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C H E M I C A L  P H Y S I C S

Bayesian probabilistic assignment of chemical shifts 
in organic solids
Manuel Cordova1,2, Martins Balodis1, Bruno Simões de Almeida1,  
Michele Ceriotti2,3, Lyndon Emsley1,2*

A prerequisite for NMR studies of organic materials is assigning each experimental chemical shift to a set of geo-
metrically equivalent nuclei. Obtaining the assignment experimentally can be challenging and typically requires 
time-consuming multidimensional correlation experiments. An alternative solution for determining the assign-
ment involves statistical analysis of experimental chemical shift databases, but no such database exists for molec-
ular solids. Here, by combining the Cambridge Structural Database with a machine learning model of chemical 
shifts, we construct a statistical basis for probabilistic chemical shift assignment of organic crystals by calculating 
shifts for more than 200,000 compounds, enabling the probabilistic assignment of organic crystals directly from 
their two-dimensional chemical structure. The approach is demonstrated with the 13C and 1H assignment of 11 
molecular solids with experimental shifts and benchmarked on 100 crystals using predicted shifts. The correct 
assignment was found among the two most probable assignments in more than 80% of cases.

INTRODUCTION
Chemical shift assignment is the starting point of any detailed nuclear 
magnetic resonance (NMR) study (1). In organic solids at natural 
isotopic abundance, this is still a laborious and often challenging pro-
cess. In particular, 13C resonance assignment typically requires the 
use of the through-bond 13C-13C double-quantum/single-quantum 
correlation (INADEQUATE) experiment (2, 3). For materials for which 
the crystal structure is already known, the assignment can be deter-
mined at least partially by comparing the experimental chemical shifts 
with shifts computed using density functional theory (DFT) in the 
gauge-invariant projector-augmented wave method (4, 5) or fragment-
based methods (6, 7). However, in most applications, the full struc-
ture is not known and, in particular, de novo chemical shift–based 
NMR crystallography relies on chemical shift assignment to confi-
dently identify the crystal structure from among a set of candidates 
generated, for example, through crystal structure prediction (8–11).

An illustrative example of the assignment problem is shown in 
Fig. 1, with the 13C cross-polarization (CP) magic angle spinning 
(MAS) spectrum of ritonavir. The spectrum contains 32 peaks, 
corresponding to the 37 magnetically inequivalent carbon atoms in 
the molecule, and assigning the peaks to the atoms is not at all obvious. 
Several straightforward experimental methods can be used to sim-
plify the assignment process in organic solids. Heteronuclear cor-
relation (HETCOR) experiments (12, 13) provide pairwise 1H-X 
(where X = 13C, 15N, etc.) correlations and allow the separation of 
NMR signals along two dimensions, which simplifies the identifica-
tion of the bonding environment associated with the observed peaks. 
In addition, spectral editing (14–18) can be used to identify the car-
bon multiplicity (i.e., the number of bonded protons) associated to 
each observed peak, allowing the reduction of the assignment prob-
lem to subsets of peaks and corresponding atomic sites.

Chemical shift assignment of biomolecules such as proteins and 
RNA can be obtained directly from their sequence through statis-
tical analysis of chemical shifts (19–21). In addition, simultaneous 
chemical shift assignment and structure determination can be ob-
tained from matching atomic contacts to nuclear Overhauser effect 
experiments (19). These approaches rely on the existence of a large 
database of experimental chemical shifts and molecular structures, 
such as the Biological Magnetic Resonance Data Bank (BMRB) (22) 
and Protein Data Bank (23), respectively. For example, the BMRB 
contains more than 9.4 million instances of experimental chem-
ical shifts for 279 types of proton, carbon, and nitrogen sites in the 
20 amino acids that make up proteins, with e.g., more than 89,000 
instances of the NH shift in alanine alone. Such large and diverse 
chemical shift databases however do not exist, to our knowledge, for 
organic crystals.

1Laboratory of Magnetic Resonance, Institute of Chemical Sciences and Engineering, 
Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland. 2National 
Centre for Computational Design and Discovery of Novel Materials MARVEL, Ecole 
Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland. 3Laboratory of 
Computational Science and Modelling, Institute of Materials, Ecole Polytechnique 
Fédérale de Lausanne, CH-1015 Lausanne, Switzerland.
*Corresponding author. Email: lyndon.emsley@epfl.ch

Copyright © 2021 
The Authors, some 
rights reserved; 
exclusive licensee 
American Association 
for the Advancement 
of Science. No claim to 
original U.S. Government 
Works. Distributed 
under a Creative 
Commons Attribution 
NonCommercial 
License 4.0 (CC BY-NC).

O N
H

O

N
S

HO NH

O
N
H

N

O

N
S

200 050100150
13C chemical shift (ppm)

Fig. 1. 13C CPMAS spectrum of ritonavir. Molecular structure of ritonavir and 
the 13C CPMAS spectrum recorded for a powder sample of ritonavir form II. ppm, 
parts per million.
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Recently, ShiftML, a machine learning model able to predict chem-
ical shifts in molecular solids, was introduced (10, 24). This model 
allows chemical shifts to be obtained directly from the structure of a 
molecular solid, bypassing the need for an optimized wave function 
and making the shifts of large ensembles of large structures accessible 
with DFT accuracy (11, 24).

Here, we show how combining this model with a database of three-
dimensional (3D) structures such as the Cambridge Structural Data-
base (CSD) (25) enables the probabilistic assignment of organic crystals 
using chemical shift statistics without any knowledge of the 3D struc-
ture. We generate a large database of chemical shifts for organic crys-
tals by predicting shifts using ShiftML on structures extracted from 
the CSD. By relating the shifts obtained to molecular fragment de-
scriptors, we obtain probabilistic assignments of organic crystals di-
rectly from their molecular structure.

RESULTS
The framework presented here was applied to a set of various or-
ganic molecules for which the carbon chemical shift assignment was 
already (at least partially) determined experimentally. The selected 
set is composed of theophylline (9), thymol (26), cocaine (9), strych-
nine, AZD5718 (11), lisinopril (27), ritonavir, the K salt of penicil-
lin G (28), -piroxicam (29), decitabine (30), and simvastatin (31). 
The experimental spectra used for the assignment of strychnine and 
ritonavir are shown in figs. S1 and S2. Experimental shifts of lisinopril 
were obtained from a dihydrate form (27). Experimental shifts of 
ritonavir were obtained from the polymorphic form II.

Graph generation is the starting point of statistical assignment and 
can be performed directly from the 2D representation of the mole-
cule. Figure 2 (A and B) shows the graphs generated for illustrative 
carbon atoms in theophylline with a depth w = 3. The chemical shift 
distributions of the carbon labeled 4 in theophylline corresponding 
to different graph depths are shown in Fig. 2C, together with the cor-
responding graphs. As expected, the distribution changes as w is in-
creased, until at w = 3 and above where they are found to be highly 
similar, with a width dominated by the uncertainty in the ShiftML 
prediction. We thus selected a minimum number of 10 instances to 
construct each probability distribution and used the maximum graph 
depth that fulfils this requirement for each nucleus.

The prior statistical distribution of chemical shifts for each atom 
in a molecule can be constructed from the shifts predicted for all atoms 
in the database that share the same graph. Evaluating the obtained 
statistical distributions at the observed shifts yields the probability of 
observing each shift originating from each nucleus in the molecule 
(Fig. 3, A and B). The possible combinations of individual assign-
ments, based on a Bayesian construction, make it possible to associ-
ate a probability to each global assignment of all shifts. After obtaining 
the probability for each global assignment in the set, marginalization 
yields individual assignment probabilities (Fig. 3C). In this case, the 
most probable individual assignment for each carbon, as well as the 
most probable global assignment, was found to correspond to the ex-
perimental assignment of theophylline (black dots in Fig. 3C).

Overlap of the chemical shift distributions can lead to highly am-
biguous assignments. A common method to separate overlapping 
NMR signals consists in spreading them along multiple dimensions. 
The HETCOR experiment yields high-sensitivity correlated 1H and 
13C chemical shifts of dipolar coupled nuclei and can be tuned to 
obtain a spectrum dominated by one-bond correlations (12, 13). The 

correlated statistical distributions of chemical shifts corresponding 
to a simulated HETCOR can be obtained by considering bonded 
CH pairs in the molecule. This additional dimension often helps 
separate overlapping 1D statistical distributions and chemical shifts 
by incorporating the additional information given by the 1H chem-
ical shift. In addition, this can also be used to simultaneously assign 
13C and 1H chemical shifts.

Figure 4 depicts the probabilistic assignment of bonded 13C-1H 
chemical shifts of thymol using 2D correlated statistical shift dis-
tributions. The pair of topologically equivalent bonded C-H groups 
(labeled 9 and 10) was assigned to a pair of experimental shifts in 
Fig. 3D, as the disambiguation of topologically equivalent nuclei 
cannot be performed from the 2D representation of a molecule. As 
seen in Fig. 3B, the assignment of the carbon labeled 8 would have 
been much more ambiguous using only 13C chemical shifts. The prob-
ability of assigning carbon 8 to chemical shift e is 34% using only 
statistical distributions of 13C chemical shifts (Fig. 4E) and 100% 
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Fig. 2. Graph and statistical distribution. (A) 2D structure and carbon labeling 
scheme of theophylline. (B) Graphs of carbons 1, 2, 3, and 4 of theophylline con-
structed at a depth w = 3. In each graph, the red vertex corresponds to the central 
atom (for which the chemical shift distribution is extracted), and blue vertices indi-
cate the atoms at the maximum shortest path from the central vertex. (C) Chemical 
shift distributions obtained corresponding to the carbon labeled 4, with different 
graph depths w. The number of instances from the database used to construct each 
distribution is indicated in parentheses.
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using correlated statistical distributions of 1H and 13C chemical shifts 
(Fig. 4D). We note that the most probable assignments of carbons 6 
and 7 and of the methyl groups 1, 9, and 10 do not match the exper-
imentally determined ones. We attribute these discrepancies to sub-
stantial overlap between the corresponding statistical distributions of 
chemical shifts that arise because of similar local bonding environ-
ments of carbons 6 and 7 and of methyl groups.

In addition to HETCOR, spectral editing methods are also straight-
forward high-sensitivity experiments that can be performed rou-
tinely to aid assignment. These experiments are able to separate 13C 
chemical shifts according to the number of bonded protons (multi-
plicity) (14–17). The method can thus be directly applied to the sta-
tistical assignment framework presented here to break down the 
statistical assignment problem into smaller subproblems of reduced 
complexity. This is especially useful when considering molecules 
yielding substantial overlap of statistical distributions. Knowledge 
of the multiplicity of 13C chemical shifts can also be used to select a 
subset of HETCOR peaks to assign.

Figure 5 shows the assignment of 13C and 1H-13C chemical shifts of 
strychnine using the combination of spectral editing and correlated 
statistical distributions of chemical shifts. In Fig. 5D, the chemical 
shifts of carbons without any proton attached were assigned using the 
1D 13C chemical shift distributions of the associated nuclei. Carbons 
with a single bonded proton were assigned using the correlated 1H-13C 
statistical chemical shift distributions. The carbons with two attached 

protons were assigned to pairs of correlated 1H-13C chemical shifts, 
restricting the 13C shift to be unique in each pair.

Figure 5E summarizes the three most probable global assignments 
of strychnine. For each assignment, the global assignment is broken 
down into blocks by multiplicity and then potentially into sub-blocks 
where there is no significant probability of overlap according to a 
threshold (here, a factor 100 with respect to the highest probability 
for each nucleus). For each subassignment, there is an associated 
probability. The most probable assignment of each block was found 
to match the experimentally determined one, except for the assign-
ment of CH2 groups, where the assignments of carbons 21 and 19 
are swapped compared to the experimentally determined assignment. 
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Fig. 3. Probabilistic assignment of theophylline. (A) Statistical 13C chemical shift dis-
tributions for theophylline (colored lines). The carbon labels follow Fig. 2A. Experimental 
shifts are indicated by black vertical lines below the distributions and are labeled (a) 
through (f) in order of decreasing chemical shift (see table S9). (B) Probabilities of ob-
serving each chemical shift of theophylline for a given carbon nucleus. (C) Marginal 
individual assignment probabilities of the 13C chemical shifts of theophylline after 
Bayesian inference of the possible global assignments. The dots indicate the experi-
mentally determined correct assignment.
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Fig. 4. Probabilistic assignment of thymol using simulated HETCOR. (A) Carbon 
labeling scheme of thymol. (B) Contour plot of the correlated statistical chemical 
shift distributions of bonded 13C-1H in thymol. The carbon labels follow (A). Exper-
imental shifts are indicated by black dots and are labeled alphabetically in order of 
decreasing 13C chemical shift (see fig. S10). The statistical distributions, normalized 
such that their maximum is one, are drawn as contour plots at levels 0.1, 0.5, and 
0.9. (C) Probabilities of observing each 13C-1H shift pair in thymol for a given carbon 
nucleus. (D) Marginal individual assignment probabilities of unique directly bonded 
CH pairs and of pairs of topologically equivalent CH pairs (insert) in thymol. (E) Mar-
ginal individual assignment probabilities of unique carbons and of pairs of topologi-
cally equivalent carbons (insert) in thymol using only 13C chemical shift distributions. 
In (D) and (E), the dots indicate the experimentally determined correct assignment.
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This is due to the large difference between the distribution of chemi-
cal shifts and experimental shift of carbon 19 (see fig. S9), which could 
come from an unusual intermolecular environment of that atomic 
site in the crystal structure.

We consider that a reliable assignment is difficult to extract from 
the set of global assignments and associated probabilities, especially 
in cases with a large number of overlapping distributions and shifts, 
which yield many possible global assignments. Marginalization helps 
simplify the analysis of global assignments and identify ambiguities 
more easily. This can be seen in Fig. 5D, where the assignment of car-
bon 7 to shift d is favored compared to shifts b and c, which suggests 
only a pairwise uncertainty between carbon 2 and 14.

In addition to strychnine, shown in Fig. 5, the marginal individual 
assignment probabilities obtained for a set of nine selected molecules 
with complete experimental assignments (except for the two phenyl 
rings of ritonavir) using spectral editing and correlated 1H-13C sta-
tistical chemical shift distributions are shown in Fig. 6 and figs. S16 

to S18. The assignment of carbon nuclei without any attached proton 
were obtained from the 1D statistical distributions of 13C chemical 
shifts. The statistical distributions of chemical shifts for each example 
are shown in figs. S3 to S10. Notably, the assignment of lisinopril was 
found to be possible even when omitting the water molecules present 
in the crystal structure.

Figure 7 shows the assignment of the K salt of penicillin G. Only 
the organic ion was considered to construct the graph descriptors 
used to extract statistical distributions of chemical shifts. As for the 
presence of the water molecule in the case of lisinopril above, here, 
the presence of the potassium ion, which is absent from the database, 
did not lead to a significant decrease in the ability of the model to pre-
dict the assignment, highlighting its generality beyond molecules for 
which chemical shifts can be computed by ShiftML. While ShiftML 
would not be able to compute shifts for crystals where even only one 
atom is different from C, H, N, O, and S, this model only requires 
the molecule to be assigned to only contain these elements to obtain 
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the probabilistic assignment. If the additional component in a salt or 
a cocrystal were to lead to a very different crystalline environment 
from those included in the database, then this might lead to poor 
performance of the probabilistic assignment.

The marginal individual assignment probabilities obtained direct-
ly from the 2D representation of the molecules were found to match 
the experimentally determined assignment in most cases. We ob-
serve that assignment ambiguities generally involve pairs or triplets 
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of nuclei and shifts, leaving only a few possibilities for the NMR spec-
troscopist to further investigate to obtain the complete chemical shift 
assignment. Of the 178 experimental individual assignments con-
sidered in Figs. 5 to 7 and figs. S16 to S18, only 8 were associated with 
a probability below 10% and two below 1%. These low probabilities 
were generally associated with crowded regions in experimental spectra 
or with statistical outlier shifts compared to the distributions, which 
could have originated from unusual intermolecular environments.

To validate these results in a statistically significant manner, we 
evaluated the performance of the framework presented here on a 
benchmark set of a hundred crystal structures having between 10 and 
20 different carbon atoms, randomly selected from the CSD data-
base. In total, this corresponds to 1214 inequivalent carbon atoms. 
We used the ShiftML-predicted shifts for each atom as the correct 
assignment and excluded those shifts from the statistical distribu-
tions used to assign the molecules. The benchmark set was separated 
into five subsets containing 20 structures each that were evaluated 
independently to obtain SDs. Although using shifts predicted by 
ShiftML may introduce a bias, as the same method was used to con-
struct the database of shifts, we assumed that the Gaussian width used 
to construct the statistical distributions of chemical shifts and the ex-
clusion of the shifts assigned from the sets of shifts used to construct 
those distributions mitigate this issue.

Figure 8 summarizes the performance of the probabilistic assign-
ment model on the experimental (Fig. 8A) and synthetic (Fig. 8B) sets 
of molecules selected. The use of spectral editing and correlated 1H-13C 
chemical shift distributions was found to improve the ability of the 
model to correctly assign carbon chemical shifts. Using either 2D sta-
tistical distributions of chemical shifts, spectral editing, or combining 
both led to the experimental assignment being among the two most 
probable marginal assignments in more than 80% of cases. Overall, 
the performances on the experimental benchmark set were consistent 
with the synthetic benchmark set, except when using spectral editing 
where a slight improvement in the experimental set compared to the 
synthetic set was observed.

DISCUSSION
The framework presented here allows chemical shift assignment of 
organic crystals directly from their 2D structure. This was achieved 

through the chemical shift prediction for more than 200,000 organic 
crystal structures, which yields statistical distributions of chemical 
shifts for given covalent environments. A Bayesian framework was 
then used to obtain probabilistic marginal assignments of individu-
al nuclei from the probabilities of the set of global assignments gen-
erated. Overall, using correlated 1H-13C chemical shift distributions 
in tandem with spectral editing, the method was found to include the 
experimental assignment among the two most probable marginal as-
signments in more than 80% of cases.

Furthermore, in most cases, any ambiguity is found in small sub-
groups of shifts. This is highlighted in lisinopril in, for example, the 
CH2 carbons because of significant overlap between the correspond-
ing statistical distributions of chemical shifts and because of similar 
experimental shifts (see fig. S7).

In summary, the approach presented here can provide marginal 
assignments based only on the 2D molecular structure, where typi-
cally most of the resonances will be assigned with high probabilities, 
and only a few resonances will show ambiguities among doubles or 
triples that can then be the subject of targeted experiments for dis-
ambiguation, if needed, or left unresolved and assigned such that 
the error is minimized when compared with computed shifts for 
model structures (e.g., when performing NMR-driven crystal struc-
ture determination). This can greatly accelerate the assignment pro-
cess. In particular, the method is shown to provide assignments for 
molecules such as strychnine, lisinopril, AZD5718, and ritonavir, 
which have crowded 13C spectra with between 20 and 40 distinct 
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carbons and which would have been previously completely unad-
dressable without resorting to natural abundance 13C-13C correla-
tions. For example, in strychnine, of the 21 carbons, 14 are correctly 
assigned with more than 75% confidence. The model was also suc-
cessfully applied to the assignment of a hydrate and an organic salt, 
with no significant performance loss compared to the benchmark 
set. We expect that a more accurate model of chemical shifts could 
lead to improved probabilistic assignment through the framework 
presented here.

The method shown here is not restricted to 1H and 13C and can be 
used to assign the isotropic shifts of any NMR-active isotope of hy-
drogen, carbon, nitrogen, and oxygen in principle. To illustrate that, 
fig. S19 and Supplementary Text describe the probabilistic assign-
ment of the 15N shifts of AZD5718.

The code is publicly available at https://github.com/manucordova/
ProbAsn, and a user guide is available in Supplementary Text and on 
the GitHub webpage. A suggested workflow to assign an organic solid 
is also described in Supplementary Text.

MATERIALS AND METHODS
NMR spectroscopy
The samples of strychnine and ritonavir form II were purchased from 
Sigma-Aldrich and Tokyo Chemical Industry, respectively. Experiments 
were performed on Bruker Ascend 400 and Ascend 500 wide-bore 
Avance III and 900 US2 wide-bore Avance Neo NMR spectrometers. 
The spectrometers operate at 1H Larmor frequencies of 400, 500, and 
900 MHz, respectively, and are equipped with H/X/Y 3.2-mm, H/X/Y 
4.0-mm, H/C/N/D 1.3-mm, and H/C/N 0.7-mm CPMAS probes.

1D 1H MAS NMR spectra were recorded at a temperature of 298 K 
using rotor spinning rates (r) up to 111 kHz. 1D 13C CPMAS (32) 
NMR spectra were acquired at 298 K with r of 12.5 and 22 kHz for 
ritonavir and strychnine, respectively. During the signal acquisition 
SPINAL-64 decoupling (33) was applied with a 1H radio frequency 
(rf) field amplitude of 100 kHz. For ritonavir spectral editing, ex-
periments were used to distinguish carbons with different numbers 
of protons attached to them. To selectively remove quaternary car-
bons, a 1D version of MAS-J-HSQC (18) was used; to remove qua-
ternary and primary carbons, a double quantum filter was added to 
the MAS-J-HSQC (18) sequence, and to remove primary and second-
ary carbons, a simple CP experiment with an inserted delay of 0.5 ms 
before acquisition and after the CP pulse was applied (14).

2D 1H-13C HETCOR experiments were carried out at 298 K using 
r = 22 kHz. During t1, 100-kHz eDUMBO-122 was applied to de-
couple the 1H-1H dipolar coupling (34), and during t2, 100-kHz 
SPINAL-64 decoupling was applied.

The natural abundance 2D 13C-13C refocused INADEQUATE 
(2, 35) spectra required for the direct experimental assignment for 
ritonavir and strychnine were acquired using a Bruker 400-MHz 
Ascend NMR spectrometer. The probe was configured into 1H/13C 
double resonance mode. Variable amplitude CP (36) was used to 
transfer polarization from 1H to 13C. SPINAL-64 (33) heteronuclear 
1H decoupling with rf fields of 100 kHz was applied in all cases. The 
temperature of the sample for ritonavir was 250 K, and a 4-mm rotor 
was used with a spinning frequency of 12.5 kHz. Experiments (2 × 
120 hours) were acquired and combined in postprocessing to obtain 
the final spectrum (total time, 10 days). For strychnine, dynamic nuclear 
polarization (DNP) was used (37). The sample was impregnated with 
10 mM AMUPol dissolved in 60:30:10 glycerol-d8:D2O:H2O. The 

spectrometer is equipped with a low-temperature magic angle spinning 
3.2-mm probe and connected through a corrugated waveguide to a 
263-GHz gyrotron capable of outputting ca. 5 to 10 W of continuous-
wave microwaves (38). The sweep coil of the main magnetic field was 
optimized so that the microwave irradiation gave the maximum 
positive proton DNP enhancement with binitroxide cross-effect–based 
polarizing agents (e.g., AMUPol and TEKPol). The temperature of 
the sample for ritonavir was 92 K, and a 3.2-mm rotor was used with 
a spinning frequency of 12.5 kHz. A DNP enhancement of 36 was 
determined on the basis of the ratio of the area of the spectra acquired 
with and without microwave irradiation. The DNP-enhanced natural 
abundance 2D 13C-13C refocused INADEQUATE experiment (37) 
was run for 45 hours.

All chemical shifts were referenced via alanine. The full set of ac-
quisition parameters is given in tables S1 to S4.

Selection of crystal structures
The structures used to construct the chemical shift database were 
obtained from the CSD (25). Only the organic crystal structures suit-
able for chemical shift predictions were selected. The corresponding 
selection criteria were that every structure must only contain C, H, 
N, O, and S atoms and that the disorder is resolvable. Missing protons 
were added automatically using the tool built into the CSD Python 
API. In total, 205,069 valid structures were selected.

Relaxation and chemical shift prediction
Because proton positions in published single-crystal x-ray diffrac-
tion structures may not correspond to the actual hydrogen positions 
in the crystals, they have to be optimized. Because of the large num-
ber of structures selected, DFT relaxation would be prohibitively 
costly. The semiempirical density functional tight binding (DFTB) 
method (39) was thus chosen to relax proton positions in all struc-
tures. The structures were optimized at the DFTB3-D3H5 level of 
theory (40, 41) using the 3ob-3-1 parameter set (42, 43). Further com-
putational details are given in Supplementary Text. Instances where 
the structure relaxation failed were discarded. A total of 203,303 
structures were successfully relaxed and considered for chemical 
shift prediction.

All chemical shift predictions were performed using ShiftML ver-
sion 1.2 (publicly available at https://shiftml.epfl.ch) (10, 24). Con-
versions of predicted shieldings to chemical shifts were performed by 
least squares fitting of the shieldings obtained for benchmark sets of 
DFTB-relaxed structures to their experimental chemical shifts, fix-
ing the slope to a value of −1. The offsets obtained were found to be 
30.96 parts per million (ppm) for 1H, 168.64 ppm for 13C, 185.99 ppm 
for 15N, and 205.08 ppm for 17O. This corresponds to 1H and 13C shifts 
relative to tetramethylsilane (TMS), 15N shifts relative to NH4Cl, and 
17O shifts relative to liquid H2O. The sets of structures and isotropic 
chemical shifts used to determine shielding-to-shift conversions are 
described in tables S5 to S8. We note that chemical shieldings are 
stored in the database and converted to chemical shifts on the fly during 
the construction of chemical shift distributions. In total, the database 
contains 5,243,129 unique 1H, 4,847,864 unique 13C, 466,370 unique 15N, 
and 867,446 unique 17O chemical shifts, respectively.

Molecular fragment descriptors
For assignment of the spectrum of a molecule of unknown struc-
ture, classification of the predicted shifts should be done such that 
a statistical distribution of chemical shifts can be obtained for any 

https://github.com/manucordova/ProbAsn
https://github.com/manucordova/ProbAsn
https://shiftml.epfl.ch
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nucleus from the 2D representation of a molecule. The molecular 
fragment descriptor should thus not contain any information about 
conformation or molecular packing in the crystal structures. Among 
the topological atom-centered descriptors that fit these require-
ments (44–46), we chose to represent topological atomic environ-
ments by graphs where vertices represent atoms and edges represent 
covalent connectivities. The vertices were labeled by element, and 
the edges were kept unlabeled. Graphs were cut to a maximum 
depth w of 6, defined as the maximum shortest path between the 
central vertex (for which the chemical shift is predicted) and any 
other vertex in the path. Conversion of the 3D crystal structures 
to their corresponding graphs was performed by identifying atom 
pairs as covalently bonded when the distance between the atoms 
in the pair is less than 1.1 times the sum of the covalent radii of the 
atoms involved.

Database construction and search
A given topological atomic environment can be searched by identi-
fying which graphs in the database match the graph of the selected 
atomic environment. However, there is no known algorithm able to 
solve the graph isomorphism problem required for each database 
entry in polynomial time (47, 48). Thus, the search was simplified 
by using the Weisfeiler-Lehman hash (49) as a unique graph identi-
fier. If the number of instances of a given atomic environment iden-
tified in the database was deemed too small to produce statistically 
significant chemical shift distributions, then the atomic environment 
was searched again after reducing the graph depth. For this work, 
we chose a minimum number of instances of 10. Further details con-
cerning the database architecture and search can be found in Sup-
plementary Text.

Construction of probability distributions
We use a notation and a conceptual framework extending the Bayes-
ian selection of crystal structure prediction candidate structures com-
patible with measured shifts (10). From the set of chemical shifts and 
uncertainties {yk, k} predicted by ShiftML for the CSD structures 
that share the same graph Gi as the atom i in the molecule of inter-
est, we define the probability of observing a chemical shift y for that 
atom as proportional to the sum of Gaussian functions centered on 
each predicted shift yk and with a width k given by its prediction 
uncertainty

	​​ ​p​ i​​(y ) ∝ ​ ∑ 
k∈​G​ i​​

​​​ ​  1 ─ 
​√ 
_

 2 ​ ​​ k​​
 ​ exp​[​​− ​ 
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2​
 ​​ ]​​​​	 (1)

Similarly, we define the probability of observing a cross-peak 
(y(1), y(2)) for a pair of bonded atoms (i, j) in a molecule as propor-
tional to the sum of uncorrelated 2D Gaussian functions

	​​
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where ​{​y​k​ 
(1)​, ​​k​ 

(1)​}​and ​{​y​k​ 
(2)​, ​​k​ 

(2)​}​ are the sets of chemical shifts 
and predicted uncertainties computed for all the bonded atoms in 
the reference dataset that share the same graph Gij as the pair being 
considered.

Probabilistic assignment
Considering the vector of observed shifts y, the probability that one 
of its elements yj originates from atom i is obtained by evaluating 
Eq. 1 (or Eq. 2) for all elements in y

	​ p(​y​ j​​∣i) = ​ 
​p​ i​​(​y​ j​​) ─ 

​∑ k​ ​​ ​p​ i​​(​y​ k​​)
 ​​	 (3)

For a given assignment a (defined as the vector mapping atoms 
in the molecule to experimental shifts such that ai = j if atom i is 
assigned to shift j), the probability of observing a vector of chemical 
shifts y is given by

	​ p(y∣a) = ​∏ 
i
​ ​ ​p(​y​ ​a​ i​​​​∣i)​	 (4)

Applying Bayes theorem on Eq. 4 yields the probability of an 
assignment a given the observed vector of shifts y

	​ p(a∣y) =  ​ 
p(y∣a) p(a)    

  ─ p(y)  ​  =     ​  
p(y∣a) p(a)

  ───────────    
​∑ ​a ′ ​​ ​​ p(y∣​a ′ ​ ) p(​a ′ ​) ​​	 (5)

In Eq. 5, we assume that p(a) is a nonzero constant if the assign-
ment is valid (i.e., if all nuclei are assigned to only one chemical shift 
and if all observed shifts are assigned at least one nucleus) and zero 
otherwise. Whenever some of the assignments can be made according 
to experimental data or heuristic arguments, such prior information 
can be incorporated in the definition through p(a). By combining 
individual assignments, the complete set of possible global assign-
ments can be generated. Because of the combinatorial complexity of 
generating all possible global assignments, several procedures were 
implemented to reduce the global assignment generation cost while 
ensuring that the most probable assignments are generated, and 
these are described in Supplementary Text. Note that if the proba-
bility of any shift originating from a given nucleus is lower by a set 
threshold (typically a factor of 100) than the maximum probability for 
that nucleus, then it is discarded. This results in some nuclei being 
assigned unambiguously independently of the rest of the global as-
signment (e.g., shift “e” in Fig. 3).

Equation 5 assigns a distinct probability to each possible assign-
ment of the entries of the measured shifts vector y to all the environ-
ments. It is the correct probabilistic metric to compare two assignments 
but is hard to interpret. A more compact indicator is given by the 
marginal probability that atom i is assigned to shift j, which can be 
extracted from the set of generated assignments by considering only 
the vectors a containing that particular individual assignment. This 
is shown in Eq. 6 by the Kronecker delta aij, which selects the as-
signments for which ai = j

	​ p(​a​ i​​  =  j∣y) =   ​ 
​∑ a​ ​​ ​​ ​a​ i​​j​​ p(a∣y)   

  ─  
​∑ a​ ​​ p(a∣y)

  ​​	 (6)

For topologically equivalent nuclei, which have identical graphs 
and probability distributions, tuples of nuclei were assigned to tuples 
of experimental shifts (which can be partly or entirely identical).

Synthetic benchmark set
A set of 100 randomly selected crystal structures from the database 
were selected to benchmark the probabilistic assignment. The selection 
was restricted to crystals having between 10 and 20 unique carbon 
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atoms. The selected structures are listed in Supplementary Text. 
The ShiftML-predicted shifts associated to each nucleus were used as 
ground-truth assignment. The structure to assign was systematical-
ly excluded from the database search performed to construct statis-
tical distributions of chemical shifts. The synthetic benchmark set 
was separated into five sets containing 20 crystals each and 241, 260, 
212, 259, and 242 unique carbon atoms, respectively.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at https://science.org/doi/10.1126/
sciadv.abk2341

View/request a protocol for this paper from Bio-protocol.
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