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Abstract: Chronic neuroinflammation is a common feature of the aged brain, and its association with
the major neurodegenerative changes involved in cognitive impairment and motor dysfunction is well
established. One of the most potent antiaging interventions tested so far is dietary restriction (DR),
which extends the lifespan in various organisms. Microglia and astrocytes are two major types of
glial cells involved in the regulation of neuroinflammation. Accumulating evidence suggests that the
age-related proinflammatory activation of astrocytes and microglia is attenuated under DR. However,
the molecular mechanisms underlying DR-mediated regulation of neuroinflammation are not well
understood. Here, we review the current understanding of the effects of DR on neuroinflammation
and suggest an underlying mechanistic link between DR and neuroinflammation that may provide
novel insights into the role of DR in aging and age-associated brain disorders.
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1. Introduction

Aging is a naturally occurring multifactorial process that leads to morbidity and mortality.
In particular, brain aging manifests as a gradual decline in memory and cognitive, executive,
and motor functions. It is now widely accepted that brain aging is accompanied by region-dependent
morphological and functional alterations. These include anatomical atrophy, reduction in brain
volume, synaptic deficits, decline in the capacity for neurogenesis, cytoskeletal abnormalities,
mitochondrial dysfunction, an increase in reactive oxygen species (ROS) and oxidized proteins,
a reduction in neurotrophic factors, impairment of the blood–brain barrier (BBB), and induction
of chronic neuroinflammation (reviewed in [1,2]).

In experimental and clinical settings, dietary restriction (DR) is induced by reducing the caloric
intake and/or intermittent fasting. Since McCay and colleagues first reported the effect of DR on
lifespan in rats in 1935 [3], DR has been shown to be the most robust and reliable experimental
intervention for extending longevity. Accumulating evidence suggests that DR extends lifespan
in an evolutionary scale from worms to rodents [4]. Although the effects of DR on longevity and
brain function in nonhuman primates and human beings are still controversial [5–12], a recent report
from the CALERIE (Comprehensive Assessment of Long-term Effects of Reducing Intake of Energy)
trial noted that two-year-long DR in healthy, nonobese human subjects caused weight loss and
reduction in energy expenditure and oxidative stress [13]. These findings indicate that the mechanism
underlying DR-mediated antiaging may be evolutionally conserved from worms to mammals, possibly
including humans.
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A growing body of evidence demonstrates that DR exerts its beneficial effects on brain aging at
multiple levels. Although there is some degree of discrepancy across studies, likely due to the difference
in the model organisms and experimental design, DR appears to mitigate all of the morphological and
functional alterations in the brain associated with aging (reviewed in [1,14–17]).

A major hallmark of aging is systemic, low-grade chronic inflammation throughout the body,
termed inflamm-aging, a term coined by Claudio Franceschi in 2000 [18]. Notably, these inflammatory
signs are similar to the ones associated with obesity and metabolic diseases [19,20], providing a
possible glimpse into why DR exerts anti-inflammatory effects on aging-associated inflammation.
As with other organs, chronic low-grade inflammation is a common feature of the aged brain [21].
Neuroinflammation is a host defense mechanism against harmful stimuli and damage in the brain.
However, chronic inflammation can be deleterious in normal aging as well as in pathological aging
related to neurodegenerative diseases. The central nervous system (CNS) is composed of heterogeneous
cell types, including neurons, microglia, astrocytes, and oligodendrocytes. Although two major glial
cell types, astrocytes and microglia, are known to be key players in inflammatory responses in the brain,
it is now well recognized that all neural cells participate to some degree in the neuroinflammatory
responses. Neuroinflammation often manifests as astrogliosis, microgliosis, and an increase in secreted
inflammatory mediators, such as cytokines, chemokines, and complement proteins. Accumulating
evidence from clinical and basic research suggests that neuroinflammation is tightly connected to
the decline in brain function during aging [22]. In this article, we review the evidence that DR
has an anti-neuroinflammatory effect and suggest an underlying mechanistic link between DR and
neuroinflammation that may provide novel insights into the role of DR in aging and age-associated
brain disorders.

2. Neuroinflammation in the Aged Brain

2.1. Evidence of Increased Neuroinflammation with Age

The brain was once considered to be an absolute immune-privileged organ isolated from the
systemic immune system by the BBB. In fact, the brain is an immunologically active organ that
communicates with the immune and endocrine systems. Moreover, circulating cytokines and
chemokines can signal to the CNS, although the underlying mechanisms are still elusive [23,24].
Similar to the changes seen in the systemic immune system with aging, numerous studies have
revealed that the inflammatory status of the brain increases during normal aging. The hallmarks of
brain aging include impairment of DNA repair, accumulation of oxidative damage, and inflammatory
activation of glial cells [21]. Consistent with this, induction of the genes associated with immune and
inflammatory responses is observed in most human brain regions during normal aging, although the
changes vary across brain regions [25–27]. Moreover, proinflammatory cytokines, such as interleukin-1
beta (IL-1β), tumor necrosis factor alpha (TNF-α), and interleukin-6 (IL-6), are increased in multiple
brain regions, including hippocampus and cortex, during normal aging [28–34]. Furthermore, some
immune regulatory molecules and anti-inflammatory cytokines, including interleukin-10 (IL-10) and
interleukin-4 (IL-4), were found to be reduced in aged rodent brains [35,36]. In addition, the aged brain
is more vulnerable to peripheral systemic inflammatory stimuli [37]. Hypothalamic inflammation
impairs the brain-governed energy control and glucose homeostasis, thereby promoting peripheral
inflammation as well as neuroinflammation [14].

Another hallmark of neuroinflammation is gliosis. Gliosis is the focal proliferation and activation
of glial cells (astrocytes, microglia, and oligodendrocytes) in the CNS in response to various insults.
Overwhelming evidence shows that astrogliosis is increased in multiple brain regions during
normal aging in both rodents and humans [38–40]. Activation of astrocytes is observed relatively
early in adult brains during aging, as evidenced by increased expression of glial fibrillary acidic
protein (GFAP) [40–46]. Signs of microgliosis and microglial activation, such as induction of major
histocompatibility complex II (MHC II), scavenger receptor (CD86), and CD40, are also prominent in
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the aged brain [37,41,42,47–50]. Microglia isolated from the aged mouse brains were found to be more
sensitive to inflammatory stimuli than those from the young brains [37].

Taken together, these studies demonstrate that even healthy aged brains have a significant increase
in neuroinflammatory responses, as evidenced by increased gliosis, elevated levels of inflammatory
cytokines, and decreased levels of anti-inflammatory molecules.

2.2. Microglia in the Aged Brain

Microglia are the innate immune cells in the CNS that play a pivotal role in maintaining
microenvironment homeostasis, synaptic plasticity, and immune surveillance [51–53]. During
embryogenesis, microglial progenitor cells originated from yolk sac-derived myeloid migrate into
the CNS before the BBB construction is completed [54,55]. Once the BBB construction is completed,
the peripheral hematopoietic system does not further contribute to the microglia pool of the CNS
under normal condition, meaning that the adult microglia population is maintained by self-renewal
in the brain [56,57]. In addition, microglia are long-lived cells with the median lifetime of 15 months
in mouse neocortex, and only about 26% of microglia are replaced per year [58]. Réu and colleagues
reported that microglia in the human brain is on average 4.2 years old, and the median renewal rate is
28% per year [59]. A long life span of microglia may make them more susceptible to the aging-related
changes compared to other neural cells.

Microglia play a key role in neuroinflammation associated with aging. Microglia in the young
adult brain, which are typically in a quiescent resting state, become activated in response to various
types of insults. With aging, microglia develop an altered phenotype compatible with proinflammatory
activation. The elevated inflammatory profile of microglia during aging is closely associated with a
“primed” state. “Primed” microglia have a higher basal expression of inflammatory response genes,
a lower threshold for inflammatory activation, and elevated reactivity following an immune challenge [60].
Many inflammatory markers, such as MHC II, complement receptor 3 (CD11b), Toll-like receptors (TLRs),
CD86, CD11b, and CD11c, are upregulated in microglia of the aged brain [61–63]. Among TLRs, TLR2–4
are known to be important for the ATP-dependent secretion of IL-1β in primed microglia [64]. Besides
molecular changes, morphological changes in microglia also occur in the aged brain from rodent
to human. Microglia in the aged brain show a “de-ramified” morphology characterized by short
processes and reduced dendritic branching, suggesting an activation of microglia with age [65–69].

Godbout and colleagues showed that peripheral injection of lipopolysaccharide (LPS), a powerful
inducer of the inflammatory response, caused an exaggerated and prolonged neuroinflammatory
response in the aged brain [29]. The elevated inflammatory responses in aged mice were associated
with sustained behavioral deficits, such as reduced motor function and altered social behavior [29].
In addition, elevated levels of IL-1β after systemic injection of LPS were mainly derived from MHC
II (a marker for primed microglia)-positive microglia in the aged mouse brain [37]. Consistent with
this, systemic injection of Escherichia coli resulted in an exaggerated and prolonged upregulation
of IL-1β in hippocampus of aged rats compared with young adults [70]. Aged rodents and older
individuals showed enhanced neuroinflammation, increased neurodegeneration, and poorer recovery
after traumatic brain injury (TBI) than their younger counterparts [71–73]. Aged mice experienced
more severe neuronal damage upon TBI induction by controlled cortical impact that young mice [72].
Moreover, MHC II was strongly upregulated in microglia of the aged TBI brain [72]. Taken together,
these reports indicate that primed microglia play an important role in enhancing neuroinflammatory
responses to immune challenges in the aged brain.

The effect of aging on microglia gene expression was recently investigated through transcriptome
analysis in microglia isolated from young and aged mouse brains [74]. Consistent with the
characteristics of aged microglia, genes associated with the immune, phagosome, lysosome, oxidative
phosphorylation, and antigen presentation signaling pathways were significantly affected by aging [74].
It is noteworthy that the transcriptional profile of aged microglia was clearly different from that of M1
macrophage, M2 macrophages, or acutely activated microglia [74]. A list of differentially expressed
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genes (DEG) between young and aged microglia associated with the immune, inflammatory responses,
and antigen presentation signaling pathways is summarized in Table 1 [74].

Table 1. List of differentially expressed genes (DEGs) associated with inflammation/immune response
in aged microglia.

Gene Name GO Term Expression Level
Old vs. Young Age/Brain Region Species Reference

Axl
GO:0002376,
GO:0045087,
GO:0006954

Up 24 months/whole brain Mus musculus [74]

Camp GO:0045087 Up 24 months/whole brain Mus musculus [74]

Ccl3
GO:0006954,
GO:0050729,
GO:0006955

Up 24 months/whole brain Mus musculus [74]

Cd274 GO:0006955 Up 24 months/whole brain Mus musculus [74]

Cd36 GO:0006955 Up 24 months/whole brain Mus musculus [74]

Cd74

GO:0002376,
GO:0006955,
GO:0019886,
GO:0042613

Up 24 months/whole brain Mus musculus [74]

Chst1 GO:0006954 Up 24 months/whole brain Mus musculus [74]

Clec7a GO:0045087,
GO:0006954 Up 24 months/whole brain Mus musculus [74]

Ctse GO:0019886 Up 24 months/whole brain Mus musculus [74]

Cxcl13 GO:0006954,
GO:0006955 Up 24 months/whole brain Mus musculus [74]

Cybb GO:0045087,
GO:0006954 Up 24 months/whole brain Mus musculus [74]

H2-aa

GO:0002376,
GO:0006955,
GO:0019886,
GO:0042613

Up 24 months/whole brain Mus musculus [74]

H2-ab1

GO:0002376,
GO:0006955,
GO:0019886,
GO:0042613

Up 24 months/whole brain Mus musculus [74]

H2-eb1

GO:0002376,
GO:0006955,
GO:0019886,
GO:0042613

Up 24 months/whole brain Mus musculus [74]

Ifit3 GO:0002376,
GO:0045087 Up 24 months/whole brain Mus musculus [74]

Ifitm2 GO:0002376 Up 24 months/whole brain Mus musculus [74]

Ifitm3 GO:0002376,
GO:0045087 Up 24 months/whole brain Mus musculus [74]

Lcn2 GO:0002376,
GO:0045087 Up 24 months/whole brain Mus musculus [74]

Lgals3 GO:0002376,
GO:0045087 Up 24 months/whole brain Mus musculus [74]

Ltf GO:0002376 Up 24 months/whole brain Mus musculus [74]

Ly9 GO:0002376,
GO:0045087 Up 24 months/whole brain Mus musculus [74]

Oasl2
GO:0002376,
GO:0045087,
GO:0006955

Up 24 months/whole brain Mus musculus [74]

Rsad2 GO:0002376,
GO:0045087 Up 24 months/whole brain Mus musculus [74]

S100a8

GO:0002376,
GO:0045087,
GO:0006954,
GO:0050729

Up 24 months/whole brain Mus musculus [74]

S100a9

GO:0002376,
GO:0045087,
GO:0006954,
GO:0050729

Up 24 months/whole brain Mus musculus [74]

Spp1 GO:0006954 Up 24 months/whole brain Mus musculus [74]

GO:0002376, immune system process; GO:0006954, inflammatory response; GO:0006955, immune response;
GO:0019886, antigen processing and presentation of exogenous peptide antigen via MHC class II; GO:0042613, MHC
class II protein complex; GO:0045087, innate immune response; GO:0050729, positive regulation of inflammatory
response. All gene listed passed the rule that log2 fold change >1 and adjusted p value <0.05.
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2.3. Astrocytes in the Aged Brain

Astrocytes are the most abundant cell type in the mammalian brain. Astrocytes are essential
for neuroprotection against excitotoxicity, ROS, insults, and extracellular overload of potassium
ions [75]. They also have functions associated with synaptic plasticity and trophic support for
neurons [75]. Similar to microglia, astrocytes display an elevated inflammatory profile with age,
including morphological and molecular alterations. For example, astrocytes in young human subjects
were found to have long and slender processes, whereas astrocytes in aged brains possessed short and
stubby processes [76]. In addition, upregulation of GFAP and vimentin has been reported in astrocytes
of aged brains [60]. Notably, increased expression of GFAP and vimentin is a typical signature of
reactive astrocytes [77,78]. Thus, these findings indicate that astrocytes become reactive with age.

Upon immune challenge to the CNS, such as with an injury, activated astrocytes secrete various
inflammatory mediators, such as chemokines, cytokines, and growth factors [79]. Astrocytes interact
with microglia to regulate inflammatory responses in the brain. For instance, orosomucoid-2 (ORM2)
derived from astrocytes effectively inhibited the proinflammatory activation of microglia via C-C
chemokine ligand 4 (CCL4) during the late phase of neuroinflammation [80]. Recently, Liddelow and
colleagues reported that activated microglia can induce the formation of A1 reactive astrocytes, a
neurotoxic inflammatory astrocyte [81], by secreting cytokines, including IL-1α, TNFα, and C1q [77].
A subset of genes associated with reactive astrocytes was upregulated in the aged brain of wild-type
mice, whereas their upregulation was significantly attenuated in mice lacking Il-1α, Tnfα, and C1q [82].
These data suggest that Il-1α, TNFα, and C1q are critical for activation of astrocytes in the aged brain.

Recently, two groups performed transcriptomic analyses in astrocytes isolated from multiple
regions of young and aged mouse brains [82,83]. Both studies suggest that astrocytes have
region-specific transcriptional identities and that their transcriptional changes with age are also
region-dependent. Moreover, compared with young astrocytes, aged astrocytes show a stronger
gene expression profile associated with reactive astrocytes [82,83]. A list of aging-induced DEG in
astrocytes associated with immune responses, inflammatory responses, and antigen presentation
signaling pathways is summarized in Table 2.

Table 2. List of DEGs associated with inflammation/immune response in aged astrocytes.

Gene Name GO Term
Expression

Level Old vs.
Young

Age/Brain Region Species Reference

Akap8 GO:0002376,
GO:0045087 Up 24 months/Striatum Mus musculus [82]

App GO:0045087 Up 24 months/Striatum Mus musculus [82]

B2m
GO:0006955,
GO:0002376,
GO:0045087

Up 24 months/
Hippocampus, Striatum Mus musculus [82]

Bcl6 GO:0002376,
GO:0006954 Up 24 months/

Cortex, Striatum Mus musculus [82]

Bmp6 GO:0006954 Up 24 months/
Visual cortex, Striatum Mus musculus [82,83]

Bst2 GO:0045087,
GO:0002376 Up 24 months/Motor cortex Mus musculus [83]

C3
GO:0045087,
GO:0002376,
GO:0006954

Up 24 months/Motor cortex,
Visual cortex Mus musculus [83]

C4b GO:0045087,
GO:0006954 Up 24 months/Motor cortex,

Visual cortex, Striatum Mus musculus [82,83]

Csf1
GO:0002376,
GO:0045087,
GO:0006954

Up 24 months/Striatum Mus musculus [82]
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Table 2. Cont.

Gene Name GO Term
Expression

Level Old vs.
Young

Age/Brain Region Species Reference

Ctss GO:0019882,
GO:0006955 Up 24 months/

Hippocampus, Striatum Mus musculus [82]

Cxcl10 GO:0006955,
GO:0006954 Up 24 months/

Hippocampus, Striatum Mus musculus [82]

Cxcl12 GO:0006955 Down 24
months/Hippocampus Mus musculus [82]

Cxcl5 GO:0006954 Up 24 months/Visual cortex Mus musculus [83]

Defb1 GO:0045087 Up 24 months/Motor cortex,
Visual cortex Mus musculus [83]

Enpp2 GO:0006955 Down 24
months/Hippocampus Mus musculus [82]

Erap1 GO:0002376 Up 24 months/Striatum Mus musculus [82]

H2-d1
GO:0019882,
GO:0006955,
GO:0002376

Up 24 months/Cortex,
Hippocampus, Striatum Mus musculus [82]

H2-k1
GO:0019882,
GO:0006955,
GO:0002376

Up 24 months/
Hippocampus, Striatum Mus musculus [82]

Hfe GO:0019882 Up 24 months/Striatum Mus musculus [82]

Icosl GO:0002376 Up 24 months/Striatum Mus musculus [82]

Ifit1 GO:0045087,
GO:0002376 Up 24 months/Visual cortex,

Striatum Mus musculus [82,83]

Ifit3 GO:0002376,
GO:0045087 Up 24 months/Cortex,

Striatum Mus musculus [82]

Ifitm3 GO:0002376,
GO:0045087 Up 24 months/Cortex,

Striatum Mus musculus [82]

Ly86
GO:0002376,
GO:0045087,
GO:0006954

Up 24 months/Striatum Mus musculus [82]

Nlrp6
GO:0045087,
GO:0002376,
GO:0006954

Up 24 months/Visual cortex Mus musculus [83]

Oasl2
GO:0045087,
GO:0002376,
GO:0006955

Up
24 months/Motor cortex,

Visual cortex,
Hippocampus, Striatum

Mus musculus [82,83]

Psmb8 GO:0002376,
GO:0019882 Up 24 months/Visual cortex,

Hippocampus, Striatum Mus musculus [82,83]

Psmb9 GO:0002376,
GO:0019882 Up 24 months/

Hippocampus, Striatum Mus musculus [82]

Rsad2 GO:0045087,
GO:0002376 Up 24 months/Visual cortex Mus musculus [83]

Serinc3 GO:0002376,
GO:0045087 Up 24 months/Striatum Mus musculus [82]

Serping1 GO:0002376,
GO:0045087 Up 24 months/Striatum Mus musculus [82]

Tspan2 GO:0006954 Up 24 months/Striatum Mus musculus [82]

Tyrobp GO:0045087 Up 24 months/Striatum Mus musculus [82]

Zc3hav1 GO:0045087,
GO:0002376 Up 24 months/Visual cortex,

Striatum Mus musculus [82,83]

GO:0019882, antigen processing and presentation; GO:0002376, immune system process; GO:0006954, inflammatory
response; GO:0006955, immune response; GO:0045087, innate immune response. All gene listed passed the rule that
log2 fold change >1 and adjusted p value <0.05.
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3. The Effects of Dietary Restriction on Neuroinflammation

3.1. The Effects of Dietary Restriction on Neuroinflammation in Normal Aging

The beneficial effects of DR on cognition and memory are under debate, with some studies
reporting beneficial effects and others showing no benefits in the aging process [1,16,84–93]. However,
there is agreement across studies that DR exerts anti-inflammatory effects against aging-driven
neuroinflammation [15,17,94,95]. DR attenuated aging-driven increase in GFAP levels in multiple brain
regions, including hypothalamus [96,97], hippocampus [97,98], corpus callosum [41], and cortex [97] in
middle-aged rodents. Short-term DR in middle age in rhesus macaques also attenuated astrogliosis in
hippocampus, suggesting conservation of the effects of DR on astrogliosis from rodents to nonhuman
primates [5]. Downregulation of GFAP levels by DR is regulated at least in part at the transcriptional
level [38,41]. Rozovsky and colleagues reported that neurite outgrowth was significantly reduced in
cortical neurons cultured together with astrocytes derived from 24-month-old rats compared with those
from 3-month-old rats [99]. Interestingly, knock-down of GFAP by RNAi diminished effects of aged
astrocytes on neurite outgrowth, suggesting that the role of activated astrocytes in normal aging is not
restricted to inflammatory regulation in the brain. Besides astrogliosis, DR also attenuated aging-driven
microgliosis in corpus callosum, striatum, hippocampus, and hypothalamus in rodents [32,38,41,100].
DR downregulated circulating inflammatory mediators in the periphery [32,101,102]. In line with this,
short-term DR in old age attenuated aging-associated induction of inflammatory cytokines, such as
IL-1β in mouse hippocampus [28], TNF-α, and IL-6 in rat hypothalamus [32].

Morgan and colleagues showed that activation of astrocytes and microglia in rat brain was
regulated by chronic DR from young to middle age in a region-specific manner [41]. Besides
inflammation, DR also regulated aging-associated decrease in Sirtuin 1 (SIRT1) [103,104] and
Brain-derived neurotrophic factor (BDNF) [105,106] in the brain in a region-specific manner, raising
the possibility that different regulatory pathways may respond to DR or that the same regulatory
pathways may respond to DR to different extents in different brain regions. Of note, gross effects of
DR seen in the aged brain were not observed at young age [96,107,108], suggesting that molecular
pathways regulated by DR are somehow inert in the brain at young age or that they respond to DR
only when they are dysregulated over certain thresholds with advancing age.

Several studies have performed transcriptome analyses in dietary-restricted rodents during
aging [109–112]. A number of genes associated with inflammation or the immune response showed
changed expression levels under DR in aged rodent brains. When the DEGs for aged microglia
were compared with the immune-related DEGs that were affected by DR, genes involved in antigen
processing and presentation via MHC II were found in both lists (Tables 1 and 3, H2-eb1, Ctse, H2-aa,
H2-ab1, and Cd74). As mentioned above, MHC II is a marker for primed microglia. Interestingly, recent
transcriptome and proteome analyses of human aged microglia have shown that genes and proteins
related to antigen processing and presentation are significantly affected by aging [113]. Furthermore,
overall age-related increases in the genes associated with antigen processing and presentation via MHC
I have been reported in astrocytes (Table 2, [114]). Therefore, it is possible that the antigen processing
and presentation pathway is a possible mechanistic link between DR and neuroinflammation.
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Table 3. List of DEGs associated with inflammation/immune response in dietary restriction
during aging.

Gene Name GO Term Expression Level
DR vs. AL Age/Brain Region Species Reference

Prlr GO:0034097 Down 15 months/Hippocampus Mus musculus [109]

Il2ra GO:0034097 Up 15 months/Hippocampus Mus musculus [109]

Sigirr GO:0034097 Down 15 months/Hippocampus Mus musculus [109]

Ptk2b GO:0002376 Up 15 months/Hippocampus (CA1) Mus musculus [112]

Bcl6
GO:0006954,
GO:0050727,
GO:0002376

Up 15 months/Hippocampus (CA1) Mus musculus [112]

Ccr1 GO:0006954 Up 15 months/Hippocampus (CA1) Mus musculus [112]

Il1r1 GO:0050727 Up 15 months/Hippocampus (CA1) Mus musculus [112]

Tnfrsf25 GO:0006954 Up 15 months/Hippocampus (CA1) Mus musculus [112]

Gal GO:0006954 Up 15 months/Hippocampus (CA1) Mus musculus [112]

H2-q10 GO:0002376 Up 15 months/Hippocampus (CA1) Mus musculus [112]

S100a8
GO:0006954,
GO:0050727,
GO:0002376

Up 15 months/Hippocampus (CA1) Mus musculus [112]

S100a9
GO:0006954,
GO:0050727,
GO:0002376

Up 15 months/Hippocampus (CA1) Mus musculus [112]

C1qbp GO:0006955 Up 28 months/Cerebral cortex Rattus norvegicus [111]

Rt1-db1

GO:0006955,
GO:0019886,
GO:0042613,
GO:0002504

Up 28 months/Cerebral cortex Rattus norvegicus [111]

Rt1-ba

GO:0006955,
GO:0019886,
GO:0042613,
GO:0002504,
GO:0019882

Up 28 months/Cerebral cortex Rattus norvegicus [111]

Cxcl12 GO:0006955 Up 28 months/Cerebral cortex Rattus norvegicus [111]

Rt1-da

GO:0006955,
GO:0042613,
GO:0002504,
GO:0019882

Up 28 months/Cerebral cortex Rattus norvegicus [111]

Cd74

GO:0006955,
GO:0019886,
GO:0042613,
GO:0019882

Up 28 months/Cerebral cortex Rattus norvegicus [111]

Rt1-bb

GO:0006955,
GO:0019886,
GO:0042613,
GO:0002504,
GO:0019882

Up 28 months/Cerebral cortex Rattus norvegicus [111]

Fcer1g GO:0019886 Up 28 months/Cerebral cortex Rattus norvegicus [111]

Rab3b GO:0019882 Up 28 months/Cerebral cortex Rattus norvegicus [111]

Tnfaip6 GO:0006954 Down 19 months/Hypothalamus Mus musculus [110]

C1qg GO:0002376 Up 19 months/Hypothalamus Mus musculus [110]

GO:0002376, immune system process; GO:0002504, antigen processing and presentation of peptide or polysaccharide
antigen via MHC class II; GO:0006954, inflammatory response; GO:0006955, immune response; GO:0019882, antigen
processing and presentation; GO:0019886, antigen processing and presentation of exogenous peptide antigen via
MHC class II; GO:0034097, response to cytokine; GO:0042613, MHC class II protein complex; GO:0050727, regulation
of inflammatory response. All gene listed passed the rule that log2 fold change >0.5 and adjusted p value <0.05.

3.2. The Effects of Dietary Restriction in Age-Related Neurodegenerative Diseases

Neuroinflammation is a major pathological hallmark of many neurodegenerative diseases, such as
Alzheimer’s disease (AD), Parkinson’s disease (PD), amyotrophic lateral sclerosis (ALS), and multiple
sclerosis (MS) [115–118]. So far, several studies have evaluated the beneficial effects of DR on AD in
different mouse and monkey models. AD is pathologically characterized with abnormal accumulation
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of amyloid plaques and neurofibrillary tangles (NTFs), mainly composed of extracellular amyloid beta
(Aβ) and intracellular tau, respectively [119]. Short-term DR before amyloid plaque accumulation
significantly decreased accumulation of amyloid plaques and GFAP levels in two different mouse
models of amyloidosis, J20 (DR for 6 weeks) and Tg2576 (DR for 14 weeks) [120]. J20 line expresses
human APPswe/ind with the K670N/M671L (Swedish) and the V717F (Indiana) mutations [121], whereas
Tg2576 line expresses human APPswe mutant with PS1 with M146L mutation [122]. Chronic DR
for 12 months similarly decreased amyloid plaque burden in the brain of Tg25765 mice [123,124].
In another study, Mouton and colleagues sought to evaluate the therapeutic potential of DR at
advanced pathologic stage in APPswe/PS1∆E9 mouse model of AD [125]. APPswe/PS1∆E9 mice aged
13–14 months with severe accumulation of amyloid plaques were subjected to DR for 4.5 months.
DR significantly reduced amyloid plaque deposition in the brain, suggesting that DR may represent a
novel therapeutic strategy for patients with advanced AD. It is noteworthy that DR attenuated amyloid
pathology only in female Tg2576 and not in male mice [123]. By contrast, DR attenuated amyloid
deposition in male APPswe/PS1∆E9 line [125]. This conflicting finding may be due to different mouse
models, different experimental settings, and/or different DR regimen in those two studies. Further
investigations are needed to fully address whether sex influences the neuroprotective effects of DR on
AD. Wu and colleagues demonstrated that DR attenuated astrogliosis in a double knockout of Psen1
and Psen2, another AD mouse model [126]. Ghrelin agonist, which induces hunger, also reduced the
levels of insoluble Aβ and microgliosis in hippocampus of APPSwDI mice [127]. Whether DR reduces
amyloid deposition in nonhuman primates is debatable. Although life-long DR reduced Aβ levels
in temporal cortices of Squirrel monkeys [128], short-term DR in middle age did not reduce amyloid
plaque burden in aged rhesus macaques [5]. However, DR attenuated astrogliosis in hippocampal CA
region and entorhinal cortex in aged rhesus macaques [5]. In mouse models of tau pathology, DR has
generated inconsistent results. Chronic DR reduced both Aβ and phospho-tau levels in hippocampus
in the triple transgenic mouse model of AD, 3xTg mice expressing human APP KM670/671NL, TAU
P301L, and PSEN1 M146V mutants with concomitant improvement in memory [129]. In a mouse
model only expressing human mutant Tau (Tg4510), DR partially rescued memory deficits without
altering tau accumulation, neuronal loss, or the levels of astroglial (GFAP) and microglial activation
(Iba-1) [130].

PD is characterized by selective loss of dopaminergic neurons in the substantia nigra region [131].
DR ameliorated the loss of dopaminergic neuron and motor deficits in a 1-methyl-4-phenyl-
1,2,3,6-tetrahydropyridine (MPTP)-induced moue model of PD [132]. By contrast, no beneficial effects
of DR were observed in 6-hydroxydopamine-induced rat model of PD [133]. In a MPTP-induced PD
model of rhesus monkey, six months of DR improved locomotor activity and increased the levels of
dopamine and its metabolites in striatum [134]. It is notable that DR attenuated MPTP-induced loss of
dopaminergic neuron, astrogliosis, and microgliosis in substantia nigra in WT but not ghrelin KO mice,
suggesting that ghrelin mediates the neuroprotective effects of DR in MPTP-induced mouse model of
PD [135]. DR also attenuated pathologic events in a mouse model of Huntington’s disease (HD) [136].

In animal models of ALS, DR has generated conflicting results in different studies. Chronic DR
accelerated clinical onset and progression and shortened the lifespan while transiently improving
motor performance in a mouse model of ALS expressing human SOD1 G93A mutant [137], possibly
by increasing lipid peroxidation, inflammation, and apoptosis [138]. In another study with the same
model, no benefit of DR on disease onset or progression was observed [139]. However, DR significantly
delayed the onset of disease and extended the lifespan in a different mouse model of ALS expressing
SOD1 H46R/H48Q mutant [140]. Because of the substantial discrepancies across studies, it is difficult
to draw a firm conclusion as to whether DR is beneficial in experimental models of ALS.

MS is a chronic inflammatory neurodegenerative disorder characterized by demyelination in the
CNS [141]. In an experimental allergic encephalomyelitis (EAE), a rodent model of MS, 15 days of
severe DR (66% food restriction) before EAE induction in 6 week-old male rats significantly attenuated
progression of EAE [142]. In contrast to severe calorie restriction (66% food restriction), 15 days of
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mild DR (33% food restriction) before EAE induction in 6-week-old male rats had no inhibitory effect
on the development of acute EAE [143]. Five weeks of mild DR (40% food restriction) before EAE
induction in 5-week-old mice ameliorated clinical EAE with less severe inflammation, demyelination,
and axon injury [144], suggesting that the effects of DR on EAE are dependent on severity and
duration of regimen. A recent study demonstrated that periodic cycles of fasting mimicking diet with
very-low-calorie and low-protein lasting 3 days every 7 days ameliorated demyelination and promoted
oligodendrocyte precursor cell regeneration in a mouse model of EAE [145]. Although there is a report
suggesting the beneficial effect of saturated fat restriction on MS in humans [146], it is currently not
clear whether DR has protective and/or therapeutic effect on MS in humans.

4. A Potential Mechanistic Link between Dietary Restriction and Neuroinflammation

Although the precise mechanisms of DR’s neuroprotective functions are not fully elucidated,
it has been suggested that DR exerts neuroprotective effects through multiple pathways, such
as modulating metabolic rates, reducing oxidative stress, increasing anti-inflammatory responses,
regulating insulin sensitivity, and improving synaptic plasticity and neurogenesis (reviewed in [15,16]).
All of the molecular changes induced by DR may directly or indirectly contribute to the regulation of
neuroinflammation associated with aging and neurodegenerative diseases. DR may directly mitigate
activation of glial cells and modulate expression of inflammatory cytokines and indirectly regulate
neuroinflammation by reducing inflammatory stresses, such as accumulation of toxic proteins and
oxidative stress.

A previous gene profiling study provided evidence that DR increased IκBα, a NF-κB inhibitor,
and decreased the p65 subunit of NF-κB in mouse neocortex [147]. Besides regulating expression
of NF-κB, DR also reduced phosphorylation and activity of NF-κB in the brain of a mouse model
of experimental astrocytoma [148]. These findings suggest that DR suppresses inflammation by
inhibiting NF-κB signaling in the brain. It is well established that inflammation induces ROS
generation in various cell types. In turn, ROS can activate redox-sensitive NF-κB, forming a positive
feed-forward loop [149,150]. An increase of oxidative stress in the brain is a hallmark of aging as well
as neurodegenerative diseases. It is evident that DR reduces oxidative stress in senescent astrocytes
as well as in aged brains, as evidenced by reduction in ROS and protein oxidation [16,151–154].
Although how DR reduces oxidative stress in the brain remains elusive, several potential mechanisms
of DR’s antioxidative functions have been proposed [155]. A recent transcriptome study showed
that DR increased expression of ROS scavengers, such as glutathione S-transferases and thioredoxins,
in cortices of rats [111]. In another study, Hyun and colleagues demonstrated that DR increased
activities of multiple enzymes related to plasma membrane redox system and antioxidants, such
as α-tocopherol and coenzyme Q10 [152]. DR also attenuated age-dependent induction of NADPH
oxidase 2 (NOX2) in hypothalamus, which may contribute to the reduction of ROS by DR in the aged
brain [32]. Taken together, it is likely that DR ameliorates neuroinflammation associated with aging
and neurodegenerative diseases at least in part by reducing oxidative stress and thereby suppressing
inflammatory responses in the brain.

Cellular redox status can also regulate SIRT1, a regulator of oxidative stress and
inflammation [156]. SIRT1-mediated deacetylation of p65 subunit of NF-κB inhibits inflammatory
responses via suppressing NF-κB signaling pathway [157]. SIRT1 can also regulate oxidative stress
by modulating FOXO3, which regulates expression of antioxidant genes, such as MnSOD [158]. It is
also notable that SIRT1 can regulate cellular redox status by modulating mitochondrial biogenesis by
inducing PGC1-α and nitric oxide synthase [156,159]. Oxidative stress is known to suppress expression
and activity of SIRT1 at the transcriptional and posttranslational levels [14,156]. In line with this,
reduced SIRT1 expression has been reported in the brains of aged rodents [103,160]. Several lines
of evidence have shown that SIRT1 level is increased by DR in multiple brain regions, including
hypothalamus, hippocampus, and cortex [103,104,161,162]. Of note, it has been reported that Sirt1
transgenic mice have phenotypes that resemble DR [163] and show better physical activity in response
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to DR than wild-type mice [104]. By contrast, Sirt1-deficient mice exhibit defects in somatotropic
and behavioral responses to DR [104,164]. SIRT1, together with NF-κB, seem to lie at the hub of
antioxidative and anti-inflammatory responses mediated by DR in the brain.

Besides NF-κB and SIRT1-mediated pathways, several other pathways have been suggested
as potential mechanisms mediating the anti-inflammatory action of DR, such as modulation of
BBB permeability and regulation of steroid hormones in hypothalamic–pituitary–adrenal axis,
such as glucocorticoid [20,165]. However, it is not clear whether these pathways indeed mediate
anti-inflammatory action of DR in the brain due to a lack of solid evidence. Further studies are
warranted to comprehensively understand mechanisms of anti-neuroinflammatory action of DR.

5. Conclusions

There is overwhelming evidence that DR attenuates inflammatory responses associated with
aging in the brain. Figure 1 shows the possible relationship between DR and neuroinflammation during
aging. However, the molecular bases of DR-mediated anti-inflammatory responses in the brain remain
elusive. Moreover, it is not clear whether DR is neuroprotective for age-related neurodegenerative
diseases because of mixed results. Thus, further in-depth studies are warranted to fully elucidate the
molecular mechanisms of anti-inflammatory responses mediated by DR and whether DR can represent
a novel therapeutic intervention for neurodegenerative diseases.
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CALERIE Comprehensive Assessment of Long-term Effects of Reducing Intake of Energy
BBB Blood–brain barrier
IL-1β Interleukin-1 beta
TNF-α Tumor necrosis factor alpha
IL-6 Interleukin-6
GFAP Glial fibrillary acidic protein
MHC II Major histocompatibility complex II
TLRs Toll-like receptors
Iba-1 Ionized calcium-binding adapter molecule 1
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TBI Traumatic brain injury
CCL4 C-C chemokine ligand 4
DEG Differentially expressed genes
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BDNF Brain-derived neurotrophic factor
SIRT1 Sirtuin 1
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PD Parkinson’s disease
ALS Amyotrophic lateral sclerosis
NTFs Neurofibrillary tangles
Aβ Amyloid beta
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AL Ad libitum
EAE Experimental allergic encephalomyelitis
NOX2 NADPH oxidase 2
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