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Recent discovery of hair follicle keratin 75 (KRT75) in enamel raises questions about the

function of this protein in enamel and the mechanisms of its secretion. It is also not clear

how this protein with a very specific and narrow expression pattern, limited to the inner

root sheath of the hair follicle, became associated with enamel. We propose a hypothesis

that KRT75 was co-opted by ameloblasts during the evolution of Tomes’ process and

the prismatic enamel in synapsids.
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Since early days of enamel research the question regarding the presence of keratins in this epithelial
tissue intrigued scientists (see Duverger et al., 2016 for review). A number of studies suggested that
keratins are present in the insoluble and heavily cross-linked matrix of mature enamel, however
due to the extreme insolubility of this material these studies were not able to identify these keratins
(Robinson et al., 1975, 1989a,b; Robinson and Hudson, 2011). Recently, Keratin 75 (KRT75) was
identified in ameloblasts and the mature enamel matrix (Duverger et al., 2014). Importantly, it
was found that a single amino acid substitution in this protein, which causes a hair condition
pseudofoliculitis barbae, or barber rush, affects structural and mechanical properties of enamel
and increases caries susceptibility (Duverger et al., 2014), suggesting an important functional role
for Krt75 in amelogenesis. At the same time a number of critical questions regarding Krt75 need
to be investigated. The fact that Krt75 is a cytosolic protein, lacking the signaling peptide, essential
for proper sorting of secretory proteins, raises the fundamental question regarding the mechanism
of its secretion. One possible scenario is that cytosolic proteins end up in enamel with the vestiges
of the Tomes’ processes (Warshawsky and Vugman, 1977). Another question is- what role of this
highly specialized protein, expressed almost exclusively in the inner root sheath and companion
layer of the hair follicle (Winter et al., 1998), plays in enamel? The later question is especially
interesting from the evolutionary perspective, since primitive enamel appeared prior to the sea-land
transition and the evolutionary explosion of keratins in basal tetrapods.

It is a widely accepted that, ectodermal appendages, such as teeth and hairs evolved
independently, but share a common developmental blueprint (Sharpe, 2001). Specifically, the
role of epithelial-mesenchymal interactions is absolutely critical for the development of these
organs, and their patterning and morphogenesis involve a number of shared regulatory pathways
(Biggs and Mikkola, 2014; Lan et al., 2014). These pathways are evolutionary conserved and
are involved in morphogenesis of other ectodermal appendages, such as elasmobranch teeth
(Rasch et al., 2016) or teleost scales (Sharpe, 2001), which are not direct evolutionary homologs
of mammalian teeth or hairs (Qu et al., 2015; Braasch et al., 2016). Although these disparate
organs utilize common morphogenetic blueprint, the structural proteins of these appendages differ
significantly and in many instances have evolved independently. The presence of Krt75 in the
mammalian teeth represents an evolutionary puzzle. It is established that the teeth covered with
true enamel appeared in the common ancestors of sarcopterygians prior to the sea to land transition
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and that the true enamel present in all classes of tetrapods (Qu
et al., 2015; Braasch et al., 2016), while the evolutionary explosion
of keratins occurred in basal tetrapods in connection with the
sea to land transition and adaptations to multiple land habitats
(Vandebergh and Bossuyt, 2012). Intriguingly, in Anura close
orthologs of hair and hair follicle keratins are expressed in toe
pads and claws, suggesting that the expansion of these genes is
associated with the evolution of ectodermal appendages in crown
tetrapods (Vandebergh et al., 2013). Although KRT75 gene was
not found in amphibians, it is present in all extant amniotes. In
birds Krt75 is found in the cells of the feather follicle but not in
the feathers themselves, which are made mainly of beta-keratins,
a specialized family of proteins found in reptiles and birds (Ng
et al., 2012; Greenwold et al., 2014). A mutation of Krt75 in
chicken leads to defects in feather rachis, causing so-called frizzle
feather phenotype (Ng et al., 2012). These observations draw
some interesting commonalities between Krt75 in mammals and
birds, namely their localization in the follicles but not in hairs and
nails themselves and their control of hair and feathermorphology

FIGURE 1 | A Schematic diagram illustrating the proposed hypothesis.

(Ng et al., 2012; Jasterzbski and Schwartz, 2015). This gene
also exist in lizards however its tissue localization is unknown
(Eckhart et al., 2008).

KRT75 is present in a wide variety of mammals, which is
not surprising since it plays a major role in hair formation.
Whales (Cetacea), which are hairless, lost a number of hair
and hair follicle keratin genes (Nery et al., 2014). Interestingly,
a recent study of keratin genes in 6 mammalian species with
annotated genomes showed that bottleneck dolphins (which
lack hair but retain teeth) retained functional KRT75 gene,
while in the toothless and hairless minke whales, this gene
is silent (Nery et al., 2014). Similarly, in pangolins which
are toothless animals, covered in scales, KRT75 is functional,
however there are two single amino acid substitutions in a
highly conserved region of the protein (Choo et al., 2016).
These findings suggest that KRT75 is important for tooth
formation. However, what is the potential role of (Biggs and
Mikkola, 2014) this protein in the mammalian teeth? This
question remains unclear. There are several major differences
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in tooth morphology and ultrastructure between mammals
and other toothed tetrapods. Among them is the presence
of thick prismatic enamel, with a sophisticated decussating
pattern, while other extant tetrapods present with prismless
enamel (Sander, 2000). According to Sander, development of
prismatic enamel occurred after the separation of synapsids from
other branches of amniotes (Sander, 1997). Enamel rod, the
basic building blocks of the prismatic enamel, is a secretory
product of Tomes’ process, a highly specialized cellular secretory
apparatus (Sander, 1997). Cross-sectional profiles and shapes
of the enamel rods are determined by the organization of
Tomes’ processes and trajectories of ameloblasts movements
during the appositional grows of secretory enamel. Importantly,
ameloblasts equipped with Tomes’ processes are only present in
mammals and are not found in other extant toothed tetrapods
(Sander, 2000). The facts presented above support a hypothesis
that Krt75, and potentially other hair follicle keratins, were

co-opted by ameloblasts during the evolution of Tomes’ process
and the prismatic enamel, which is the major evolutionary
innovation (Figure 1). The observation that a single amino acid
substitution in Krt75 causes malformation of the enamel rods
(Duverger et al., 2014) further supports this notion. It has
to be pointed out that, as of now, we do not have enough
information regarding the exact function of Krt75 in enamel
and the evolutionary modifications of the mammalian KRT75
to draw any conclusions. The goal of this essay was to provoke
interest in the research community to this intriguing possibility
of co-option of a highly specialized hair follicle keratin into
enamel.
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