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Abstract

Mutations of the gene for nucleophosmin (NPM1) are the most frequent genetic aberration

in patients with acute myeloid leukemia (AML). The mechanism of leukemic transformation

in this leukemia subtype is not fully understood, but aberrant cytoplasmic localization of

mutated NPM (NPMmut) is widely considered as an important factor for leukemia manifes-

tation. We analyzed the subcellular localization of three types of NPM with a C-terminal

mutation (A, B and E). Genes for the individual NPM forms were fused with a gene for one of

fluorescent protein variants in plasmids, which were transfected into three cell lines with dif-

ferent endogenous NPM expression. Subcellular localization of the fluorescent protein-

labeled NPM was further correlated with the relative expression of all NPM forms. We con-

firmed a high cytoplasmic expression of NPMmutA and NPMmutB whereas a substantial

fraction of NPMmutE was found to be localized in nucleoli. Moreover, we revealed that the

localization of fluorescently labeled NPM is affected by the interaction between various

forms of the protein.

Introduction

The phosphoprotein nucleophosmin (NPM) is an abundant protein located mainly in the

nucleolus, although it shuttles between the nucleolus, the nucleus and the cytoplasm. It regu-

lates many cellular processes, mainly the ribogenesis [1], centrosome duplication control [2]

and apoptosis [3,4]. Mutation of the NPM1 gene is the most frequent genetic aberration in

AML and generally causes NPM relocation from the nucleolus into the cytoplasm [5]. The

mistargeting is caused by mutations in exon 12 of the NPM1 gene leading to the loss of trypto-

phan W288 and/or W290 at the C-terminus of the resulting protein [6]. The mutations highly

compromises the nucleolar localization signal (NoLS) and, moreover, the protein acquires an

extra nuclear export signal (NES) in addition to two NESes already present in its N-terminal

domain [7]. Specific NPM mutations are characteristic for about 60% of adult AML with the

normal karyotype [8] and are associated with good response to induction therapy [9]. The

most frequent AML-related NPM mutation type (type A) occurs in 75–80% of adult AML

patients with NPM mutation [5,9–11]. The resulting mutated protein (NPMmutA) lacks both
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tryptophans W288 and W290 and it has the most frequent NES motif L-xxx-V-xx-V-x-L [12].

Bolli et al [13] identified six different NES motifs with various exporting efficiency associated

with C-terminal mutations. The strongest NES motifs were associated with NPM mutants

retaining W288 that drives the NPM into the nucleolus. The authors concluded that a strong

NES motif balancing the force of W288 allows for the export of NPMmut into the cytoplasm,

and that NPM translocation might be critical for leukemogenesis. All AML-related NPM

mutations reported to date were heterozygous, i.e. the patients were heterozygous for the

mutation and retained a wild-type allele [5,9,10]. Homozygous Npm1 mutant knock-in mice

were reported to show embryonic lethality [14].

The impact of the mutation type on survival characteristics was widely examined and the

results of individual studies varied: while no difference in the overall survival (OS) and in the

disease-free survival (DFS) was observed by Pastore et al. [15], other researchers reported

either better or worse outcome for patients with NPMmutA vs. patients with mutations of

other type [16,17]. The role of different types of NPM1 mutation, either individually or in the

presence of other common gene mutations was suggested to be essential also for childhood

AML prognosis [18]. However, these studies generally compared the group of patients with

the most frequent mutational type A versus a merged group of patients with other types of

mutation. We believe that if the cytoplasmic localization of NPM is critical for leukemogenesis,

the difference should be searched between types causing different subcellular localization. We

thus compared the subcellular distribution of NPMmutA with that of NPMmut type B, which

differs from the type A only in one aminoacid (L289M) and with the type E, which retains

W288 and has the strongest NES motif, L-xxx-L-xx-V-x-L [19].

NPM conformation exhibits monomer–pentamer equilibrium, which is modulated by post-

translational modifications, in particular by phosphorylation, and by protein binding [20], the

pentamers being formed through the domain located at the N-terminus of the protein [21].

This domain is also responsible for the majority of interactions of NPM with various proteins

[1,22]. It was reported, that the ability to oligomerize is, at least in part, maintained in C-termi-

nal mutants [23]. Falini et al [24] suggested that the increased nucleophosmin export into the

cytoplasm probably perturbs multiple cellular pathways by loss-of-function (delocalization of

NPM nucleolar interactors into the cytoplasm) and/or gain-of-function mechanisms. Balusu

et al [25] demonstrated that AML cells expressing mutated NPM are more sensitive to disrup-

tive effects of the inhibitor NSC348884 on NPM oligomerization, in comparison with AML

cells expressing NPMwt. Recently, we revealed that the localization of NPMmutA is not exclu-

sively cytoplasmic and that a substantial fraction of NPMmutA still resides in the nucleoli [26].

Moreover, we and other authors [26,27] have shown that due to heterooligomer formation,

subcellular distribution of NPMmutA changes when the cells are co-transfected with NPMwt.

In the present work, we used HEK-293T cell system allowing high amplification of transfected

plasmids to investigate the localization of various mutation types. The impact of the endoge-

nous NPM was then analyzed in three cell lines with different ratio of endogenous to exoge-

nous NPM expression. The interaction between various NPM types was further confirmed by

co-immunoprecipitation.

Material and methods

This study was conducted in the period 02-11/2016.

Cell culture and chemicals

Cancer cell lines HEK293T (gift from Dr. Š. Němečková, Institute of Hematology and Blood

Transfusion, Czech Republic) and NIH 3T3 (gift from Dr. M. Jiroušková, IMG CAS, Czech
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Republic) were cultivated in DMEM (Sigma-Aldrich), 10% FCS, 37˚C and 5% CO2 atmo-

sphere. Cancer cell line HeLa (gift from Dr. J. Malı́nský, IEM CAS, Czech Republic) was

cultivated in RPMI 1640 (Biochrom AG) supplemented with 10% FCS, 37˚C and 5% CO2

atmosphere. Peripheral blood mononuclear cells (PBMC) of AML patients were isolated from

leukapheretic products using density gradient centrifugation on Histopaque 1077 (Sigma-

Aldrich Corporation, USA) at 500 g and 20˚C for 25 min. PBMC were resuspended at a den-

sity of 5x106 cells/ml in RPMI 1640 medium (10% FCS, 37˚C, 5% CO2). All patients signed

informed consent to the use of their biological material for research purposes in agreement

with the Declaration of Helsinki. The Ethics Committee of the Institute of Hematology and

Blood Transfusion approved this research at the application of grant No 16-30268A. All sam-

ples were tested for presence of C-terminal NPM mutation by PCR and the mutation type was

determined by sequencing as described previously [28].

Plasmid construction and cell transfection

As described in detail previously [26], gene for nucleophosmin was amplified from cDNA

library (Jurkat cells, Origene) by PCR and inserted to vectors peGFP-C2 and pmRFP1-C2 (orig-

inally Clontech) designed for expression of protein chimeras with a fluorescent protein con-

nected to the N-terminus of the target protein by standard methods of molecular cloning. NPM

mutants were constructed by PCR using extended primers containing mutated part of exon 12

of the NPM1 gene and restriction sites (Table 1). After amplification in E. coli, the plasmids

with subcloned genes were purified with PureYield Plasmid Miniprep System (Promega) and

transfected into adherent cell lines using jetPRIME transfection reagent (Polyplus Transfection)

for each experiment. Transfection efficiency was analyzed by flow cytometry (BD Fortessa).

Immunofluorescence

The samples were prepared as described previously [26]. Briefly, cells in suspension were

seeded on a coverslip in humidified chamber for 15 min and then fixed with 4% paraformalde-

hyde (PFA) overnight at 4˚C. After 10min of permeabilization by 0,5% Triton X-100, the cells

were incubated for 1h with a mouse monoclonal anti-NPM primary antibody (clone 3F291,

Santa Cruz Biotechnology, 1:100) and for another 1h with the secondary antibody (Alexa-

Fluor555-conjugated anti-mouse, Life Technologies, 1:200) and with Hoechst33342 (1μM,

Life Technologies). The stained cells were observed under confocal laser scanning microscope

FluoView FV1000 (Olympus Corporation).

Live-cell imaging. Subcellular distribution and colocalization of eGFP- or mRFP1-fused

variants of nucleophosmin was observed by Olympus FluoView FV1000 confocal microscope

(Olympus Corporation). For subcellular distribution statistics, at least 800 cells from three

independent experiments were evaluated. Fluorescence images were processed by FluoView

software FV10-ASW 3.1.

Cell lysis

Transfected adherent cells were briefly washed with PBS, trypsinized and extensively washed

with PBS. The cell pellets were lysed in Laemmli sample buffer, boiled for 5 min, centrifuged at

200.000g/4˚C for 4h and the supernatant was stored at -20˚C.

Immunoprecipitation

GFP-Trap_A system (Chromotek) was used following the manufacturer´s instructions.

Briefly, transfected adherent cells were resuspended in ice-cold PBS, scrapped from dish and
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extensively washed with PBS. Then the cell pellet was lysed in the lysis buffer (10mM Tris/Cl

pH7.5, 150mM NaCl, 0.5mM EDTA, 0.5% NP-40, protease and phosphatase inhibitors), incu-

bated on ice for 30 min and centrifuged at 20.000g/10min/4˚C. The lysate was then transferred

into the GFP-Trap_A beads and incubated for 1h at 4˚C. After centrifugation and extensive

wash in the diluting buffer (10mM Tris/Cl pH7.5, 150mM NaCl, 0.5mM EDTA), GFP-Trap_A

beads were resuspended in SDS-sample buffer, boiled for 5 min and centrifuged at 2.500g/

2min/4˚C. Supernatant was stored at -20˚C until used for SDS-PAGE.

Western blotting

Five microliters of each sample were subjected to SDS-PAGE and transferred into nitrocellu-

lose membrane (Hybond PVDF, Amersham). Mouse monoclonal antibodies against β-actin,

GFP and NPM (clone NA24 for wt+mut detection, clone E3 for wt-only detection) were from

Santa Cruz Biotechnology. All primary antibodies were used at a dilution 1:100–1:500. Anti-

mouse HRP-conjugated secondary antibody was purchased from Thermo Scientific and used

at concentrations 1:10,000–1:50,000. ECL Plus Western Blotting Detection System (Amer-

sham) was used for chemiluminescence visualization and evaluation by G-box iChemi XT4

digital imaging device (Syngene Europe).

Statistical analysis

No power calculations were performed. We analyzed all primary AML samples available at the

Institute of Hematology and Blood Transfusion during the period 2015–2016 (N = 17). The

majority of experiments were performed using cell lines and repeated until the observed differ-

ences between groups reached statistical significance. A p-value of 0.05 or lower was pre-set to

be indicative of a statistically significant difference between groups compared. In diagrams,

arithmetic means of at least three replicates of all experiments were plotted with SD error bars.

Significance levels (p values of ANOVA or Student´s t-test) were determined using InStat Soft-

ware (GraphPad Software).

Results

Subcellular localization of mutated NPM depends on mutation type

Seventeen PBMC samples from AML patients were screened for the presence of NPM muta-

tion by the PCR and by the immunofluorescence. We detected the NPMwt in 7 (41%) patients,

the NPMmutA in 9 (53%) patients and one patient had the mutation type Nm (1108_1109ins

CCAG). Blasts with extranuclear NPM localization were found in all samples from the patients

with a NPM mutation whereas the localization of NPM was restricted to nucleoli (and partially

nuclei) in the samples without mutation (Fig 1).

We transfected HEK-293T cell line with eGFP-labeled variants of NPM and examined the

eGFP_NPM subcellular localization under the confocal microscope (Fig 2a). The wild-type

NPM and three types of mutated NPM (A, B and E) were analyzed. While the eGFP_NPMwt

was detected solely in nucleoli, more than 80% of eGFP_NPMmutA-transfected cells exhibited

exclusively cytoplasmic localization of the mutated protein (Fig 2b). A combination of

eGFP_NPMmutA signal from the nucleolus with cytoplasmic staining was observed in

approximately 15% of the transfected cells. Moreover, the relative fluorescence intensity from

the remaining cells, showing eGFP_NPMmutA signal only in the nucleoli (approximately 5%

of transfected cells), was weak, indicating low plasmid amplification in these cells. Subcellular

distribution of eGFP signal in cells transfected with eGFP_NPMmutB was almost identical as

for NPMmutA (Fig 2a). On the contrary, 65% of cells transfected with eGFP_NPMmutE

Localization and interaction of AML-related nucleophosmin mutant
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displayed eGFP fluorescence from the nucleolus, whether exclusively or partially (i.e. signal

was detected from both the cytoplasm and the nucleoli) (Fig 2a and 2b, S1 Table). Identical

results were obtained with plasmids containing the red form of the fluorescence protein,

mRFP1, instead of eGFP (data not shown). The transfection efficiency measured by flow

cytometry was about 45% in all samples and high expression of recombinant fusion proteins

was confirmed by immunoblot (Fig 2c, S1 Fig).

Fig 1. NPM is localized in the cytoplasm of blast from AML patients with NPM mutation. PBMC from

AML patients with NPMwt (wt), NPMmutA (mut A) or NPMmutNm (mut Nm) were incubated with anti-NPM

(clone 3F291) primary and AlexaFluor555 secondary antibodies (red). The nuclei were visualized with

Hoechst 33342 (blue). Arrows indicate the cytoplasmic localization of NPM in AML blasts with NPMmut. The

bars represent 10μm.

https://doi.org/10.1371/journal.pone.0175175.g001

Fig 2. Subcellular distribution of mutated NPM depends on mutation type. (a) eGFP fluorescence from HEK-293T cells

transfected with eGFP plasmid (GFP), eGFP_NPMwt (wt), eGFP_NPMmutA (mutA), eGFP_NPMmutB (mutB) or

eGFP_NPMmutE (mutE) showing various subcellular distribution of individual NPM variants. The bars represent 20μm. (b) fraction

of transfected cells displaying eGFP_NPMmutA (or E) signal only from the cytoplasm (white bars), from the cytoplasm and nucleoli

(grey bars) or only from nucleoli (black bars). The error bars in the graph represent ±SD of at least 3 independent experiments.

Statistical significance degree of difference between mutA and mutE obtained from two-way ANOVA test was P < 0.001 (***). (c)

immunoblot of lysates from HEK-293T cells transfected with individual NPM variants. GFP-NPM (exogenous) is detected at 64

kDa, the endogenous NPM at 37 kDa. β-Actin represents the loading control. Densitometric evaluation of NPM exo/endo level and

the ratio of NPMexo/endo expression vs the transfection efficiency (20%, 15%, 13,9% resp. 17,8% for wt, mutA, mutB resp. mutE)

are indicated for the individual cell lines.

https://doi.org/10.1371/journal.pone.0175175.g002
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Interaction between wild-type and mutated NPM

We have previously checked the tug-of-war hypothesis described by Bolli et al [27] suggesting

that the localization of both fluorescently labeled wt and mutated NPM forms depends on their

mutual ratio. We showed that the abundance of one NPM form caused partial redistribution of

its oligomer partner in Hela cells co-transfected with eGFP_NPMmutA and mRFP1_NPMwt

[26]. Here we analyzed the distribution of fluorescently labeled NPM variants in HEK-293T

cells co-transfected with mRFP1_NPMwt and eGFP_NPMmutA or eGFP_NPMmutE (Fig 3a).

For both mutation types, co-transfection with wt caused significant changes in the subcellular

distribution: higher fraction of eGFP_NPMmut in the nucleolus as well as a fraction of

mRFP1_NPMwt in the cytoplasm was observed in comparison with the distribution in single

form-transfected cells (Fig 3b and 3c, S1 and S2 Tables). Our observations prove the fact that

the ability of NPM to form oligomers is not disrupted by any type of C-terminal mutation and

that heterooligomers between the wild-type and mutated NPM are formed affecting the locali-

zation of each other.

Endogenous NPM affects the localization of NPMmut

The subcellular distributions of NPMmutA in both single (NPMmut only) or double

(NPMmut+NPMwt) transfected HEK-293T cells markedly differed from the distribution pre-

viously observed in HeLa cells [26]. We hypothesize, that the reason for this difference lays in

various endogenous expression of NPM in these two cell lines. Karyotype studies of HeLa cells

proved a multiplied number of NPM gene copies [29] and a high endogenous NPM expression

was thus expected in this cell line. On the other hand, HEK-293T cell line contains the SV40

Large T-antigen, which allows for amplified expression from transfected plasmids containing

the SV40 origin of replication. Therefore, we compared the localization and level of NPM pro-

tein expression in these two cell lines. In addition, the commonly used mouse NIH-3T3 cell

line with standard endogenous NPM expression and unaffected plasmid amplification was

analyzed for comparison (Fig 4, S2 Fig, S3 Table). The distribution of eGFP-NPMmutA varied

from almost cytoplasmic in HEK-293T to highly nucleolar in HeLa (Fig 4a and 4c, S3 Table).

The expression of the endogenous NPM was higher in HeLa compared to the other cell lines

(Fig 4b, S2 Fig) and the ratio between the endogenous and the exogenous protein in the trans-

fected cells (Fig 4d, S2 Fig) reflected the high amplification ability of HEK-293T (even with

correction for various transfection efficiency in individual cell lines, Table 2).

A good correlation between the fraction of cells with cytoplasmic-only NPMmutA localiza-

tion and the ratio of exogenous vs. endogenous NPM expression was observed. We suggest

that heterodimers are formed not only between the fluorescently labeled NPM forms but also

between the recombinant and the endogenous protein. This suggestion was further confirmed

by eGFP-precipitation from lysates of transfected cells of HEK-293T and HeLa cell lines using

GFP-Trap nanobeads (Fig 5a, S3 Fig). NPM expression was examined by two anti-NPM anti-

bodies. The anti-NPM clone NA24 is directed to recognize the N-terminus of the human

NPM and it is thus able to detect the overall NPM, i.e. both the NPMwt and NPMmut. The

anti-NPM clone E3 is specific for an epitope at the C-terminus (aa 253–294) of NPMwt and it

should hardly recognize the NPMmut. Indeed, whereas the clone NA24 detected GFP-NPM

signal from all lysates of transfected cells, the clone E3 generated a signal only from samples

transfected with eGFP-NPMwt. On the contrary, both clones equally detected the endogenous

NPM in all precipitates containing any type of eGFP_NPM but not in precipitates from

untransfected cells. Despite its relatively low expression in HeLa cells, eGFP_NPM effectively

co-precipitated the endogenous NPM also in this cell line. Moreover, a higher ratio of the co-

precipitated NPMwt vs. the precipitated eGFP_NPM corresponds to higher expression of the

Localization and interaction of AML-related nucleophosmin mutant

PLOS ONE | https://doi.org/10.1371/journal.pone.0175175 April 6, 2017 7 / 15

https://doi.org/10.1371/journal.pone.0175175


Fig 3. Interaction between wild-type and mutant affects localization of individual forms of NPM. (a) eGFP (green) and

mRFP1 (red) fluorescence from HEK-293T cells co-transfected with mRFP1_NPMwt and eGFP_NPMmutA (mutA) or

eGFP_NPMmutE (mutE). The bars represent 20 μm. (b) fraction of transfected cells displaying eGFP_NPM signal only from

the cytoplasm (white bars), from the cytoplasm and nucleoli (grey bars) or only from nucleoli (black bar). GFP_mut denotes

the signal from cells transfected with eGFP_NPMmut only, +RFP_wt denotes eGFP signal from cells co-transfected with

eGFP_NPMmut and mRFP1_NPMwt. The error bars in the graph represent ±SD of at least 3 independent experiments. (c)

fraction of transfected cells displaying mRFP1_NPMwt signal from the cytoplasm: wt—cells transfected only with

RFP_NPMwt, wt+mutA (or E)–cells co-transfected with RFP_NPMwt and GFP_NPMmutA (or E). The error bars in the graph

represent ±SD of 5 independent experiments. Statistical significance degree of difference between the samples: P < 0.01

(**), P < 0.001 (***).

https://doi.org/10.1371/journal.pone.0175175.g003
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endogenous NPM in HeLa cells (Fig 5b, S3 Fig). For both cell lines, the amount of co-precipi-

tated NPM was substantially higher in the samples from eGFP_NPMwt-transfected cells than

in the samples transfected with eGFP_NPMmut.

Discussion

The significance of specific nucleophosmin mutations in AML has been recognised by the

World Health Organization (WHO) which defined the AML with NPM1 mutation as a

Fig 4. Localization of exogenous NPMmutA depends on endogenous NPM level. (a) eGFP fluorescence from HEK-293T (1),

NIH-3T3 (2) or HeLa (3) cells transfected with eGFP_NPMmutA showing its various subcellular distribution in individual cell lines. The

bars represent 20μm. (b) immunoblot of lysates from various cell lines indicates different endogenous NPM expression. β-Actin

represents the loading control. Densitometric evaluation of NPM/β-Actin ratio is indicated for individual cell lines. (c) fraction of

transfected cells displaying eGFP_NPM signal only from the cytoplasm (white bars), from the cytoplasm and nucleoli (grey bars) or

only from nucleoli (black bar). The error bars in the graph represent ±SD of at least 3 independent experiments. Statistical

significance degree of difference between the samples: P < 0.01 (**), P < 0.001 (***). (d) immunoblot of lysates from various cell

lines transfected with NPMmutA indicates different expression of transfected eGFP_NPM. GFP-NPM (exogenous) is detected at 64

kDa, the endogenous NPM at 37 kDa. β-Actin represents the loading control. Relative ratio of NPM exo/endo expression is indicated

for the individual cell lines. Two-fold concentrations of primary and secondary antibodies had to be used to detect exogenous NPM

expression in all lines. Therefore, absolute evaluation of the NPM exo/endo expression needs correction for the exo/endo NPM ratio

calculated in Fig 2c.

https://doi.org/10.1371/journal.pone.0175175.g004

Table 2. Transfection efficiency for individual cell lines assessed by flow-cytometry.

HEK-293T NIH 3T3 HeLa

transfection efficiency (% of cells) 47 ± 13 11 ± 4 19 ± 4

estimated ratio NPM endo:NPM_GFP 1: 1 4: 1 10: 1

mean±SD values from at least 6 samples were calculated. Ratio of NPM forms was estimated from the

transfection efficiency and the protein expression levels determined from WB.

https://doi.org/10.1371/journal.pone.0175175.t002
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distinct entity [24]. The AML with NPM1 mutation without concomitant mutations in other

genes is classified into the group with favorable prognosis. However, leukemogenic potential

of the mutation as well as the reason for the better outcome are still unclear. The most frequent

mutation type (type A) occurs in 75% of patients with NPM mutation, other relatively frequent

types B, resp. D are detected in about 9, resp 8% of patients [10,15,30–32]. The mutations A

and D differ from each other only in one base of the inserted tetranucleotide, without change

in the resulting aminoacid sequence. The type B differs from these types also in a single base,

which results in the change in one aminoacid (L289M) in the translated protein [33]. All the

proteins resulting from the most frequent mutation types lack both tryptophans W288 and

W290 and possess a weak acquired NES motif L-xxx-V-xx-V-x-L. The presence of a NPM

mutation in patients with AML was reported to correlate with the cytoplasmic localization of

NPM [34]. Consistently with these reports, we observed cytoplasmic NPM localization in all

AML samples with NPM mutation (Fig 1). However, the only non-A case in our cohort was of

type Nm which is very similar to the type A and the resulting protein differs from NPMmutA

in one aminoacid only (L289Q).

The studies investigating the impact of mutation type mostly compared groups of patients

with mutation type A versus non-A types. Whereas Koh et al observed worse OS and shorter

remission for the non-A group [17], Alpermann et al. reported better survival in patients with

non-A mutations [16]. Pastore 2014 [15] found no difference between type A and non-A

Fig 5. Formation of heterooligomers between eGFP_NPM and endogenous NPM was confirmed by GFP-precipitation. (a)

Representative immunoblots of lysates and GFP-precipitates from the cells transfected with individual NPM variants. U:

untransfected cells, wt: eGFP_NPMwt, mutA: eGFP_NPMmutA, mutE: eGFP_NPMmutE. Anti-NPM antibody clone NA24 was used

to detect the overall NPM expression (i.e. both the NPMwt and NPMmut), the clone E3 was used to detect NPMwt only. GFP-NPM

(exogenous) is detected at 64 kDa, the endogenous NPM at 37 kDa. β-Actin represents the loading control. (b) The ratio between

endogenous (NPM) and exogenous (NPM-GFP) expression in GFP-precipitates and lysates from cells transfected with

eGFP_NPMwt. The membrane from 30 to 100 kDa was incubated with anti-NPM clone NA24.

https://doi.org/10.1371/journal.pone.0175175.g005
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groups and, moreover, these authors did not find any difference even in a more detailed dis-

crimination between the types A, B, D and the others (rare). Recently, Alpermann et al. [30]

reported that different subtypes of NPM1 mutation were associated with different profiles with

respect to clinical parameters as well as to accompanying molecular markers. Particularly, they

revealed that DNMT3A mutations worsen the outcome of patients with type A and type D

NPM1 mutations but not with the type B. However, statistics matching the mutations accord-

ing to their putative subcellular distribution were not performed, probably due to the low fre-

quency of the rare mutations. We suggested previously, that the cytoplasmic localization of

NPM is critical for immune therapy prognosis [28]. Therefore, it is important to investigate

the difference between the mutation types causing different subcellular localization. In the

present work, we examined the localization of three types of NPM mutation (A, B and E) in

HEK-293T cell line, in relation to the presence of W288 and the force of the acquired NES

motif. We uncovered substantial difference between the localization of the NPMmutA (or B)

and the NPMmutE. A high proportion of NPMmutE is retained in the nucleoli in contrast to

the mostly cytoplasmic localization of NPMmutA (Fig 2). Interestingly, the mean fluorescence

intensity (MFI) determined by flow-cytometry as well as the GFP-NPM level analyzed by

immunoblot revealed that the amplification of the plasmids was mostly lower in cells trans-

fected with NPMmut than in NPMwt-transfected cells indicating lower amplification of plas-

mids containing NPMmut.

In agreement with the experiments described by Bolli et al [27], the localization of each

NPMmut type was strongly affected by the co-expression of NPMwt, probably due to hetero-

oligomer formation. In cells co-transfected with GFP-NPMmut and RFP-NPMwt, a higher

proportion of NPMmut in the nucleoli as well as the NPMwt in the cytoplasm was detected

for the both A and E mutation types (Fig 3). The interaction between various NPM forms

was further tested in three different cell lines representing various expression systems and

pools of the endogenous NPM. A nice correlation of GFP-NPMmut localization with the

ratio of exogenous vs. endogenous NPM expression was observed (Fig 4 and Table 2). The

interaction between the endogenous and exogenous NPM was further evidenced thanks to

GFP-precipitation (Fig 5a). The formation of NPM oligomers or complexes with its interac-

tion partners mediated by its N-terminal domain is largely documented [22,35,36] and the

ability of NPM to form oligomers was reported to be retained also in its variants with an

altered C-terminus, whether in the fusion protein NPM-ALK [37] or in the protein with spe-

cific mutation [38]. Nonetheless, little is known about the potential of the oligomerization

domain of the altered protein. In our experiments, a higher proportion of co-precipitated

endogenous NPM according to the lowest ratio of exo-/endogenous NPM expression was

detected in HeLa cells (Fig 5b). Irrespectively of the cell line, the amount of co-precipitated

endogenous NPM was substantially higher in cells transfected with GFP-NPMwt than in

cells transfected with any type of NPMmut. This may be partially explained by a higher

accessibility of the endogenous NPM for eGFP-NPMwt due to their identical localization.

Similar localization should favor the interaction of the endogenous NPM with NPMmutE

rather than with NPMmutA, but we did not observe any difference between the levels of co-

precipitated endogenous NPM in samples with mutations A and E. Hence, it is possible that

the oligomerization potential of NPMmut is lowered when compared to the interaction

potential of the wild-type form. This can be supported by the findings of Balusu et al [25]

that the cells with NPMmut are more susceptible to a specific inhibitor of NPM oligomeriza-

tion than the cells with NPMwt and that the NPMmut tends to form dimers rather than olig-

omers. Recently, it was uncovered that unbalanced allelic expression of mutant alleles is a

relatively common occurrence in multiple myeloma patients [39]. The mutant/wild-type

allelic ratio for NPM1 has been suggested to have a prognostic value in AML [40]. In
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summary, besides the type of the mutation, the oligomerization potential of NPMmut

together with the NPMwt/NPMmut ratio considerably affects the subcellular NPM distribu-

tion and likely the patient´s outcome.

Conclusion

Changes in the intracellular localization contribute very likely to leukemogenicity as well as

to the survival advantage which are associated with nucleophosmin mutations in acute mye-

loid leukemia. Hence, it is important to describe in detail the localization of both the wild-

type and the mutated protein in cells with every mutation type. The basic location for the

wild-type NPM is in the nucleoli, NPM with mutations A or B reside in the cytoplasm,

whereas the form E is found in the cytoplasm, in the nucleus and in the nucleoli. Furthemore,

the localization of all these forms is affected by their relative amounts thanks to oligomer for-

mation. Finally, the ability of NPMmut to form oligomers seems to be lowered irrespective

of the mutation type.
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