-
ern part of the study area. The most likely cluster of higher than 
expected BC incidence was located in areas near the center of 
Tehran, including neighborhoods in districts 3 and 6 with an ob-
served-to-expected ratio of 3.92 (p< 0.001), implying that the in-
cidence of BC was 3.92 times greater within this cluster than in 
the rest of the study area. The most likely cluster of lower than ex-
pected BC incidence included the neighborhoods in districts 17, 
18, and 19 with an observed-to-expected ratio of 0.05 (p< 0.001), 
implying that the incidence of BC was 20 times lower within this 
cluster than in the rest of the study area. 

DISCUSSION 

Neighborhood-level inequality in female BC incidence was 
found in Tehran from 2008 to 2011. The most likely clusters of 
higher than expected BC were found in central, northern, and 
northeastern Tehran, whereas the most likely clusters of lower 
than expected incidence were located in southern Tehran. 

Spatial analysis at finer scales can provide useful information 
about at-risk areas. Our results showed that the smoothed rates of 
BC incidence were variably distributed within specific districts; 
therefore, performing a spatial study at the district level would fail 
to identify these within-district inequalities. For example, on av-
erage, the neighborhoods in district 19 had lower rates of BC, but 
there were a few neighborhoods in this district with high rates of 
BC. Correspondingly, in general, the neighborhoods in districts 1, 
2, and 3 had higher rates of BC, but there were a few neighbor-
hoods with low rates within these districts. 

While the spatial analysis of cancer measures at geographic res-
olutions such as the census tract and zip code has been frequently 
conducted in developed countries [11,12,23,24], it has not received 
sufficient attention in developing countries. In Iran, the spatial 

analysis of cancer measures using GIS and SaTScan have mainly 
been conducted at the level of provinces or counties [13,25,26], 
such that evidence about the spatial patterns of cancer measures 
at finer resolutions such as the neighborhood level are limited. In 
one study by Rohani et al. [27], it was found that the population 
living in districts 1, 2, 3, and 6 had the highest age-specific rates of 
BC incidence. 

Smoothing the rates and conducting a spatial analysis with the 
SaTScan spatial scan statistic showed that the incidence of BC is a 
health problem in areas near the center and northern parts of Teh-
ran, which correspond to wealthy areas with higher degrees of 
educational attainment and greater expenditures on health care 
activities [28]. It has been found that females living in wealthy ar-
eas had greater expenditures on health care activities such as 
screenings, resulting in BC being diagnosed more frequently [29]. 
Moreover, they have better access to cancer treatment facilities 
and adjuvant therapies, and likely have better survival rates [30]. 

Several methodological issues involving spatial analysis with 
SaTScan should be mentioned. It has been argued that the hierar-
chical approach (SaTScan default) for selecting the maximum 
size of clusters may lead to unnecessarily large and less informa-
tive clusters [22]. In the current study, the maximum size of the 
spatial clusters was based on the Gini coefficient. It has been sug-
gested that the Gini coefficient provides more information about 
non-overlapping clusters, while avoiding overly large clusters with 
relatively small relative risks and smaller clusters with higher rela-
tive risks [22]. SaTScan allows a better understanding of spatial 
patterns with adjustment for covariates. Previously published 
studies have demonstrated that adjustments for area-based char-
acteristics, such as census tract poverty, and individual character-
istics of patients, including age, race/ethnicity, or stage at diagno-
sis, can change the observed pattern of clusters [12,24]. 

Our analysis has some advantages and limitations. The main 
advantage of the present study is that to our knowledge, this is the 
first study to explore the spatial patterns of female BC at the time 
of diagnosis at the neighborhood level in Iran. This type of spatial 
analysis at the neighborhood level can provide useful information 
to policy makers for the allocation of resources to truly needy are-
as. As expected, the raw SIRs per neighborhoods were dispersed 
due to extra-Poisson variability; to offset this challenge, we 
smoothed the raw SIRs using a BYM spatial model and the SEB 
method. The main objective of the BYM model is to take into ac-
count spatial autocorrelation in an efficient way, but the ability of 
the BYM model is limited where geographical units have different 
sizes and shapes [31]. One of the limitations of this study is related 
to how missing data may have induced bias in our results. Sur-
veillance data, such as the data contained in cancer registries, are 
inevitably incomplete, and this is influenced by many factors such 
as sex, age, and socioeconomic status. As expected in ecological 
studies and spatial analysis, the ecological fallacy and the modifi-
able areal unit problem are potential sources of misleading inter-
pretations. Another problem that was not accounted for in this 
study is the phenomenon known as the edge effect. This effect 

Figure 3. Spatial clusters of female breast cancer incidence in Tehran, 
2008-2011.

District boundaries
Neighborhood boundaries

Observed to expected ratio (n)
Not included in cluster
0.05 (13)
0.21 (9)
0.23 (16)
3.71 (3)
3.92 (6)
5.22 (3)
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means that results for neighborhoods near administrative borders 
must be interpreted with caution, because, for example, the socio-
economic indicators of neighborhoods outside of the studied re-
gion may affect the characteristics of residents near the borders. 
Finally, the geocoding of the street addresses may have induced a 
degree of misclassification in the results. 

In conclusion, female BC incidence was differently distributed 
across neighborhoods in Tehran. Higher than expected spatial 
clusters of BC incidence appeared in central and northern parts of 
Tehran, whereas areas with lower than expected incidence were 
located in southern Tehran. These observations of neighborhood 
inequality can be a basis for the allocation of resources and the 
implementation of preventive strategies in truly needy areas. 
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