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Abstract

Hepatitis C virus is a leading cause of human liver disease worldwide. Recent discovery of the JFH-1 isolate, capable of
infecting cell culture, opens new avenues for studying HCV replication. We describe the development of a high-throughput,
quantitative, genome-scale, mutational analysis system to study the HCV cis-elements and protein domains that are
essential for virus replication. An HCV library with 15-nucleotide random insertions was passaged in cell culture to examine
the effect of insertions at each genome location by insertion-specific fluorescent-PCR profiling. Of 2399 insertions identified
in 9517 nucleotides of the genome, 374, 111, and 1914 were tolerated, attenuating, and lethal, respectively, for virus
replication. Besides identifying novel functional domains, this approach confirmed other functional domains consistent with
previous studies. The results were validated by testing several individual mutant viruses. Furthermore, analysis of the 39 non-
translated variable region revealed a spacer role in virus replication, demonstrating the utility of this approach for functional
discovery. The high-resolution functional profiling of HCV domains lays the foundation for further mechanistic studies and
presents new therapeutic targets as well as topological information for designing vaccine candidates.
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Introduction

Hepatitis C virus (HCV) is a major human health concern with

an estimated 130 million people infected with HCV worldwide [1]

with resulting liver diseases including chronic hepatitis, cirrhosis,

and hepatocellular carcinoma [2,3]. Currently there is no effective

vaccine, and the available treatment options offer limited response

rates. HCV is classified in the family Flaviviridae and has a positive-

sense, single-stranded RNA genome of about 9.6 kilobases (kb) [4].

The genome is organized as 59NTR-C-E1-E2-p7-NS2-NS3-

NS4A-NS4B-NS5A-NS5B-39NTR, with non-translated regions

(NTR) flanking a protein-coding region. The latter encodes a

single polyprotein (,3000 amino acids) that is co- and post-

translationally cleaved by cellular and viral proteases into at least

ten mature structural and non-structural (NS) proteins [5,6,7].

A recent review highlights the functions of HCV NTRs and

proteins [8]. The 59NTR cis-elements are involved in viral RNA

translation and replication [9,10,11]. The core (C) and envelope

glycoproteins form the structural proteins of the virion. The core

nucleocapsid encapsidates the viral RNA genome [12,13]. The

ARF protein produced by a frame-shift translation of the core

region is non-essential for virus replication [14,15]. The envelope

glycoproteins, E1 and E2, facilitate the virus entry into host cells

through recognition of cellular receptors [16,17]. An ion-channel

forming peptide p7, and a cysteine protease NS2 play important

roles in virion morphogenesis [18,19,20]. NS- 3, 4A, 4B, 5A and

5B form the replicase complex involved in RNA genome

replication [21,22,23,24]. The 39NTR region is critical for

initiation of negative-strand genome replication and translation

enhancement [25,26,27]. To complete viral replication and

transmission, the HCV proteins and cis-elements interact with

various cellular factors, modulating signaling pathways and

immune responses [28,29,30,31].

The HCV sub-genomic replicon and chimpanzee infection

model have previously been used for studying HCV replication

[21,24,27]. Efficient replication of a genotype (GT) 2a HCV isolate

JFH-1 in cell culture [32,33,34] offers the possibility for functional

analysis of HCV proteins and NTRs. Despite these advances, the

role of many HCV protein and cis-element sub-domains during

infection remains unknown. Examining the function of viral factors

by generating and testing individual mutant viruses would be time-

consuming and labor-intensive for genome-scale studies. We have

developed and applied a high-throughput mutational analysis

approach to study the role of viral cis-acting elements and protein-

domains in HCV replication utilizing transposon mutagenesis.

Transposons have been used widely as a tool for studying the

function of bacterial, yeast and viral genes [35,36,37]. For example,

the Mu-transposon mediated 15-nucleotide (nt) insertion mutagen-

esis was used for mapping genomic regions crucial for propagation

of Potato virus A [38], the 59 end of human immunodeficiency virus
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type 1 [39], and pBC-SK plasmid [36]. These studies employed

urea-polyacrylamide gel-based foot-printing to identify the insertion

locations. We have developed a more rapid mutational analysis

platform by integrating Mu-mediated random insertional muta-

genesis and quantitative, high-throughput capillary electrophoresis

genetic profiling. Using this platform, we have obtained a high-

resolution functional profile of protein-domains and cis-acting

regulatory elements that are critical for JFH-1 HCV replication in

cell culture.

Results

Generation of a 15-nt insertion mutant JFH-1 plasmid
library

A library of JFH-1 HCV mutants containing 15-nt insertions was

generated by Mu-transposon insertion mutagenesis and subsequent

removal of the transposon fragment (Fig. 1A). This yielded

insertions of the 15-nt sequence 59-NNNNNTGCGGCCGCA-39

(N: duplicated 5 nucleotides from target DNA), coding for different

amino acid sequences depending on the insertional reading frame

(Fig. S1). The 15-nt insertion does not introduce a stop codon [38].

Insertion mutations were used for analyzing the structure-function

of the proteins [38,39,40]. Sequencing of random clones indicated

that 82% (27/33) of transposon insertions were widely distributed in

the JFH-1 genome and 18% (6/33) of the insertions were in vector

sequences.

Genetic selection and analysis method of mutant JFH-1
library

The in vitro transcribed JFH-1 library was used as a non-selected

RNA input pool for functional profiling analysis and for genetic

selection for growth in cell culture (Fig. 1). To identify HCV

protein domains and cis-acting elements critical for virus

replication, the mutant RNA library was passaged en masse in

Huh-7.5.1 cells. At 21 days post-transfection (dpt), most of the cells

showed cytopathic effects (CPE) as previously reported [34,41].

The kinetics of mutant library genome replication and viral titer

are shown in Fig. S2. The cDNA generated from the harvested

total RNA was used as a template for functional profiling PCR. A

total of thirteen overlapping HCV fragments (F1 to F13) were

PCR-amplified from the cDNA of the non-selected and cell

culture-selected mutant libraries (Fig. 1B and Table S1).

Subsequently, the purified PCR products were used as templates

for a second PCR using an insertion-specific fluorescent-labeled

primer and one of the forty-eight JFH-1 specific primers (Fig. 1C–

F and Table S2), and these fluorescent-labeled PCR products were

analyzed by capillary electrophoresis (Fig. 1G,H).

To ascertain that the complexity of the mutant library was

maintained during in vitro transcription and transfection, the JFH-1

plasmid library, the in vitro transcribed RNA library, and the total

cellular RNA harvested at 2, 4, 10, 16 and 21 days post-

transfection were subjected to functional profiling analysis.

Analysis of the p7-NS2 region showed that the complexity of the

library was maintained through in vitro transcription and during

the early phase of selection in Huh-7.5.1 cells (Fig. 2). At 10 dpt

many of the insertion mutants had been negatively selected, and

by 21 dpt only a limited number of clones had continued to

replicate. By comparison, all insertions at the 39NTR poly(U) tract

were negatively selected by 2 dpt (Fig. S3), confirming its critical

role in viral genome replication [25,26,27,42]. Thus, the

functional profiling system could be useful for monitoring the

replication kinetics of individual insertion mutants.

Functional profile of the HCV genome
In vitro genetic selection resulted in maintenance (neutral or

tolerated fitness), loss (lethal fitness), or reduction (attenuated

fitness) of individual insertion mutants over time. To define a

phenotype for each insertion mutant, the ratio of peak area

between selected (21 dpt) and non-selected pools was calculated.

The insertion resulting in absence, two fold reduction, or

maintenance was assigned a lethal, attenuated, or tolerated

phenotype, respectively. In the present study, the phenotype

attenuation indicates reduction in virus replication, not loss of

virulence. The final assembly containing the locations of insertion

sites and corresponding phenotypic annotations for 2399 inde-

pendent insertions across the entire HCV genome (nt 55 to 9571)

(Fig. 3) was obtained. For a high-resolution insertion profile map

see Fig. S4. The results showed that 79.8% (1914) of the insertions

were lethal, 4.6% (111) attenuating, and 15.6% (374) tolerated,

with respect to viral replication. The total number of insertions

and their effect on virus replication for each of the HCV regions

are shown in Table 1.

Whole genome profiling demonstrated distinct patterns for each

genetic region. Comparison of the genome-scale functional profile

with known HCV sequence variability revealed that the conserved

HCV proteins, including core, NS- 3, 4A, 4B, and 5A N-terminus,

had fewer tolerated insertions. The less-conserved regions,

including p7-NS2 junction and 5A C-terminus, had many

tolerated insertions. An exception was the envelope proteins (E1

and E2), which have highly variable amino acid sequences but

were intolerant for insertions.

Functional profile of 59NTR. 59NTR is a highly conserved

region of HCV. The 59NTR cis-elements are involved in viral

RNA replication and translation, consisting of four major stem-

loop (SL) structural domains: I, II, III, and IV (Fig. 4) [43]. SL III

contains six additional minor SL structures. The stem-loops II, III,

and IV constitute an internal ribosome entry site (IRES) which

mediates cap-independent initiation of RNA translation. The

59NTR is recognized by several cellular factors [28,29]. The SL II

domain consists of nucleotides 43–117. Majority of the 15-nt

insertions between nt 62–93 were either lethal or attenuating

(Fig. 4). Between nt 94–101, all the insertions were tolerated. Two

insertions at the pyrimidine tract-I (Py-I), the region that connects

Author Summary

Hepatitis C virus (HCV) is a major human health concern
that causes fatal liver diseases. Currently no vaccine is
available to prevent HCV infection. Though the HCV was
identified two decades ago, the virus has only recently
been successfully grown in cell culture conditions. The role
of HCV protein and regulatory element sub-domains
during virus growth is poorly understood. We have
developed a mutational analysis method to identify the
function of HCV sub-domains at a high resolution. A
collection of HCV mutants containing 15-nucleotide
random insertions was tested for growth in cell culture.
The precise location of the insertions and their effects on
virus growth were analyzed by capillary genotyping
technology and bioinformatics. Out of the total 2399
HCV mutants identified, 374 mutants grew normally, 111
mutants demonstrated reduced growth, and 1914 mutants
failed to grow in cell culture. This mutational analysis
method was validated by testing many individual mutant
viruses. The present study identified several HCV function-
al sub-domains required for virus growth, presenting novel
therapeutic targets. The HCV mutant viruses identified
with the property of reduced growth can be used for
designing vaccine candidates.

Functional Profiling of HCV

PLoS Pathogens | www.plospathogens.org 2 October 2008 | Volume 4 | Issue 10 | e1000182



SL II and III, were tolerated. All insertions in the SL III- a, c, d,

and e and the IIIf pseudoknot were lethal for virus replication,

which is consistent with their role in binding to the 40S ribosomal

subunit [43]. The eIF3 contact sites have been mapped to SL IIIb

and the junction of stems III- a, b, and c [43]. Most of the

insertions at the IIIb apical loop (nt 180–203) containing the

pyrimidine tract-II (Py-II) were tolerated for virus replication. The

nucleotide sequence of Py-I and II regions have been shown to be

non-essential for IRES-mediated translation [44]. Collier and

colleagues [45] reported that the SL IIIb internal loop is critical for

Figure 1. Schematic diagram depicting the various steps involved in Hepatitis C virus functional profiling. (A) The plasmid carrying the
JFH-1 HCV genome is subjected to in vitro mutagenesis by using the mini-Mu transposon, then selected in E. coli bacteria. The harvested mutant
plasmids are subjected to NotI restriction enzyme digestion to remove the transposon body, followed by ligation resulting in the generation of a 15-
nt insertion plasmid library. Subsequently, this mutant plasmid library is in vitro transcribed and used as a non-selected input pool for functional
profiling analysis. The in vitro transcribed RNA library is delivered into Huh-7.5.1 cells for genetic selection. The total RNA harvested from the
transfected cells (selected pool) as well as non-selected pool RNA are subjected to functional profiling analysis. (B) Followed by selection, the mutant
HCV genome from the non-selected input pool and the selected pool are reverse-transcribed and 13 overlapping fragments (F1 to F13) are PCR
amplified. (C, D) The purified PCR products from non-selected and selected pools are used as templates for a second PCR using one of the HCV
fragment-specific primers (blue arrow) and a fluorescently labeled insertion-specific primer (red arrow with green star). (E, F) The fluorescently-labeled
PCR products from input and selected pools are analyzed by a 96-capillary genotyper. The processed data are either visualized by electropherograms
(G, H) or exported as a data file. The phenotype for each insertion is calculated by comparing the corresponding peak areas of selected and non-
selected pools.
doi:10.1371/journal.ppat.1000182.g001
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IRES activity than the apical loop which corroborates our

mutational profile. Many of the insertions were tolerated at

domain IV where the translation start codon, AUG, is located. An

insertion at nt 338 was lethal for virus replication. A previous study

has shown that the stability of the domain IV stem loop is

negatively correlated to the initiation of translation [46]. Analysis

of the predicted domain IV secondary structures with the 15-nt

insertion revealed that the tolerated insertions maintain an open

destabilized structure similar to that of wild-type domain IV,

whereas the lethal insertion forms a stable hairpin structure (Fig.

S5). Thus, the tolerated insertions at domain IV could allow

translation-initiation, resulting in virus replication.

Functional profile of Core. The structural protein, core,

encapsidates the genomic RNA in the virus particle. The core

region functional profiling showed that the insertions at nt 349–

356 (3–6 aa), which is also a part of the IRES, were tolerated. Most

of the insertions (between aa 23–107) at the RNA binding basic

domain were lethal. Insertions at the hydrophobic domain

between aa 133–167 were mostly lethal and attenuating.

Insertions found between aa 176–191 of the C-terminal

transmembrane region were tolerated. The role of core protein

in infectious virus particle production has been studied by alanine

scanning mutagenesis [13]. Most of our data is consistent with the

findings of that study, including the tolerated mutations in the

transmembrane region. The reported study has shown that alanine

substitutions of stretches of four residues at aa 173–176, 177–180

were lethal for infectious particle production. We have found,

however, that the insertions at aa 176, 177, and 180 were

tolerated. This finding could be explained by the fact that the

insertion results in duplication of amino acids at the site of Mu-

integration that preserves the original amino acid without deletion

or substitution (Fig. S1).

Functional profiles of E1 and E2 proteins. The envelope

glycoproteins, E1 and E2, facilitate virus entry into host cells

Figure 2. Electropherogram depicting the location of 15-nt insertions in p7-NS2 region and the mutant population replication
dynamics during selection. Each peak (X-axis) represents the location of a 15-nt insertion in the p7-NS2 region, and the fluorescent signal
intensity (Y-axis) indicates the abundance of each 15-nt insertion mutant. The number at the top of the figure corresponds to the JFH-1 genome
position of the p7-NS2 region. The electropherogram panels show the insertion profile of the mutant plasmid library (DNA input), in vitro transcribed
RNA library (RNA input), and Huh-7.5.1 cell culture selected mutant viral library [selection 2, 4, 10, 16, and 21 days post-transfection (dpt)]. The
complexity of the library is similar in DNA input, RNA input, 2 dpt and 4 dpt. Most of the 15-nt insertion mutants have been negatively selected at 10
dpt. Note that the HCV mutants containing 15-nt insertions around p7-NS2 junctions have shown strong positive selection. Asterisks indicate an
artifact peak generated during data processing. To better visualize the short peaks, the fluorescent signal intensity scale was set at 2000; hence some
of the tall peaks are shown out of scale.
doi:10.1371/journal.ppat.1000182.g002

Functional Profiling of HCV

PLoS Pathogens | www.plospathogens.org 4 October 2008 | Volume 4 | Issue 10 | e1000182



through recognition of cellular receptors [16,17,47]. The 15-nt

insertions in the E1 and E2 regions were mostly deleterious for

virus replication. The percentage of lethal insertions at the E1 and

E2 regions were 94.5 and 88.2, respectively (Table 1). The E1 N-

terminal residues 244–245 and the C-terminal residues 370 and

373–374 had tolerated the insertions. Insertions at aa 481–482,

503–504, and 598, and 622–623 of E2 region were tolerated as

well. It has been shown that the recognition of cellular receptors is

dependent on the conformation of the envelope glycoproteins

[16]. Thus the insertion could possibly affect the host receptor

protein interactions, conformation of glycoproteins, and innate-

immune evasion function, resulting in a lethal phenotype.

Functional profiles of p7 and NS2. The p7 is an ion

channel-forming transmembrane protein. It has two

Figure 3. Genome scale functional profile of HCV. Graphical representation of the location and phenotype of 15-nt insertions in the HCV
genome are shown. For each 15-nt insertion mutant, the ratio of peak area was calculated between selected and non-selected pools and plotted in a
bar graph. The lethal phenotype (critical region, red bar) is an absence of an insertion mutant in the selected population. The attenuated phenotype
(less critical region, blue bar) is an over two-fold reduction in replication. The tolerated phenotype (dispensable region, green bar) is replication
competent. (A) The final assembly shows the fold change (log10) and locations of insertions in the HCV genome. A cartoon of the HCV regions is
aligned at the top of graph to show the boundary of each region. The numbering corresponds to the nucleotide (nt) position of JFH-1 genome. (B)
The location and phenotype of insertions at the NS5A region are shown. A schematic diagram of the NS5A domains is aligned with the functional
profile graph. Note that many insertions at domain 3 are tolerated. (C) The crystal structure of NS5B [69] (PDB accession code 1C2P), RNA dependent
RNA polymerase, displays the functional profiling phenotypes. The front and back views of ribbon and surface diagrams of the NS5B monomer is
shown. The fingers, thumb, and palm sub-domains are indicated. The amino acid residues are color coded for insertion phenotypes: red (lethal), blue
(attenuating), green (tolerated), and grey (no insertion). Insertions in the sub-domains forming the catalytic active site were lethal (front view) for
virus replication, whereas many insertions on the outer surface (back view) were tolerated. The crystal structure was analyzed using PyMOL Viewer.
aa, amino acid.
doi:10.1371/journal.ppat.1000182.g003
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transmembrane domains (TMD) with a single loop facing the

cytosol and its N- and C-terminal tails oriented towards the

endoplasmic reticulum lumen [48]. The insertions at the junction

of the N-terminal tail and the first TMD (aa 760–765) were

tolerated for virus replication. Insertions at the cytosol loop region

aa 781 and aa 788–789 were tolerated. Four insertions found

between aa 782–787 of the loop region were lethal. Most of the

insertions at TMD regions were lethal. Many insertions at the p7-

NS2 cleavage site, aa 809–818 (nt 2767–2794), were tolerated or

positively selected (Figs. 2,3A). 91% of the insertions at NS2 were

lethal for virus replication, underscoring the importance of NS2 in

the HCV life cycle. The NS2 and NS3 crystal structures [20,49]

with the insertion profiles are shown in Fig. S6.

Functional profiles of NS3 and NS4A. The NS3 is a critical

component of the RNA replicatory complex. NS3 is comprised of

an N-terminal serine protease domain and a C-terminal RNA

helicase/nucleoside triphosphatase domain [6,50]. NS3 plays an

important role in immune evasion [30,31]. The NS3 protease

domain forms a complex with NS4A that is essential for the

processing of NS3/4A, NS4A/4B, and NS4B/5A cleavage sites

[7,51]. NS3 is a highly conserved region of HCV and not

surprisingly, most of the insertions were lethal for virus replication.

Insertions at both the N-terminal (aa 1031–1035) and the C-

terminal (aa 1658–1660) ends were tolerated. Insertions at the

protease domain aa 1126–1129 (Pro-Cys-Lys-Cys), a sub-domain

containing cysteine residues which coordinates a zinc atom, were

tolerated for virus replication (Fig. S6). Insertions at helicase

domain aa 1304–1306 and aa 1312 were tolerated. In NS4A, one

insertion at the membrane anchoring domain (aa 1675), and one

at the C-terminal acidic domain (aa 1713) were tolerated. The

remaining insertions were deleterious for virus replication.

Functional profile of NS4B. NS4B, a transmembrane

protein, is essential for viral genome replication [21,24,52]. An

amphipathic helix (AH) region present at the N-terminal is critical

for viral RNA replication [53]. Consistent with that study, we

found that insertions at the AH region (aa 1730–1745) were lethal

for virus replication. It has been reported that the N- and C-

terminal less-conserved domains were the major determinants for

efficient RNA replication [54]. The insertions at the determinant

N-terminal (aa 1754–1760) and C-terminal (aa 1974–1976)

regions were tolerated. Insertions at the ends of a predicted

cytoplasmic loop region [55] aa 1847–1848 and aa 1856–1857

were tolerated, however, insertions in the mid-loop aa 1849–1854

were deleterious. Insertions in all four predicted transmembrane

domains were lethal. Many of the insertions at the cleavage sites of

NS4B/5A and NS5A/5B were tolerated. The predicted amino

acid sequences of the insertion sites revealed that the insertion did

not disrupt the critical P1-P19 cleavage residues (Fig. S7).

Functional profile of NS5A. The NS5A is essential for viral

genome replication; however its precise role in the virus life cycle is

unknown. NS5A is a membrane-bound, phosphorylated, zinc-

binding metalloprotein [56,57,58]. It modulates the cellular

environment by direct or indirect association with host factors

[28,59,60]. Many cell culture adaptive mutations have been

mapped to NS5A [24,41]. NS5A is predicted to have three

domains [61]. Our findings showed that 82.9% of the insertions at

NS5A region-1, 63.4% at region-2, and 39.6% at region-3 were

lethal (Fig. 3B and Table 1). Many insertions in region- 2 and 3

had an attenuating phenotype. Insertions at aa 2014–2015 (Cys-

residue binding to zinc) were tolerated and the predicted insertion

sequence showed that the insertion did not affect the Cys residue

involved in zinc binding. The NS5A crystal structure [56] with the

mutational profile is shown in Fig. S6. Insertions in the region aa

2209–2254, corresponding to a 47 aa deletion, encompassing the

interferon sensitivity determining region [60], that was tolerated

for sub-genomic RNA replication [24], had severely impaired

virus replication fitness. All but one of 22 insertions between aa

2282–2320 of region-2 were deleterious for virus replication,

which further supports the essential role of these residues in sub-

genomic HCV RNA replication [62]. Our profiling analysis

showed that the NS5A region-3 was the most tolerated (48%)

region for insertion. Previous studies using sub-genomic replicons

have shown that the NS5A C-terminal had tolerated heterologous

insertions, including green fluorescent protein (GFP) and

transposons [58,63,64], however a sub-genomic mutant with a

larger insert (Renilla luciferase gene) had a defect in viral RNA

Table 1. The percentage and number of insertions in various regions of HCV.

Region Genome Location Size (nucleotides)
Total Insertions
in a Region Tolerated Attenuated Lethal

59NTR 55–340 286 93 (3.9%) 37 (39.8%) 8 (8.6%) 48 (51.6%)

Core 341–913 573 81 (3.4%) 24 (29.6%) 8 (9.9%) 49 (60.6%)

E1 914–1489 576 109 (4.5%) 6 (5.5%) 0 (0.0%) 103 (94.5%)

E2 1490–2590 1101 272 (11.3%) 24 (8.8%) 8 (3.0%) 240 (88.2%)

p7 2591–2779 189 64 (2.7%) 18 (28.1%) 2 (3.1%) 44 (68.8%)

NS2 2780–3430 651 199 (8.3%) 15 (7.5%) 3 (1.5%) 181 (91.0%)

NS3 3431–5323 1893 467 (19.5%) 39 (8.4%) 5 (1.0%) 423 (90.6%)

NS4A 5324–5485 162 26 (1.0%) 3 (11.5%) 1 (3.9%) 22 (84.6%)

NS4B 5486–6268 783 177 (7.4%) 23 (13.0%) 0 (0.0%) 154 (87.0%)

5A Region 1 6269–7016 748 170 (7.1%) 21 (12.4%) 8 (4.7%) 141 (82.9%)

5A Region 2 7017–7318 302 82 (3.4%) 12 (14.6%) 18 (21.0%) 52 (63.4%)

5A Region 3 7319–7666 348 106 (4.4%) 48 (45.3%) 16 (15.1%) 42 (39.6%)

NS5B 7667–9442 1776 467 (19.5%) 92 (19.7%) 22 (4.7%) 353 (75.6%)

39NTR 9443–9571 129 86 (3.6%) 12 (13.95%) 12 (13.95%) 62 (72.1%)

Total 55–9571 9517 2399 (100.0%) 374 (15.6%) 111 (4.6%) 1914 (79.8%)

doi:10.1371/journal.ppat.1000182.t001
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replication [58]. A recent report showed that the GFP insertion at

the NS5A C-terminal resulted in over 100-fold reduction in

infectious virus production, but had no effect on viral RNA

replication [65]. It has been shown that the C-terminal serine

residue (aa 2433) is critical for infectious virus production [66]. We

have found that insertions between aa 2429–2437 were lethal for

virus replication. Through characterizing mutant viruses having

serial deletions of domain III, a report has shown that the NS5A

domain 3 is involved in the assembly of infectious viruses [67].

These mutant viruses exhibited phenotypes ranging from defective

Figure 4. Functional Profiles of the JFH-1 HCV 59NTR cis-elements. The predicted secondary structures of 59NTR are shown. The numbers
correspond to the JFH-1 genome sequence. The locations of 15-nt insertions are indicated as filled circles. The colors of the filled circles represent the
phenotypes: lethal (red), attenuating (blue), and tolerated (green). 59NTR stem loop domains (I, II, III and IV) are shown. The loop region of IIIb and
stem loop domain IV had many tolerated insertions. The translation initiation codon AUG is highlighted.
doi:10.1371/journal.ppat.1000182.g004
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to normal growth properties. In addition to tolerated insertions, a

total of 39.6% of the insertions at region-3 resulted in a lethal

phenotype, suggesting that this region plays a critical role in viral

replication fitness.

Functional profiles of NS5B and cis-element

5BSL3. NS5B is an RNA-dependent RNA polymerase that

consists of fingers, palm, and thumb domains involving polymerase

activity, and C-terminal regulatory and membrane-anchoring

domains [68,69,70]. Analysis of functional profiles incorporated in

the crystal structure of NS5B [69] showed that all of the insertions

in the sub-domains forming the catalytic site were lethal, whereas

several insertions on the outer surface were tolerated (Fig. 3C).

75.6% of insertions in NS5B had a deleterious effect and 19.7%

insertions had no effect on virus replication. Insertions at a loop

region (aa 2589–2592) that interconnects fingers and thumb

domains, were tolerated. The palm domain loop region aa 2793–

2795 and 2797–2798 tolerated the insertions. Tolerated insertions

were found at aa 2814–2816 of the junction of the palm-thumb

domains. Insertions at the thumb domain helix (aa 2873–2881)

were well tolerated for virus replication. Insertions at the C-

terminal transmembrane region aa 3012–3016 (nt 9368–9386)

were tolerated, while insertions at aa 3027–3031(nt 9421–9433)

were deleterious (Figs. S3,S4). The NS5B coding region contains a

cis-acting replication element (CRE) predicted to have a cruciform

stem loop structure, 5BSL3 [71,72] (Fig. 5). The formation of a

kissing-loop interaction between loop regions of 5BSL3.2 and

39NTR SL2 is critical for viral RNA replication [26,72]. Our

mutational profile showed that the insertions at 5BSL3.1 (nt 9291–

9357) and 5BSL3.2 were lethal for virus replication. All but one of

14 insertions at nt 9368–9386, which encompass a bulge region

between 5BSL3.2 and 5BSL 3.3, were tolerated. The insertions at

this region could affect the function of both the NS5B protein and

the 5BSL3 cis-element.

Functional profile of 39NTR cis-elements. 39 NTR

consists of a proximal variable region (VR), poly(U/UC) tract of

varying length, and a conserved 39X tail [27] (Fig. 5). The 39NTR

Figure 5. Functional Profiles of the JFH-1 HCV 5BSL3 CRE and 39NTR cis-elements. The stem loop structures are shown. The colors of the
filled circles represent the phenotypes: lethal (red), attenuating (blue), and tolerated (green). Insertions at 5BSL- 3.1 and 3.2 were lethal for virus
replication. Many insertions at the bulge region between CRE 5BSL- 3.2 and 3.3 were tolerated. The kissing-loop interaction between CRE 5BSL3.2,
and 39SL2 is depicted with dotted lines. The 39NTR predicted variable region stem loop structures (VSL1 and VSL2), poly (U/UC) tract, and 39X tail stem
loop structures are shown. Many insertions at VSL2 were tolerated and attenuating. The stop codon UAG is highlighted. All the insertions at poly-U
tract were lethal.
doi:10.1371/journal.ppat.1000182.g005
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region is involved in initiation of negative-strand genome

replication and enhancement of translation [25,26,27]. Several

cellular and viral proteins interact with 39NTR [28,73]. The

functional profile of the variable region and poly (U/UC) tract was

obtained. Among a total of 27 insertions at the 39NTR variable

region cis-element, 11, 11, and 5 of the insertions had tolerated,

attenuating, and lethal phenotypes, respectively. Four of the 5

insertions exhibiting lethal phenotypes at VR were found adjacent

to the poly(U/UC) tract. All of the insertions at the poly(U/UC)

tract were lethal for virus replication (Fig. S3), which is consistent

with a recent report [26]. Freibe and colleagues [25,72] reported

that the insertion of CRE 5BSL3 at VR did not affect the

replication of a sub-genomic replicon; however, deletion of VR

region impaired genome replication. The poly(U/UC) tract has

been reported critical for viral replication [25,26,27,42,71]. The

insertions at 39NTR could possibly affect the binding of cellular

factors involved in RNA genome replication leading to attenuating

or lethal phenotype.

Validating the phenotypes identified by the functional
profiling screen

We focused on the NS3, NS5A, NS5B, and 39NTR regions for

validating the 15-nt insertion phenotypes because of their critical

role in viral genome replication. The nucleotide/amino acid

sequences of the mutations that were introduced in the HCV

genome are shown in Fig. 6A. The functional profiling analysis

showed that the 15-nt insertions at NS3-4635 and NS3-4944

(helicase domain) and NS5B-8865 (thumb domain) resulted in a

lethal phenotype. The 15-nt insertions at NS5A region-2 (nt 7135)

and region-3 (nt 7376, nt 7622) and 39NTR (nt 9463) were

tolerated for virus replication (Fig. S4). The effect of these

mutations on virus replication was validated with individual

mutant viruses based on a monocistronic Renilla luciferase HCV

reporter virus, NRLFC (Fig. S8). The mutant reporter viruses

defective in RNA polymerase activity (pol-null) and envelope (env-

null) were included as controls for RNA genome replication and

infectious virus production. The genome replication and the

supernatant infectivity of mutant viruses were assessed by

measuring the Renilla luciferase activity of the transfected and

infected Huh-7.5.1 cells at the indicated time points, respectively

(Fig. 6 B,C). The core and NS3 antigen expression of transfected

cells was tested at 96 hpt (Fig. 6D). The mutant viruses

demonstrated a consistent phenotype with that of the genome-

scale functional profiling analysis, confirming the usefulness of this

system. Similar results were also obtained with JFH-1 based

mutants (data not shown). Our study using JFH-1 mutant viruses

containing alanine-substitution of core C-terminal transmembrane

domain showed that several residues were dispensable for

infectious virus production, further validating our functional

profiling system (RR and VA unpublished observation). As this

experiment was completed, an independent study reported similar

findings [13].

Figure 6. Validating the HCV functional profiling phenotypes by individual mutant viruses. (A) Nucleotide and amino acid sequence
information for the 15-nt insertions engineered in the individual mutant NRLFC reporter viruses is shown. The inserted nucleotide/amino acid
sequences are shown in bold face. The genomic position of nucleotide and amino acid residues are indicated. (B) Analysis of viral genome replication
of mutant viruses. 10 mg of in vitro transcribed genomic RNA of wild-type NRLFC reporter virus and the mutant reporter viruses were individually
introduced into Huh-7.5.1 cells by electroporation. The mutant reporter viruses lacking envelope (env-null) and polymerase activity (pol-null) are
included as controls. The transfected cells were lysed at indicated time points using Promega passive lysis buffer, and the levels of Renilla luciferase
were quantified. The experiment was done in triplicate and the mean values with standard deviation of Renilla luciferase values (RLV) are presented as
a bar graph in log10 scale. (C) Measuring the production of infectious viral particles by mutant viruses. The cell-free supernatants harvested at 48 and
96 hours post-transfection (hpt) were inoculated onto naı̈ve Huh-7.5.1 cells. At 48 hpt the cells were lysed and the Renilla luciferase activities were
assayed. The mean RLV with standard deviations are shown in the graph. The replication deficient mutants show only background level of luciferase
activity. (D) The expression of HCV non-structural and structural proteins. The protein lysates obtained at 96 hpt were subjected to western blotting.
The HCV core and NS3 antigens were detected by primary mouse monoclonal antibodies and secondary goat-anti mouse IgG conjugated with HRP.
b-actin was included as a loading control.
doi:10.1371/journal.ppat.1000182.g006
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Role of 39NTR variable region for viral replication
The functional profiling of the 39NTR revealed that an equal

number of insertions at the VR exhibited either tolerated or

attenuated phenotypes. An earlier study in chimpanzees has

shown that a mutant virus lacking 24 nucleotides at the 39NTR

VR is replication-competent in vivo [27]. Subsequent studies

showed that a sub-genomic replicon lacking partial or complete

VR was viable, but genome replication was impaired significantly

[25,42]. We have found many of the insertions at the 39NTR VR

resulted in attenuation of virus replication. Furthermore, based on

the kinetics of disappearance of viral mutants having altered

poly(U/UC) and variable regions, we hypothesized that the

39NTR plays a critical role in infectious particle production. To

test this hypothesis we have constructed mutant reporter viruses

having deletions of 14 nucleotides [DVR14 (nt 9457–9470)] or 28

nucleotides [DVR28 (nt 9443–9470)] or substitution of the VR,

which encompasses a seven-nucleotide conserved sequence

(Fig. 7A). The substitution mutants behaved like parental NRLFC

reporter virus, while the deletion mutants had impaired RNA

genome replication and viral particle production (Fig. 7B–D).

Because the NRLFC reporter virus had a reduced infectivity

compared to that of parental J6/JFH-C virus (Fig. S8), we tested

the VR deletion mutants with J6/JFH-C background (Fig. 7E–G).

The deletion of 14 nucleotides at VR resulted in a significant

reduction in viral replication and infectious particle production.

Although the J6/JFH-DVR28 virus had a lower level of genome

replication and core antigen expression (Fig. 7F,G), there was no

detectable amount of infectious virus in the supernatant.

Furthermore, the wild-type virus transfected cells underwent

growth arrest and dead cells/cell debris were detected in the

culture medium indicating CPE. The cell growth arrest and CPE

were not observed in J6/JFH-DVR28 and J6/JFH-DVR14

mutant genome transfected cells. These results suggest that the

39NTR VR mediated-spacing is important for efficient viral

replication and infectious virus production. Taken altogether, the

functional profiling system effectively identified viral functional

domains throughout the HCV genome.

Discussion

We have described a high-throughput, quantitative mutational

analysis system to identify HCV protein domains and cis-acting

elements that are essential or non-essential for virus replication in

cell culture. We took advantage of advances in DNA analyzing

technology to obtain the whole genome functional profile of HCV.

We have characterized a library of mutants with 2399 random

insertions between nt 55 and 9571 of HCV genome. Approxi-

mately 80% (1914), 4.6% (111), and 15.6% (374) of the insertions

had lethal, attenuating, and tolerated phenotypes, respectively.

Most of our data is consistent with previous studies using

individual mutants, which validates our approach [8,13,25,26,-

27,42,43,46,54,62]. The phenotypes identified through transpo-

son-insertion and conventional site-specific (deletion and substitu-

tion) mutagenesis could differ in some instances due to the nature

of genetic changes.

Among other members of Flaviviridae, while deletion of the

39NTR variable region of dengue virus resulted in severe

attenuation of virus growth [74], there was no effect of such

deletion on tick-borne encephalitis virus replication [75]. We have

dissected the role of 39NTR VR during virus replication by

insertion mutagenesis, deletions, and substitutions. Deletion of VR

resulted in reduction in viral genome replication and infectious

viral particle production. Based on the substitution study at the

39NTR VR, the stem loop structure, if present, is not essential for

genome replication and virion morphogenesis and release. A

previous study has shown that the conserved seven nucleotides at

the VR are dispensable for RNA replication [29]. We found that

these conserved nucleotides do not have a direct role in both viral

RNA genome replication and infectious virion production in cell

culture. On one hand, the deletion of the 39NTR VR results in the

reduction of genome replication; on the other hand, replacement

of the deleted 39NTR VR region with heterologous polynucleo-

tides results in restoration of genome replication to that of wild-

type virus, indicating that irrespective of nucleotide sequence, the

spacing between the region up- and downstream of 39NTR VR

region is important for efficient RNA replication. The VR might

have a role in efficient genome packaging or binding of RNA

replication machineries onto the 39NTR during virus replication

in the host cell.

We have identified several novel regions in 59NTR, p7, NS3,

NS4B, NS5A, NS5B, and 39NTR that tolerate the insertions for

virus replication in cell culture. These domains, however, could

play important roles in in vivo infection, including immune evasion.

Defining regions critical and less-critical for viral replication at the

genome scale will facilitate the rational design of vaccine

candidates. The HCV regions with attenuating insertions could

be further characterized by deletion mapping. Attenuating

deletions along with mutations that inactivate immune evasion

domains can be combined into developing a live virus vaccine that

is attenuated and non-recombinogenic.

In order to complete the viral lifecycle, the virus hijacks and/or

counteracts cellular functions, including signaling pathways, cell

cycle regulations, and innate and adaptive immune responses. Our

approach can be used to define such interactions. For example,

comparing mutational profiles of HCV mutant libraries selected in

cells that are deficient in an innate immune factor would facilitate

identifying viral determinant(s) that counteract or modulate the

host response pathway. The in vivo role of tolerated insertions could

be dissected by passaging and profiling the HCV mutant library in

the human liver cell-grafted mouse model or a primate model.

Moreover, modeling the HCV protein structures based on

mutational profiles could be useful to elucidate the structure-

function relationship of individual HCV proteins. These future

investigations would shed light on the mechanism of HCV

replication. Furthermore, the high-throughput mutational analysis

platform would be a useful tool for the functional genomics study

of other RNA and DNA viruses.

Materials and Methods

Cells
The Huh-7.5.1 cell line (a kind gift from Dr. Francis Chisari,

The Scripps Research Institute, La Jolla) was cultured in complete

DMEM containing 10% fetal bovine serum, 10 mM non-essential

amino acids (Invitrogen, Carlsbad, USA), 10 mM Hepes,

penicillin (100 units/ml), streptomycin (100 mg/ml), and 2 mM

L-glutamine at 37uC with 5% CO2.

Virus and Plasmid Constructs
The plasmid containing the complete genome of a HCV GT2a

strain JFH-1 (kindly provided by Dr. Takaji Wakita, National

Institute of Infectious Diseases, Japan), was used for construction

of recombinant viruses. An intra-genotype chimeric virus, pJ6/

JFH-C, comprising 59NTR, structural regions and part of non-

structural regions (p7 and partial NS2) of the J6CF strain (NCBI

accession no. AF177036) and non-structural regions of JFH-1

strain was generated. The J6CF genomic region, nt 1 to 2878, was

synthesized by PCR based assembly of oligonucleotides (Invitro-
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Figure 7. Analysis of 39NTR Variable Region in HCV replication. (A) Nucleotide sequence of JFH-1 39NTR variable region and the mutations
engineered in the individual mutant viruses are depicted. The genome position of the nucleotides is indicated. The sequence that is conserved across
all the genotypes is underlined. The deleted polynucleotide regions are shown in dotted lines. The substituted heterologous polynucleotides are in
italics. 15-nt insertion sequence is boxed. Due to space limitation, only a partial sequence is shown for 39NTR-9463 mutant. (B) Analysis of viral
genome replication of mutant reporter viruses. The mean Renilla luciferase values (RLV) with standard deviations are shown in the graph (log10 scale).
(C) Measuring the production of infectious viral particles by mutant reporter viruses. The mutants deficient in production of infectious particles show
only a background level of luciferase activity. (D) Western blotting analysis of viral proteins, NS3 and core, expression. (E) Comparison of J6/JFH-C
mutant viral infectivity. The virus titer (ffu/ml) of cell-free supernatant collected at 48 and 96 hpt of J6/JFH-C based mutants’ transfected cell culture
was measured by infecting naı̈ve Huh-7.5.1 cells. Mean values and standard deviations are shown in the graph. (F) Comparison of J6/JFH-C mutant
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gen). The T7 promoter sequence (59-TAATACGACTCACTA-

TAG-39) and nt 2879 to 2967 of the JFH-1 isolate was engineered

at the 59 and 39 ends of the J6CF 1-2878 fragment, respectively.

The final assembled PCR product (T7-J6CF/JFH) was cloned into

pZero-blunt vector (Invitrogen) and sequence verified. The EcoRI-

NotI fragment (2.9 kb) of the pJFH-1 was swapped with the

assembled T7-J6CF/JFH fragment to obtain pJ6/JFH-C. A

monocistronic chimeric reporter virus, pNRLFC, which was based

on pJ6/JFH-C parental virus, was constructed. A plasmid

containing a reporter cassette, T7-59NTR (388 nucleotides)-Renilla

luciferase gene-F2A seqeuce-Core-E1, was constructed. The F2A

sequence introduced was 59-GTGAAACAGACTTTGAATTTT-

GACCTTCTCAAGTTGGCCGGAGACGTCGAGTCCAACC-

CTGGGCCC -39. The EcoRI-BsiWI fragment containing the

reporter cassete was subcloned into pJ6/JFH-C to construct

pNRLFC. To construct the envelope-null mutant virus, an in-

frame deletion of nt 1040–2215 was engineered in the pJ6/JFH-C

genome. This deletion removed most of the E1 and E2 coding

regions. An identical E1 and E2 deletion mutant reporter virus

pNRLFC was also constructed. An RNA polymerase-null virus

with pJ6/JFH-C or pNRLFC background was constructed by

mutating the catalytic residues GDD to AAG amino acid residues.

The NotI restriction enzyme site present in JFH1 genome at nt

2955 was abolished by PCR-mediated introduction of silent point

mutations (CGGC-.TGGT). These point mutations did not

affect the virus infectivity (data not shown). This plasmid was

subjected to in vitro Mu-transposon mediated mutagenesis (MGS

kit, Finnzymes). The location of transposon insertion in the JFH-1

genome was identified by sequencing using a transposon-specific

primer (59-CAGAGATTTTGAGACACAACGT-39). The plas-

mids having a transposon insertion at NS3-4635, NS3-4937,

NS5B-8865, NS5A-7622, and 39NTR-9463 were included for NotI

restriction digestion to remove the transposon fragment, resulting

in only 15-nt remaining at the insertion site. PCR-mediated site-

specific mutagenesis was employed to introduce several mutations

into the viral genome. The mutant JFH-1 plasmids containing a

15-nt insertion at pJFH-1 NS5A regions, NS5A-7135 (59-

CTTGATGCGGCCGCA-39) and NS5A-7376 (59-AACU-

GUGCGGCCGCA-39) were constructed. The pJFH-1 mutant

plasmid with substitution of 7 nucleotides (nt 9460–9467) or 28

nucleotides (nt 9443–9470) at 39NTR were constructed. The pJ6/

JFH-C based mutant plasmids having deletion of 14 nucleotides

[(nt 9457–9470) pJ6/JFH-DVR14] or 28 nucleotides [(nt 9443–

9470) pJ6/JFH-DVR28] at 39NTR were constructed. To

construct reporter mutant viruses, the EcoRI 2AvrII fragment of

the pJFH-1 and pJ6/JFH-C based mutant plasmids was replaced

with that of the reporter virus pNRLFC. The sequence

information of the primers used for the construction of mutant

viruses will be available upon request.

In vitro Transcription and RNA Transfection
The viral plasmids linearized by XbaI restriction enzyme and

treated with mung bean nuclease (New England Biolabs, Beverly,

USA) were subjected to in vitro transcription using T7 Ribomax

Express Large Scale RNA Production System according to the

manufacturer’s instructions (Promega Corporation, Madison,

USA). A total of 16 mg of the pJFH-1 insertion library DNA was

used for in vitro transcription. The DNase-treated RNA were

purified and stored at 280uC in aliquots. The in vitro transcribed

RNAs were electroporated into Huh-7.5.1 cells. Briefly, the Huh-

7.5.1 cells were trypsinized and washed twice with ice cold Opti-

MEM transfection media (Invitrogen) and resuspended in Opti-

MEM at 16107 cells per ml. 10 mg of in vitro transcribed RNA was

mixed with 400 ml of cells in 0.4 cm electroporation cuvettes.

Electroporation was conducted by using a BioRad elecroporator

with the settings of 270 V, 100 ohms, and 960 mF. Subsequently,

the cells were resuspended in 40 ml of complete DMEM and

plated in T-75 flasks and 48-well plates. At 8 hpt, media

containing dead cell debris in the culture flasks and plates were

replaced with fresh complete DMEM.

Generation of 15-nt Insertion JFH-1 Plasmid Library
The plasmid pJFH-1lacking NotI site, was subjected to in vitro

Mu-transposon mediated mutagenesis (MGS kit, Finnzymes). A

total of 4.76105 individual bacterial colonies were obtained and

the mutant plasmids were isolated from the pooled bacterial

colonies. To remove the transposon DNA fragment, 5 mg of the

pooled mutant plasmids were subjected to NotI digestion, self-

ligation, and selection in bacteria. This resulted in a library of

mutants having a 15-nt sequence, 59-NNNNNTGCGGCCGCA-

39 (N: duplicated 5 nucleotides from target DNA), inserted

randomly in the pJFH-1 plasmid.

Genetic Selection of Mutant JFH-1 Library in cell culture
A total of 16 mg of the pJFH-1 library DNA was used for in vitro

transcription. 120 mg of DNase-treated RNA was delivered into

4.86107 Huh-7.5.1 cells by electroporation. The cells were plated

in twelve T-150 flasks and were split into forty T-150 flasks at 1:3

or 1:4 ratios on 4, 7, 10, 13, and 16 dpt. During each split, ,one

third of the pooled cells was saved for RNA isolation. The selection

was terminated at 21 dpt, when many of the cells were started

showing CPE [34,41]. Total RNA was isolated from the cells using

Tri-reagent (Molecular Research Center Inc. Cincinnati, OH).

The DNase-treated and -purified RNA was used for functional

profiling analysis.

Functional Profiling Analysis of the HCV genome
A total of 65 mg of RNA from each of the non-selected and cell

culture selected JFH-1 mutant RNAs were reverse transcribed by

Superscript III Reverse Transcriptase (Invitrogen) using random

hexamers. The cDNAs and pJFH-1 library DNA (included to

ascertain the library complexity) were used as templates for PCR

amplification of thirteen overlapping fragments using JFH-1

specific primers (Table S1). Each fragment has an overlap of

,200 nt with flanking fragments. Fifty nanograms of purified RT-

PCR or PCR product was used as a template for a second PCR

with an insertion-specific mini-primer (59-TGCGGCCGCA -39),

which has 59 end labeled with a fluorescent dye-VIC (Applied

Biosystems), and one of the JFH-1 fragment specific primers

(Table S2). A total of forty-eight JFH-1 specific primers, designed

at approximately 200 nt intervals, were used. Each of the JFH-

specific primer and mini-primer combinations tested negative for

generating any spurious PCR products using wild-type JFH-1

genome template. For each primer, the PCR reactions were done

in duplicate. The conditions used for the second PCR were 95uC
for 5 min (1 cycle); 95uC for 1 min, 52uC for 1 min and 72uC for

2 min (35 cycles); 72uC for 20 min (1 cycle). The fluorescent-

viral genome replication. At 4, 48, and 96 hpt total cellular RNAs were harvested and subjected to RT-qPCR. The genome copy numbers per mg of RNA
are presented. (G) Immunofluorescence assay. At 48 and 96 hpt the cells were fixed and stained for HCV core antigen. The cell nuclei were visualized
by DAPI staining. For B, C, and D experimental details see Figure 6 legend.
doi:10.1371/journal.ppat.1000182.g007
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labeled PCR products were analyzed in duplicate with Liz-500

size standard (Applied Biosystems) by using a 96-capillary

genotyper (3730xl DNA Analyzer, Applied Biosystems) at the

UCLA Genotyping and Sequencing core facility.

Data Processing and Interpretation
The data generated by the capillary genotyper were processed by

GeneMapper software (Applied Biosystems) using Amplified

Fragment Length Polymorphism analysis tool. The normalized

data was visualized by an electropherogram and exported as a data

file. For each PCR sample, the exported data contained information

regarding the PCR product size at nucleotide level and peak area.

The exact position of an insertion in the genome, for each of the 48

gene specific primer-generated PCR products, was calculated by

subtracting 15-nt from the size of the particular PCR product and

adding the HCV genome position of the specific primer.

Comparison of the 15-nt insertion sites identified in the mutated

HCV genome by PCR profiling and sequencing revealed that the

accuracy of the PCR profiling is within one to two nucleotide(s). For

each sample, the PCR profiles were consistent among duplicates

and representative data were used for obtaining final assembly. To

assemble the locations of insertion sites for the entire HCV genome,

the insertion profiles obtained between 50 to ,250 nt for each

specific primer was taken into account. To assign a phenotype for

each insertion mutant, the ratio of peak area between selected (21

dpt) and non-selected pools was calculated. The incorporation of

functional profile data into the crystal structure of HCV proteins

and the generation of graphics were done using PyMOL Viewer

program (DeLano Scientific, USA).

Quantitative Reverse Transcription-PCR
A two-step reverse transcription-PCR (RT-PCR) was carried

out for determining the HCV RNA copy number. Briefly, 1 mg of

total cellular RNA was reverse transcribed by using Superscript III

Reverse Transcriptase (Invitrogen) and HCV 59UTR specific

primers (JFH RTQ F: 59- CTGGGTCCTTTCTTGGATAA-39

and JFH RTQ R: 59- CCTATCAGGCAGTACCACA-39) as per

the manufacturer’s instructions. 100 ng of resulting cDNA was

used as a template for the subsequent quantitative-PCR (Q-PCR)

using QuantiTect Probe FAM 59-GAGTAGCGTTGGGTTG-39

(Qiagen). 101 to 107 copies of in vitro transcribed JFH-1 genomic

RNA were reverse transcribed along with the samples, and were

included as a standard for copy number determination during Q-

PCR. The reaction was run at 95uC for 15 min (1 cycle), 95uC for

30 s, 55uC for 30 s, and 72uC for 10 s (45 cycles). The results were

analyzed in Opticon II (MJ Research, Cambridge, MA).

Measuring virus titer
The virus titer was measured by calculating the foci forming

unit (ffu) of infectious viral particles per ml of cell-free culture

supernatant. The infected-culture supernatant was 10-fold serially

diluted in complete DMEM and inoculated in triplicate onto naı̈ve

Huh-7.5.1 cells (36103 cells/well) in 96-well plates. At 72 hours

post infection (hpi), the cells were fixed and immunostained for

HCV core antigen. The number of core antigen positive foci were

counted at the highest dilution, and average foci forming units per

ml was calculated.

Renilla Luciferase Reporter Assay for Viral Genome
Replication and Infectivity

For viral genome replication assay, the HCV RNA transfected

cells were plated in triplicate in 48-well plates. The cells were lysed

with passive lysis buffer (Promega) at 6, 48, and 96 hpt. The culture

plates were gently rocked at room temperature for 15 min, then

stored at 280uC. To determine the supernatant infectivity, 500 ml

of cell-free supernatant obtained from HCV RNA transfected cells

at 48 and 96 hpt was inoculated in triplicate onto naı̈ve Huh-7.5.1

cells in 48-well plates. At 48 hpi the cells were lysed and stored at

280uC. 10 ml of lysate was used for measuring the Renilla luciferase

activity using a Renilla Luciferase Assay System kit (Promega).

Western blotting
For western blotting, the cell lysates were resolved by SDS-

PAGE and transferred to a nitrocellulose membrane. The

membranes were blocked (5% skim milk, 0.2% Tween-20 in

PBS) and probed with mouse monoclonal antibody to core [(C7-

50) Abcam], NS3 [(H23) Abcam)] and beta-actin (Sigma). Goat

anti-mouse IgG conjugated with horseradish peroxide (Amersham

Pharmacia Biotech) secondary antibody was detected by chemi-

luminescence (ECL Plus, Amersham Pharmacia Biotech).

Immunofluorescence assay
The HCV infected or transfected cells were fixed with 4%

paraformaldehyde. Following three PBS washes, the cells were

blocked (3% goat serum, 3% BSA, 0.1% Triton-x 100 in PBS) and

incubated with mouse monoclonal anti-core primary antibody (C7-

50 (Abcam, Cambridge, USA)) at a dilution of 1:300 for 5 hrs at 4uC.

The goat anti-mouse IgG polyclonal antibody conjugated to Cy-3

was added as a secondary antibody (Jackson ImmunoResearch

Laboratories, USA) at 1:200 dilution and incubated for 1 hr at room

temperature. Between antibody changes, the cells were washed thrice

with PBS. The nucleus was stained with DAPI (Sigma).

Supporting Information

Figure S1 The amino acid sequences encoded by 15-nt insertions

at three possible reading frames. The duplicated nucleotides at the

target site of the mini Mu-transposon insertions are underlined. The

inserted sequences are shown in bold face. The amino acid (aa)

sequences are in italics. The numbers corresponds to the amino acid

positions of the JFH-1 genome. Note that the insertions do not

introduce STOP codons in all of the reading frames.

Found at: doi:10.1371/journal.ppat.1000182.s001 (0.66 MB EPS)

Figure S2 Kinetics of JFH-1 library replication in Huh-7.5.1

cells. The HCV genome copy numbers and the virus titer [foci

forming unit per milliliter (ffu/ml)] for the indicated time points

are shown in the line and bar graphs, respectively. Mean values

with standard deviations are presented (log10 scale).

Found at: doi:10.1371/journal.ppat.1000182.s002 (0.83 MB EPS)

Figure S3 Electropherogram depicting the effect of 15-nt

insertions in NS5B-39NTR of HCV. The X-axis shows the 15-nt

insertion sites as corresponding peaks and the Y-axis shows the

fluorescent signal intensity of the peaks. Nucleotide positions of the

JFH-1 genome are numbered on the top. Schematic representa-

tions of the NS5B Transmembrane Domain (TMD) coding region,

39NTR Variable Region (VR), and poly(U/UC) tract locations are

depicted. The cDNA generated from the in vitro transcribed

mutant RNA genomic library (RNA input) and JFH-1 mutant

viral library selected in Huh-7.5.1 cell culture (selection 2, 4, 10, 16

and 21 dpt) were subjected to the functional profiling analysis.

Comparison of electropherogram panels shows that all of the

insertions at poly(U/UC) tract were negatively selected by 2 dpt.

Insertions at the VR show a gradual reduction in replication

fitness. Insertions at NS5B-TMD show positive or negative

selection depending on the insertion site.

Found at: doi:10.1371/journal.ppat.1000182.s003 (0.03 MB PDF)
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Figure S4 Genome scale functional profile of HCV. Graphical

representation of location and phenotype of 15-nt insertions in the

HCV genome are shown. The nucleotide and amino acid (in

parenthesis) numbers correspond to the JFH-1 genome sequence.

A schematic diagram of the HCV region is shown for each graph.

For each 15-nt insertion mutant, the ratio of the peak area was

calculated between selected (21 dpt) and non-selected pools and

plotted in a bar graph as fold change (log10 scale). The lethal

phenotype (critical region, red bar) is an absence of an insertion

mutant in the selected population. The attenuated phenotype (less

critical region, blue bar) denotes an over two-fold reduction in

replication. The tolerated phenotype (dispensable region, green

bar) is replication competent.

Found at: doi:10.1371/journal.ppat.1000182.s004 (0.12 MB PDF)

Figure S5 The predicted secondary structures of 15-nt insertions

at 59NTR domain IV. The tolerated insertions maintain an open

confirmation similar to that of the wild-type domain IV, whereas

lethal insertions form a stable stem loop structure. The asterisk

indicates an insertion mutant not present in our screen. Insertions

at nt-336 and nt-338 resulted in duplication of the AUG start

codon.

Found at: doi:10.1371/journal.ppat.1000182.s005 (0.03 MB PDF)

Figure S6 The crystal structure of HCV proteins displaying

functional profiling phenotypes. The amino acid residues were

color coded for insertion phenotypes: red (lethal), blue (attenuat-

ing), green (tolerated), and grey (no insertion). (A) The ribbon

diagrams depict a dimer of NS2 protease domain (amino acid

residues 94-217) (PDB accession code 2hd0) [20]. (B) Ribbon and

surface diagrams of HCV genotype 1 NS3 monomer are shown

(PDB accession code 1CU1) [49]. The protease and helicase

domains are indicated. (C) The genotype 1b, Con1 isolate NS5A

domain 1 (PDB accession code 1ZH1) [56] ribbon and surface

diagrams are shown (bottom, front and top views). The zinc atoms

in NS3 and NS5A structures are colored in magenta. The

subdomain(s) coordinating the zinc atom had tolerated insertions

in both NS3 and NS5A proteins. The structure analysis and

graphics generation were done using PyMOL Viewer.

Found at: doi:10.1371/journal.ppat.1000182.s006 (5.03 MB EPS)

Figure S7 The 15-nt insertions tolerated for HCV replication at

NS4B/5A and NS5A/5B cleavage sites. The nucleotide and the

predicted amino acid sequences are shown. The number indicates

JFH-1 genome position. The insertion sequences are bold faced.

Insertions tolerated at the NS4B/5A (A) and NS5A/5B (B)

cleavage sites are shown. The cleavage site is indicated by an

arrow. Note that the insertions do not disrupt the critical P1-P19

cleavage residues Cys-Ser (C-S). Asterisks indicate the insertion

mutants that were not present in our screen. The function of

amino acid residues at the N- and/or C-terminal of many HCV

proteins was not affected by the insertions. The 15-nt insertion

does not introduce a stop codon for any of the three reading

frames: eg., insertions at nucleotides 6262, 6263 and 6264.

Found at: doi:10.1371/journal.ppat.1000182.s007 (0.40 MB TIF)

Figure S8 Analysis of genotype 2a chimeric parental and mono-

cistronic Renilla Luciferase reporter Hepatitis C viruses. (A)

Schematic representation of Hepatitis C viruses used in this study.

The HCV non-coding and coding regions are depicted. The J6/

JFH-C virus contains 59 nontranslated region (NTR), structural,

p7, and partial NS2 regions from J6CF strain of GT 2a HCV

(dark grey), and non-structural region from JFH-1 strain of GT 2a

HCV (mild grey). A mono-cistronic Renilla luciferase (RLuc)

reporter virus (NRLFC) based on J6/JFH-C virus is shown. The

Renilla luciferase gene is fused in frame with the core region

through Foot and Mouth Disease virus 2A sequence (F2A). The

mutant J6/JFH-C and reporter viruses, with envelope coding

regions (E1 and E2) deleted and NS5B polymerase catalytic amino

acid residues GDD (Gly-Asp-Asp) mutated to AAG (Ala-Ala-Gly)

residues are shown. (B) Comparison of viral genome replication.

The in vitro transcribed J6/JFH-C virus and the NRLFC reporter

virus genomic RNAs were introduced into Huh-7.5.1 cells by

electroporation. At 4, 48, and 96 hpt total cellular RNAs were

harvested and subjected to RT-qPCR using HCV specific

QuantiTect probe. The genome copy numbers were calculated

per mg of RNA and presented as a graph. (C) Comparison of viral

infectivity. The virus titer (ffu/ml) of cell-free supernatant collected

at 48 and 96 hpt was measured by infecting naı̈ve Huh-7.5.1 cells.

Compared to the parental J6/JFH-C virus, the reporter virus had

similar levels of genomic RNA replication, but was 10–100 fold

attenuated in infectious particle production. C, core; E, envelope;

NS, non-structural.

Found at: doi:10.1371/journal.ppat.1000182.s008 (2.89 MB EPS)

Table S1 Primers and the location of HCV fragments

Found at: doi:10.1371/journal.ppat.1000182.s009 (0.02 MB PDF)

Table S2 Primers used for Functional Profiling analysis of HCV

genome

Found at: doi:10.1371/journal.ppat.1000182.s010 (0.03 MB PDF)
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