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Low density lipoprotein for cytotoxic drug targeting: improved activity of
elliptinium derivative against B16 melanoma in mice
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Summary Significant low density lipoprotein (LDL) uptake by tumour cells led to the use of LDL as a
discriminatory vehicle for the delivery of cytotoxic drugs. In the current study, the lipophilic elliptinium
derivative, elliptinium-oleate (OL-NME), was incorporated into LDL to reach an incorporation level of 400
molecules per LDL particle. The OL-NME-LDL complex showed cytotoxic effects on normal human
fibroblasts while the cytotoxicity was not observed on receptor-defective human fibroblasts, indicating the
ability of the complex to be preferentially metabolised by the LDL receptor. In vivo metabolism of the
complex was related to the LDL receptor pathway. The metabolic clearance was the same for native LDL
(17.1mlh~') and OL-NME-LDL complex (16.2ml h-'). LDL incorporated OL-NME enhanced the anti-
tumour activity against murine B16 melanoma model; this resulted from increased efficacy for OL-NME-LDL
at doses equal to free 9-OH-NME (157 vs 76 of Increase Life Span (ILS) (%) values after intraperitoneal (i.p.)
drug injection on i.p. implanted tumour model and 45 vs —2 ILS (%) values after intravenous drug injection
on subcutaneous implanted tumour model). These data suggest that LDL improves the potency of lipophilic
cytotoxic drugs against tumours that express LDL receptor activity.

Cells may obtain cholesterol in two ways: by endogenous
synthesis from Acyl-CoA or by uptake of cholesterol-
containing particles, lipoproteins, from their environment.
The most important lipoprotein in this regard is LDL, the
major cholesterol-carrying particle in human plasma. LDL
consists of an apolar core of cholesteryl esters and tri-
glycerides surrounded by a phospholipid monolayer contain-
ing free cholesterol and Apolipoprotein B (Apo B) (Gotto et
al., 1986). This protein is responsible for recognition of a
cell-specific high-affinity receptor, so called LDL receptor.
Following binding to these receptors, located on coated pits
on the cell surface, the LDL is internalised and degraded in
lysosomes with subsequent release of the cholesterol for use
in the cell (Goldstein & Brown, 1977).

Many years ago, LDL was proposed as a useful discrim-
inatory vehicle for the delivery of cytotoxic drugs to tumour
cells on the basis of a higher uptake of LDL by these tissues
(Gal et al., 1981). Some cancer cells, which proliferate
rapidly, need large amounts of cholesterol for new membrane
synthesis. A logical consequence could be that cancer cells
will have LDL receptor activity higher than normal cells
(Hynds et al., 1984; Vitols et al., 1985; Vitols et al., 1990a;
Rudling et al., 1990). However, the increased LDL uptake by
tumour cells is still unexplained: a high cholesterol demand
for cell growth or a mechanism related to cell transforma-
tion. Recent data suggest that a mechanism involving growth
factors could be of importance in the regulation of the
expression of the LDL receptor gene (Mazzone et al., 1990).

LDL presents many other advantages as drug carriers that
may circumvent a lot of problems encountered with synthetic
carriers: (1) LDL may be an interesting delivery system to
administer highly lipophilic compounds with promising
cytotoxic effect in vitro which have never reached clinical
trials because of difficulties in finding a suitable drug carrier
(Vitols et al., 1990b; Lestavel-Delattre et al., 1992). On the
other hand, drug sequestration in the core space provides
protection from serum enzyme and water. (2) LDL, which is
a physiological carrier, is not cleared by the reticuloend-
othelial system and may prolong the serum half-life of
antineoplastic drugs by incorporation into it (De Smidt &
Van Berkel, 1990). (3) Tumour cells internalise and degrade
LDL by the LDL receptor pathway. This highly efficient
process may lead to different pharmacological effects, for
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example it may circumvent some drug resistance mechanisms
(Iwanik et al., 1984).

We have reported the incorporation of esters of elliptinium
with fatty acids, a series of lipophilic derivatives of ellipticine,
into the LDL (Samadi-Baboli et al., 1990). Elliptinium
acetate is an anti-neoplastic agent derived from ellipticine
which is currently used in the treatment of metastatic breast
cancer (Paoletti ez al., 1980; Auclair et al., 1987). The incor-
poration of the lipophilic derivative was performed by a
technique which consisted of a fusion of micro emulsion
containing drug with LDL (Samadi-Baboli er al., 1989).
Among the derivatives tested, oleate of elliptinium (OL-
NME) showed the most potent incorporation. The drug-
LDL complexes were able to recognise the LDL receptor in
fibroblast, but not the ‘scavenger receptor’ (Kodama et al.,
1990) of mouse peritoneal macrophages. On the other hand,
the complex exerted a higher cytotoxic efficacy than free
drug, in vitro, on L1210 cells. The incorporation rate of
OL-NME into LDL has limited the investigations in vivo. We
describe, in this paper, modifications of the incorporation
technique which lead to a higher OL-NME incorporation
level into LDL without affecting the recognition of the com-
plex by the LDL receptor in vitro and in vivo. The
antitumour activities of the drug-LDL against the B16
melanoma solid tumour in mice were evaluated with the
OL-NME-LDL complex to show its potential in the treat-
ment of tumours.

Materials and methods

Materials

Sodium, I and "I (carrier free, pH = 7-11) were obtained
from Amersham France (Les Ullis, France). Cholesteryl-
oleate, dimirystoylphosphatidyl choline (DMPC), phos-
phatidylserine (PS), sphingomyelin and cholesterol were
purchased from Sigma (France) and were judged 99% pure
and used without further purification. 9-Hydroxy-N*methyl
ellipticinium acetate (9-OH-NME) was kindly provided by
Sanofi Group (France). 9-Oleyloxy-hydroxy-N2-methyl ellip-
ticinium oleate (OL-NME) was synthesised as described by
Samadi-Baboli et al. (1990).

Foetal calf serum (FCS), RPMI 1640, phosphate buffered
saline (PBS), penicillin, streptomycin and glutamine were
obtained form Intermed (Strasbourg, France). Culture flasks
(75 cm? = T75), multiwell dishes and other cell culture equip-
ment were from NUNC laboratories (USA).
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Human skin fibroblasts from a normo-cholesterolemic
donor (nF) were a generous gift from Pr Soleilhavoup
(Faculté de Médecine Toulouse, France) and receptor-nega-
tive fibroblasts (FH: Familial Hypercholesterolemia in its
homozygous form: no activity of the LDL receptor was
shown by the Goldstein and Brown procedure (Goldstein &
Brown, 1974) from Prs P. Duriez and J.C. Fruchart (Service
d’Etudes et de Recherche sur les Lipides et I’Artériosclérose
S.E.R.L.I.LA. Institut Pasteur, Lille, France).

Methods

Preparation of lipoproteins

Human LDL were isolated, as previously described (Samadi-
Baboli ez al., 1990), from the plasma of individual healthy
fasted volunteers by rate-zonal ultracentrifugation in sodium
bromide gradient (Patsh et al., 1974) using a TG-65 ultracen-
trifuge and Ti-14 zone rotor (Kontron Instruments, France).
To remove excess sodium bromide, the LDL were extensively
dialysed against a buffer containing 5 mM Tris-HCI, 0.3 mM
disodium ethylenediaminetetraacetic acid (EDTA),0.15 mM
NaCl, and immediately sterilised by filtration through a
membrane filter (Millipore, 0.45 um pore size). Lipoprotein
purity was assessed by 1% agarose gel electrophoresis and by
immunochemical analysis. LDL migrated as a single band on
agarose gel and did not react with anti-apo Al and anti-apo
AII antiserum. Positive reactions were obtained with anti-apo
B. The integrity of apolipoprotein B was assayed by sodium
dodecyl sulphate 3% polyacrylamide gel electrophoresis. The
LDL were determined as protein (Lowry et al., 1951) using
bovine serum albumin as standard. The LDL were stored at
4°C for no longer than 2 weeks.

Incorporation of OL-NME into LDL

The method recently described (Samadi-Baboli et al., 1990)
using the fusion technique between drug-containing micro
emulsions and LDL was used with modifications. Lipids were
weighed out to give the desired ratio of the six components
(OL-NME/TG/PC/Sphin/Ch/PS) and dissolved in chloro-
form. The solvent was removed by evaporation under a
stream of N, followed by vacuum dessication at 10°C for 12
to 16 h. The dry lipids were resuspended in 1ml of dry
isopropanol. The drug-containing micro emulsions were
prepared by injection of lipid components in a dry iso-
propanol solution into a rapidly vortexing solution of phos-
phate buffer with the entire system kept at 51°C throughout
the procedure.

The micro emulsions were incubated with LDL in the
presence or absence of bovine serum albumin (BSA)
(5mgml~!) for 20 h at 37°C (the extent of transfer did not
increase greatly with incubation times longer than 20 h).
Drug-LDL (d = 1.02-1.062) was separated from the micro
emulsion by ultracentrifugal flotation, in KBr density
gradient using a vertical ultracentrifugation rotor (VTi-50,
Beckman-France) (Paumay e al., 1985). After the separation,
two bands were noticed. Micro emulsions bands in the
1.006-1.019 gml~! density range, drug-LDL in the 1.02-
1.062 gml~! density range. The band of drug-LDL was
drawn off, purified by a second ultracentrifugation step in
KBr at a density of 1.062 and subjected to extensive dialysis
for 24 h against LDL buffer to remove KBr, sterilised by
filtration through a 0.45 um pore size filter and stored at 4°C
(up to 2 weeks). The OL-NME-LDL complex was then
passed through a Sephadex G25 PD-10 column (Pharmacia,
France) to remove any non incorporated metabolites of the
drug. More than 98% of the drug remained associated within
the LDL complex. The purity of the OL-NME-LDL complex
was assayed by agarose gel electrophoresis and by immuno-
histochemical analysis. The drug-LDL complex (as well as
native LDL) migrated as a single band with B mobility and
did not react significantly with anti-BSA antisera (Sigma,
France). The immunoreactivity against anti-apolipoprotein B

was similar to that observed with native LDL. The particle
size of native LDL and drug-LDL complex was determined
as previously described (Samadi-Baboli ez al., 1990) by laser
light scattering (Nanosizer, Coultronics, Margenty, France).
The size distribution was of 25 * 6 nm for the complex and
22+ 7nm for native LDL.

HPLC assay of elliptinium-oleate (OL-NME)

The OL-NME and 9-OH-NME concentrations were meas-
ured by HPLC analysis as previously described (Samadi-
Baboli et al, 1990). An aliquot (200 pul) of drug-LDL
complex and native LDL were spiked with 25ul of N
propyl-9-hydroxy-ellipticinium (9-OH-NPE), used as internal
standard (final concentration 1.25 pg ml~!). All the drug and
internal standard were extracted twice with ethylacetate
(2x 1ml) after the addition of 100ul of ammonium
hexafluorophosphate (final concentration 250 mM) as counter-
ion and (2 X 3 ml) acetate buffer 0.5M, pH = 5.5. The mix-
ture was centrifuged twice at 2000 r.p.m. for 10 min. The
organic phase was drawn off and dried under a stream of
nitrogen. The residue was redissolved in 200 pl of the mobile
phase (methanol-water 75:25 with SmM acetate buffer
adjusted to pH 5.5 with glacial acetic acid). A Waters CN
pBondapak reverse-phase column (30 X 3.9 mm id.) was
used. The assay was carried out at 313 nm. This technique
allowed the quantitative determination of the two drugs,
OL-NME and 9-OH-NME.

Study of the stability of the drug-LDL complex in vitro

Stability of OL-NME-LDL was tested by incubation in
human plasma. One ml of complex (507 pg OL-NME mg~!
Apo B) was mixed with 5ml of human plasma. The mixture
was incubated at 37°C. After 24 and 48 h of incubation, 3 ml
aliquots were removed from the mixture, followed by sequen-
tial preparative ultracentrifugation in order to separate the
different lipoprotein species (Havel er al., 1955). The lipo-
protein fractions and the lipoprotein deficient fraction were
separated and analysed for OL-NME and 9-OH-NME con-
tent by HPLC.

Chemical modification and labelling of native LDL and
OL-NME-LDL

The LDL were iodinated (**I and "'I) by the iodine
monochloride method of Mac Farlane modified by Bilheimer
et al. (1972). The labelled lipoproteins were then freed of
unbound radioiodide and glycine buffer by exhaustive
dialysis against 0.15M NaCl/0.01% Na,EDTA, pH 7, fol-
lowed by gel filtration through Sephadex G25 PD-10 column
(Pharmacia, France). The {"*'I-LDL} were treated with 1,2-
cyclohexanedione as described elsewhere (Shepherd et al.,
1979; Mabhley et al., 1977), to block the charge on the arginyl
residues of its protein moiety. Cyclohexanedione-modified
LDL (CHD-LDL) prepared in this way has been fully char-
acterised previously (Slater et al., 1982). '*I-OL-NME-LDL
and "“'I-CHD-OL-NME-LDL complexes were obtained by
incorporation of the OL-NME into labelled and/or chem-
ically modified LDL as described above in Materials and
methods.

The specific activities of the different preparations were
B.LDL: 210c.p.m.ng~! protein, '>I-OL-NME-LDL: 161
c.p.m. ng~! protein, *'I-CHD-LDL: 155 c.p.m. ng"! protein,
BI[.CHD-OL-NME-LDL: 74 c.p.m. ng~! protein.

LDL turnover protocol in vivo and data analysis

Two-month-old male New Zealand white rabbits (Institut
National de la Recherche Agronomique, INRA, Toulouse,
France), maintained ad libitum on a commercially available
diet were used in the turnover study. Two days prior to and
throughout each turnover study, the rabbits were given
0.1g1"" of Kl in their drinking water to prevent thyroidal
sequestration of radioiodide. Approximately 10puCi each
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of LDL and cyclohexandione-treated LDL (CHD-LDL)
labelled with different isotopes of iodine were mixed, steril-
ised by membrane filtration (0.45pum filtres, Millipore,
France) and injected intravenously into the marginal ear vein
of each rabbit. Blood samples were then collected from the
opposite ear after 10 min and subsequently on five occasions
over the next 48h (2, 6, 19, 24 and 48 h). The data were
fitted using the SIPHAR computer programme (Simed,
Creteil, France). The clearances of the different LDL and
LDL complexes were calculated by dividing the total amount
of labelled LDL administered to rabbits by the product of
time by concentration (C Xxt= AUC). Isotope dilution,
which occurred in the first 10 min, provided an estimate of
plasma volume. The metabolic parameters were calculated by
the procedure of Slater et al. (1982). The fractional catabolic
rate (FCR) is the fraction of the intravascular pool of LDL
catabolised per day.

In vitro cytotoxicity

Human skin fibroblasts from a normo-cholesterolemic donor
(nF) and receptor-negative fibroblasts (FH) were grown in
DMEM supplemented with 10% (v/v) foetal calf serum
(FCS), 2mM glutamine, 10L.Uml~! streptomicine and
100 LU ml~! penicillin in T75 culture flasks in a humidified
incubator (5% CQO,) at 37°C. The doubling time was 39 £ 4 h
for the nF cells and 43 £ 2.5 h for the FH cells. The effects of
the cytotoxic compounds on nF and FH cells were performed
as described in a previous study (Lestavel-Delattre er al.,
1992).

FH and nF cells were harvested from culture in the
exponential growth phase. Aliquots of 200 pul of the cell
suspension were added into each well (1500 cells/well) of
96-wells microtiter plates. The plates were then incubated at
37°C for 24 h. Then, the medium was discarded and the
cellular monolayer washed once with 200 pl of Dulbecco’s
phosphate-buffered saline (PBS) at 37°C. Fresh medium
(200 ul) containing 5% (v/v) lipoprotein-deficient human
serum (LPDS) was added for 48 h before the assay to
enhance LDL receptor expression. The drug and the drug-
LDL complexes (0.05 ml) were added at indicated concentra-
tions in a volume of 0.15 ml/well for 4 h of incubation at
37°C. Cell survival was measured by MTT assay that was
slightly modified from the method previously described
(Ruben & Neubauer, 1987). Briefly, MTT, 2mg ml-! in PBS,
was added at 0.05 ml/well and the cells were incubated for 3 h.
The medium was removed and 0.15 ml of DMSO/well were
added. The plates were then agitated on an orbital shaker for
Smin to dissolve the grains of formazan included. The
optical density (OD) of each well was measured at 570 nm
with a microplate reader (Titerpek UNISKAN). Data were
collected from eight similarly treated wells, and the cytotox-
icity was defined as the survival fraction (%) of the cells that
was determined by the ratio: OD of treated cells/OD of
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control cells X 100. Native LDL in the concentration range
used for these cytotoxic assays had no effect on cell growth.

Tumour and experimental protocol

B16 melanoma was obtained through the courtesy of Dr Ch.
Voulot (Institut National des Sciences Appliquées, Ville-
urbanne-France). Our laboratory line was deeply pigmented
and still lethal in mice at 4 or 5 weeks. Tumours were
maintained by serial transplantation after a 3-weeks growth
in male C57BL/6J black mice. C57BL/6J mice weighing
19 to 22 g were obtained from IFFA-CREDO Laboratory
(BP.109,69910 L’Arbresle, France). Tumour tissues were
dissected in sterile physiological saline (9mlg~! tissue)
homogenised and then filtered through gauze. Cell viability,
as assayed by trypan blue dye exclusion, showed an average
content of 1.1 (% 0.3) x 10° cells ml~!. Injection of 0.5ml
cell suspension was performed subcutaneously into the flank.
The in vivo studies were performed on the same mice. Lots of
ten mice were used for each schedule of administration and
controls. For antitumour activity the tumour was inoculated
by s.c. or i.p. implantation of 0.5ml of a 1:10 tumour
homogenate in 0.9% NaCl solution in male mice of 4-5
weeks old. The drug-LDL complex and free drug were inject-
ed i.v. in the tail vein or i.p. as otherwise indicated. The
animal weight as well as mortality rates were monitored. ILS
values were calculated from median survival times. The com-
parison of efficacy between free and incorporated drug was
evaluated by the LDL/free median survival time ratio as
described by Mayer et al. (1990). Values were determined by
dividing the median survival time of the OL-NME-LDL
group by the median survival time of mice administered with
the equivalent dose of free 9-OH-NME. Mean and median
survival times and statistical significance of the results were
determined by using a two-tailed Wilcoxon’s ranking test
(randomised two-group design).

Results

Assay of OL-NME incorporation into LDL

The conditions for incorporation of drug into LDL are
summarised in Table I. The recovery of OL-NME into LDL
was not significantly different when the micro emulsions were
obtained with free cholesterol and sphingomyelin (83 + 2 vs
88 x 8). However, these compounds increased the stability of
the micro emulsion since the density of the micro emulsion
particles remained unchanged during incubation as compared
to the particles before incubation and they were readily
separated from the LDL after a 20 h incubation at 37°C. It
must be noted that in the absence of these compounds, in
vitro incubation of micro emulsion with LDL for long
periods of time (> 5 h) resulted in the aggregation of micro

TableI Effect of the composition of the OL-NME containing micro emulsion on the incorporation of OL-NME into LDL. The
values are representative of three different experiments except for assay 8 which is representative of 6 different experiments

Composition of the incubation mixture

Micro emulsion composition

Recovery of OL-NME
into LDL

(mg) LDL  Albumin  pg OL-NME mg=! of
DMPC SM PS FC Cco TA TO OL-NME (mg) (mg) protein LDL

Assay

1 6 - - - 3 - 6 6 83+ 22

2 6 1.5 - 3 12.5 - - 6 6 - 88+ 8

3 6 1.5 - 3 - 12.5 - 6 6 - 62+ 5

4 6 1.5 - 3 - - 12.5 6 6 - 120+ 12

5 6 1.5 1 3 - - 12.5 6 6 - 140 15

6 6 1.5 1 3 - - 12.5 6 6 30 215+ 10

7 6 1.5 1 3 - - 3 12.5 6 30 350 £ 22

8 6 1.5 1 3 - - 3 12.5 10 30 480 + 47

Abbreviations used: DMPC: dimyristoylphosphatidyl choline, SM: sphyngomyeline, PS: phosphatidyl serine, FC: free
cholesterol, CO: cholesteryl oleate, TA: triacetyl glycerol, TO: trioleyl glycerol, OL-MME: elliptinium oleate. *Assay 1 was

conducted as described by Samadi er al., 1990.
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emulsions. The result suggests that these compounds are
assumed to be important in maintaining lipid particle integ-
rity. All the drug not incorporated into lipoproteins was
quantitatively recovered in the micro emulsion layer after
density gradient ultracentrifugation. The chemical composi-
tion of the micro emulsions had an important effect on the
drug incorporation level. Micro emulsions that contained
triglyceride (assay 4) were more effective than those that
contained cholesteryl oleate (assay 2) (120 £ 12 vs 88 £ 8).
The fatty acid moiety of the triglyceride in the OL-NME-rich
micro emulsion significantly influenced the extent of incor-
poration into LDL. Micro emulsions that contained tri-
acetate (62 * 1.5) were about one-half as effective as those
that contained triolein (120 £ 12). Albumin seems to be an
important factor in maintaining particle integrity and might
involve fusion (Parks et al., 1985). Addition of albumin
(assay 6—8) to an incubation mixture stimulated the incor-
poration of OL-NME. Thus, the ratios between the different
components of the micro emulsion and the components of
the incubation mixture influence the incorporation rate of the
drug into LDL; the optimal conditions are presented in assay
8. The OL-NME concentration in LDL complexes was
measured by HPLC analysis. The ratio of OL-NME/protein
for six preparations (assay 8) was 480 + 7 ug OL-NME mg™!
of protein corresponding to an average of about 400
molecules of OL-NME incorporated by LDL particles
(assuming 514 kDa for Apolipoprotein B molecular weight).
Under these conditions, the recovery of OL-NME in LDL
was 28 + 2% of that originally present in the OL-NME-rich
micro emulsion. All the following experiments were con-
ducted with the complex prepared using condition 8 of Table
L

Stability of the drug-LDL complex in serum

In order to study the stability of OL-NME-LDL particles in
human plasma and the possible transfer of the drug to other
lipoprotein classes, the preparation of the OL-NME-LDL
was incubated at 37°C for 48 h in human plasma. Then, the
lipoprotein fractions were separated by density gradient
ultracentrifugation and analysed for OL-NME content. The
results are presented in Table II. About 5% of the 9-OH-
NME, the product of OL-NME hydrolysis, appeared in the
solution after 24 h or 48 h of incubation in plasma at 37°C.
More than 80% of the OL-NME was recovered in LDL.
About 10% of the OL-NME was detected in other lipo-
protein fractions, principally in the VLDL fraction. Drug
was not recovered within the LPDS in significant amounts.

Cytotoxic activity of the OL-NME-LDL complex

To determine whether the cytotoxic effect of the drug-LDL
complex is dependent on the LDL receptor activity, increas-
ing concentrations of OL-NME-LDL complexes were in-
cubated with normal and totally LDL-receptor defective
fibroblasts. As shown in Figure la, the drug-LDL complex
preserved a cytotoxic activity when incubated with the
receptor-positive fibroblasts, while no effect was observed
with the receptor-defective fibroblasts; the low effect observed

Table II Stability of OL-NME-LDL within plasma. One ml of
OL-NME-LDL (507 pg of OL-NME/mg of Apolipoprotein B) was
incubated in 5 ml of human plasma. At the indicated time, aliquots were
removed. The lipoprotein fractions were separated by ultra
centrifugation and analysed for OL-NME and 9-OH-NME content by
HPLC as described under Materials and methods. The values are
representative of three different experiments.

% of OL-NME recovery

24h 48h
VLDL 92%1.5 10.3+0.37
LDL 80.6 £ 0.05 80+ 0.8
HDL 4.5%0.02 3+0385
LPDS 1.2£0.02 1.3+ 0.04
Hydrolysis to 9-OH-NME 45%0.21 54%0.15

120 - a

100

OL-NME-LDL

L 1
10°° 108 1077 10-¢ 1075

Survival fraction (%)

204 FREE9-OH-NME

0

T

10-° 108 1077 10°° 10°°
9-OH-NME (M)

Figure 1 Comparison between OL-NME-LDL complex (a) and
9-OH-NME (b) cytotoxic activity on normal (M) and totally
LDL receptor defective (O0) human fibroblasts. The survival frac-
tion (%) was measured as described in Materials and methods.
Drug concentrations are expressed in terms of 9-OH-NME con-
centration in the culture medium. Each point shows the mean of
two experiments.

for the higher complex concentration was probably due to
unspecific bulk endocytosis. Free 9-OH-NME presented
similar cytotoxic effects against the two cell types (Figure 1b).
9-OH-NME was taken as a control since we previously dem-
onstrated that free OL-NME has little effect on the cellular
cytotoxicity (Samadi-Baboli et al., 1990).

Turnover study

The decay of plasma radioactivity was almost identical for
native LDL and OL-NME-LDL (Figure 2). Cyclohex-
anedione modification of human LDL or OL-NME-LDL
complexes delayed its clearance from the plasma of rabbits
(108mlh~! vs 17.1mlh~! for native LDL and 8.75 ml h-!
vs 16.2ml h~! for drug-LDL complexes). On the assumption
that the removal rate of the modified lipoprotein represents
receptor-independent catabolism, the difference between this
value and the fractional clearance rate of untreated LDL is a
measure of receptor-mediated catabolism. Receptor-mediated
clearance accounted for 37% and 45% for native and OL-
NME-LDL complexes receptively. The total fractional cat-
abolic rate, which measures the fraction of the intravascular
pool of LDL catabolised per day, was 1.80 % 0.09 pool/day
(mean * s.d.) when rabbits were given an injection of native
LDL. Similar mean values for total (1.70 % 0.06 pool/day)
and receptor-independent fractional catabolic rate (1.05*
0.04 pool/day) were obtained when other rabbits were given
an injection of OL-NME-LDL.

In vivo antitumour activity

It would be suitable to compare the therapeutic and toxic
effects of OL-NME in the free form and in LDL complex.
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Figure 2 Comparison of the plasma clearance of native and
LDL incorporated OL-NME in rabbits. Human '*I-LDL (0)
and “'I-CHD-LDL (A) or 'I-OL-NME-LDL (®) and "“'I-
CHD-OL-NME-LDL (A) were injected intravenously in series of
three rabbits as described under Materials and methods. Plasma
samples were removed at the indicated time and the % of injected
dose remaining was plotted in a semi-logarithmic fashion. Each
point is the mean of the three rabbit experiments. The variation
was less than 10% of the mean.
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However, this cannot be easily done since this drug is water
insoluble. Nevertheless, we compared the efficiency of the
OL-NME-LDL complex with free 9-OH-NME, the cytotoxic
drug currently used in human therapy. However, the
antitumour activity of OL-NME was tested, dissolved in the
stabilised micro emulsion.

The efficacy of free 9-OH-NME and LDL-incorporated
OL-NME was investigated first in the B16 melanoma ascite
tumour model after intraperitoneal injection (i.p.) of the
drugs (Table III). Administration of LDL-incorporated
OL-NME-LDL resulted in a significant increase in anti-
tumour activity at the same dose as compared with the free
9-OH-NME or with OL-NME incorporated into micro emul-
sions. Fractional administration of the same total dose in
two and three injections per day led to a larger increase in
the antitumour activity of the OL-NME-LDL complex (ILS
(%) values of 140 and 157 vs 67 and 76 for free 9-OH-
NME). The LDL/free median survival times of 1.31 and 1.30
indicated that OL-NME encapsulated in LDL is more
efficient than free drug at an equal dose. Multiple dose
treatment schedules of OL-NME-LDL increased the number
of long-surviving mice. Ten per cent of the mice survived for
60 days for a total drug dose of 9 mg kg~! (administered in 9
days twice or three times a day). Long term survival was not
observed at any dose or schedule with free 9-OH-NME. No
changes in body weight has been noted in any lot of mice,
whatever the treatment.

TableIII Antitumoral activity of free 9-OH-NME and OL-NME-LDL complex in intraperitoneal Melanoma B16 bearing

CDS57BL/6J mice. Mice were given injection i.p. of the indicated samples 24 h post i.p. injection of the Melanoma B16

tumour. OL-NME was incorporated in the LDL and the micro emulsions as described under Materials and methods. Drug
doses are expressed in term of 9-OH-NME (mg)

Dose i.p. Treatment schedule Survival time (days)
Drugs (mg kg day) day  times a day > 60 days Mean(,} % of ILS® LDL/P
Control 0/10 17,6 [16,21] 0
9-OH-NME 1 1-5 x 1 0/10 32 [21,37] 51
0.5 1-9 x 1 0/10 27 [24,28] 45
1 1-9 X2 0/10 36 [33,41] 67
1 1-9 X3 0/10 38 [33,44] 76
OL-NME-LDL 1 1-5 x 1 0/10 36 [33,41) 644 1,12
0.5 1-9 x 1 0/10 31 [23,40] 65¢ 1,15
1 1-9 X2 1/10 47 [36,57) 140¢ 1,31
1 1-9 x3 1/10 49 [37,60] 157¢ 1,30
OLNME-emulsion 0.5 1-9 x 1 0/10 25 [21,28] 40¢ 0,92

*Percentage of ILS (Increasing Life Span) values were determined from median survival times comparing treated and
control group. "LDL/F: LDL/Free median survival time; values were determined by dividing the median survival time of the
OL-NME-LDL group by the median survival time of mice administered with the equivalent dose of free 9-OH-NME.
“Significant at the P <0.05 level against free 9-OH-NME correspondant dose and schedule experiment. Significant at the
P<0.01 level against free 9-OH-NME correspondant dose and schedule experiment. “Nonsignificant against free
9-OH-NME and significant at the level of P <0.05 against OL-NME-LDL for the same schedule experiment. ‘[,] range of

deaths.

Table IV Antitumoral activity of free 9-OH-NME and OL-NME-LDL complex in subcutaneous
Melanoma B16 bearing CDS57BL/6J mice. Mice were given injection i.v. of the indicated samples 24 h
post s.c. implantation of the Melanoma B16 tumour. OL-NME was incorporated in the LDL as
described under Materials and methods. Drug doses are expressed in terms of 9-OH-NME (mg)

Treatment
Dose schedule Survival time (days)
Drugs (mg kg day) (days) >60 days  Mean ILS*% LDL|F®
Control 0/10 29 0
9-OH-NME 1.5 1,3,5 0/10 33 16 -
3 1,3,5 0/10 37 18 -
45 1,3,5 0/10 37 13 -
2 1-5 0/10 25 -2 -
OL-NME-LDL 1.5 1,3,5 0/10 38 14 1,15
3 1,3,5 0/10 37 10 1
45 1,3,5 0/10 42 19 1,15
2 1-5 0/10 38 45° 1,52

*Percentage of ILS values were determined from median survival times comparing treated and
control group. °LDL/F: LDL/Free median survival time. “Significant at the P <<0.01 level.
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Subsequent studies investigated the efficacy of free 9-OH-
NME and OL-NME-LDL complex in the B16 melanoma
subcutaneous tumour model after intravenous injection (i.v.)
of the drugs (Table IV). Administration of 9-OH-NME as
well as of the OL-NME-LDL complex at doses of between 4
and 13.5mgkg~! on days 1, 3, 5 after the tumour injection
did not result in increased survival. The Day 1 to Day 5
schedule of injection, with a total dose of 10 mgkg~!, in-
creased the antitumour activity of the OL-NME-LDL com-
plex resulting in an ILS value of 45% (LDL/free median
survival time value of 1.52). In the same experimental condi-
tions free 9-OH-NME was completely ineffective (ILS value
of —2%).

Discussion

We report a technique to prepare a lipophilic ellipticine
derivative-LDL complex (Samadi-Baboli et al., 1989;
Samadi-Baboli ez al., 1990) and its efficiency on the cytotox-
icity against cancer cell lines. However, the incorporation
level of the OL-NME into the LDL has limited us in the
studies of the antitumoural activity of the complex. Here we
describe a procedure for the production of stable micro
emulsions containing OL-NME and triglyceride in order to
improve the incorporation of the drug into LDL. Addition of
albumin to the LDL micro emulsion incubation increases
fusion between the particles. These results suggest that a
specific interaction or fusion between LDL and micro emul-
sions in the presence of albumin facilitates the incorporation
of OL-NME into LDL. The optimisation of the procedure
leads to increase the incorporation of OL-NME molecules
into an LDL particle by more than 5-fold (70 vs 400) without
significant modification the LDL particle size.

The movement of both neutral lipids and phospholipids
between the various classes of plasma lipoproteins is
facilitated by a set of specialised proteins known as lipid
transfer protein (LTP). LTP facilitates two distinct processes,
a ‘Homo-transfer’ in which cholesteryl ester is exchanged for
another cholesteryl ester, or triglyceride for triglyceride, and
a ‘Hetero-transfer’ in which cholesteryl ester is exchanged for
another triglyceride. The latter process results in the net
transfer of lipids from one lipoprotein to another (Morton e?
al., 1983; Eisenberg et al., 1985; Dullaart et al., 1987). It was
important to determine the ability of synthetic lipophilic
compounds (OL-NME) to participate in this process in
plasma. Our data show that only small amounts of OL-NME
is transferred from one lipoprotein to another.

We report here that the incorporation procedure did not
affect the in vivo and in vitro metabolism of the lipoprotein in
a specific way. The complex exerted differential toxicity
towards normal and receptor-defective human fibroblasts. It
is likely that changes in the content of the core of a lipo-
protein can affect the chemical and physical properties of the
lipoprotein surface (Chait er al, 1984; Kleinmany et al.,
1987: Aviram et al., 1988) thereby modifying the interaction
of apolipoprotein B with the LDL receptor. The results imply
that the cytotoxic activity of the complex is dependent on the
LDL-receptor pathway and may be due to specific uptake. In
fact, the observed cytotoxic difference between normal and
mutant fibroblasts cannot be attributed to a particular sen-
sitivity of cell types against the cytotoxic drug.

The discovery of a specific, receptor-mediated catabolic
pathway for LDL, found in cultured human cells, has in-
creased our understanding of the regulation of LDL
metabolism in vivo (Brown & Goldstein et al., 1986). Recep-
tor recognition of the lipoprotein appears to depend on a
limited number of functionally significant arginyl residues on
the protein moiety (Mahley et al., 1977). Chemical modifica-
tion of these arginyl residues with 1.2-cyclohexanedione
(CHD) almost totally (85%) abolished binding of the lipop-
rotein to the high-affinity receptor on human fibroblasts,
without affecting its other chemical or morphological charac-
teristics (Mahley et al., 1977). Consequently, it may be
predicted that if the receptor mechanism operates in vivo,

CHD treatment of LDL should delay its clearance from the
plasma to an extent which is totally dependent on the activity
of the receptor pathway. By comparing the clearance rates of
native and CHD treated LDL, it was hoped to determine the
receptor-mediated fractional catabolism of native LDL and
of the OL-NME-LDL complex. The specific Fractional Cata-
bolic Rate of native LDL (0.72 pool/day) is similar to that of
OL-NME-LDL (0.70 pool/day). These values are in accor-
dance with Shepherd et al. (1980).

Several other methods have been described for the incor-
poration of lipophilic cytotoxic drug into LDL (see Shaw et
al., 1988, for review). Only Masquelier et al. (1986) and
Vitols et al. (1990b) have demonstrated that their drug-LDL
complexes, which were prepared by the same incorporation
technique adapted from Krieger et al. (1979), showed similar
behaviour to native LDL in vivo. Our incorporation tech-
nique may also lead to normal in vivo metabolism of the
drug-LDL complex without being recognised by the reticulo-
endothelial system in liver and spleen which would lead to
rapid clearance from the bloodstream. Moreover, we clearly
demonstrated that the catabolism of the OL-NME-LDL
complex is related to the LDL receptor pathway in vivo.

Entrapment of OL-NME into LDL particles increased the
antitumour activity by comparison with the free drug as well
as in i.p. or s.c. B16 Melanoma tumour model. Two lines of
evidence support the hypothesis by which the improved
antitumour activity is the fact of LDL receptor expression in
vivo. Firstly, we clearly demonstrated that the catabolism of
the complex was related to the LDL receptor pathway in
vivo. Secondly, Lombardi ez al. (1988) have reported, by in
vivo biodistribution studies, that the B16 Melanoma retains
high LDL receptor activity. The tumour tissue take up twice
as much LDL as the liver as measured per g of tissue. Such
targeting could lead to increased exposure of OL-NME to
the tumour and consequently, increase the antitumour
efficacy.

The OL-NME-LDL complex exerts therapeutic activity in
vivo after i.v. injection in B16 melanoma-bearing mice. It
must be remembered, however, that this study has been
performed with human LDL. Even if human LDL is recog-
nised by the animal’s receptor and particularly by the B16
melanoma tumour (Lombardi et al., 1988), the competition
from endogenous LDL is very different from the one in the
human situation since there are pronounced species differ-
ences in the plasma lipoprotein pattern and metabolism.
Therefore, the results must be interpreted with caution. It
would be suitable to use an animal model close to the human
one for the lipoprotein metabolism such as hamster or guinea
pig.

Interestingly, daily fractional doses are more effective than
single injection. This could be explained, partly by the fact
that the uptake of LDL by the receptor pathway is a
saturable process and partly by the fact that a high level of
LDL cholesterol could down-regulate the expression of the
LDL receptor (Brown & Goldstein, 1986). These data suggest
that administration of drug complex as an infusion rather
than a bolus could be preferable for a greater efficiency.

We use a technique which allows a high entrapment level
of lipophilic cytotoxic drugs into the LDL (this technique
may be applied to other lipophilic compounds, unpublished
data). The cytotoxic drug-LDL complex so formed, exhibits
preferentially LDL receptor related catabolism in vivo like
native LDL, and increasing antitumour activity in a murine
tumour model that expresses high LDL uptake by the
tumour. Further human clinical trials will depend on a better
knowledge of the expression and the regulation of the LDL
receptor by the tumour cells; which histological cell type,
which growth or transformation stage, etc. is involved.
Studies in this optic are now in progress in our laboratory.
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lipoprotein;, HDL, high density lipoprotein; LPDS, lipo-
protein-deficient serum; HPLC, high-performance liquid
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