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Abstract

Recent data-sharing initiatives of clinical and preclinical Alzheimer’s disease (AD) have

led to a growing number of non-clinical researchers analyzing these datasets using

modern data-driven computational methods. Cognitive tests are key components of

such datasets, representing the principal clinical tool to establish phenotypes and

monitor symptomatic progression. Despite the potential of computational analyses in

complementing the clinical understanding of AD, the characteristics and multifacto-

rial nature of cognitive tests are often unfamiliar to computational researchers and

other non-specialist audiences. This perspective paper outlines core features, idiosyn-

crasies, and applications of cognitive test data. We report tests commonly featured

in data-sharing initiatives, highlight key considerations in their selection and analy-

sis, and provide suggestions to avoid risks of misinterpretation. Ultimately, the greater

transparency of cognitive measures will maximize insights offered in AD, particularly

regarding understanding the extent and basis of AD phenotypic heterogeneity.
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1 INTRODUCTION

Longitudinal data collection and sharing initiatives represent a step

change for research into Alzheimer’s disease (AD) progression. Such

initiatives have enabled availability of multiple big datasets, which has

increasingly encouraged non-clinical researchers who are developing

innovative data-driven methods to study early detection and progres-

sion patterns of the disease.1 Cognitive assessments comprise a key

component of these datasets. They are widely used in clinical practice,

and are considered a primary index for characterizing disease sever-

ity and clinical presentation, and a gateway for further investigations.2
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Moreover, they define clinical understanding of patients’ needs and

management, based on cognitive phenotype.

The application and development of cognitive tests is a key aspect of

clinical research into improving diagnosis, characterization of samples

and longitudinal change, outcome measures including composite

scores,3 and for validating potential AD biomarkers and data-driven

subtypes. Investigating how cognitive phenotype is associated with

genetic, demographic, and anatomical characteristics carries various

mechanistic implications for our understanding of AD. Salient ques-

tions include to what extent apolipoprotein E (APOE) genotype and

other factors influence the considerable phenotypic heterogeneity
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evident in AD,2 ranging from typical memory-led AD to canonical atyp-

ical clinical phenotypes including visual-/spatial,4 language-, motor-,

or executive-led presentations, and understanding factors associated

with cognitive resilience.

Big data collection initiatives offer an unparalleled opportunity to

advance these research areas. There are, however, frequent inconsis-

tencies and misconceptions in the use of neurocognitive data. Com-

mon methodological and analytical mistakes include overinterpreting

the correspondence between an individual test and a specific cognitive

domain or function,5 inappropriate definition of “impairment” basedon

normative data,6 and underappreciation of test properties, such as sus-

ceptibility to practice, ceiling, and floor effects.7 Compounding these

are the diversity of cognitive domains, AD presentation (typical, atypi-

cal) and progression (preclinical, prodromal, syndromic), the enormous

array of tests, and their properties and idiosyncrasies.

This position paper aims to present common pitfalls and promote

best practices for data-driven computational analyses of cognitive

measures to maximize their value in the global efforts to understand

and manage AD. We highlight key challenges and common pitfalls

through examples using cognitive tests commonly available in open

access AD datasets.

2 BACKGROUND

2.1 Cognitive testing

Cognitive tests are used near-ubiquitously to understand the impact of

neurodegenerative disease on patients.2 Standardized cognitive tests

aim tomeasure impairment objectively, adjusting for demographic fac-

tors that could independently impact scores, minimizing use of subjec-

tive and self-reported measures, while being relatively cheap, widely

available for English-speaking countries, quick to administer, minimally

invasive, and with quantifiable reliability for their use in clinical work.

A complete assessment is typically composed of several tasks, each

intended to examine a broad function or domain, such as memory,

attention, executive function, language, and visuospatial processing.

Cognitive domains can also be conceptualized in the context of altered

function and/or structure of particular brain regions or networks. Addi-

tional information can come from behavioral observations and qualita-

tive evaluation. It is not possible to completely isolate measurements

for individual domains, as correspondence is limited between individ-

ual tests and cognitive function and impairment is multifactorial (eg,

poormemorymight be attributable to impaired attention or visual pro-

cessing, rather than a primary memory deficit). In clinical practice it

is therefore vital that individual tests scores are always interpreted

within the context of an individual patient’s overall profile,2 rather than

in isolation.

2.2 Data-collection initiatives

Various initiatives collect multicenter, multimodal, longitudinal data

on AD and other types of dementia. Examples are: Alzheimer’s Dis-

HIGHLIGHTS

∙ Wider availability of Alzheimer’s disease shared

datasets has stimulated the development of data-driven

approaches to characterize disease progression.

∙ Cognitive tests are a key component of such datasets,

though their heterogeneous and multifactorial character-

istics challenge their deployment in data-driven computa-

tional models.

∙ We summarize fundamental properties of cognitive

assessments and considerations for informed handling of

cognitivedata topromotevalid analysis and interpretation

by non-specialist researchers.

RESEARCH INCONTEXT

1. Systematic review: Increased availability of large

biomarker datasets from studies of Alzheimer’s disease

(AD) has stimulated analytic approaches to understand

its characteristics and progression. Cognitive tests

both feature in such datasets and are near-ubiquitous

in clinical practice to assess the nature and extent of

impairment. The authors reviewed the literature using

traditional sources, citing recent relevant reviews (eg, on

practice effects, composite scores).

2. Interpretation: The heterogeneous and multifactorial

nature of cognitive tests offers particular challenges to

their analysis by non-specialist researchers. We summa-

rize fundamental properties (such as practice/learning

effects, cognitive domain specificity, and test-function

correspondence) to promote best practice for analyses

involving cognitive test scores using statistical and com-

putational approaches.

3. Future directions: Informed handling of cognitive data

will promote more valid outcomes from analyses of large

AD datasets, including robust analytical innovations, bet-

ter study design, and evaluation of outcomes to benefit

people touched by AD and other dementias.

ease Neuroimaging Initiative (ADNI), Layton Aging & Alzheimer’s Dis-

ease Center (LAADC), and National Alzheimer’s Coordinating Center

(NACC). Other projects focus on specific populations or cohorts, such

asVienna-Trans-DanubeAging study, and large biobank studies (eg, UK

Biobank).

One of the most prominent in AD research is ADNI. ADNI was

launched in 2004, as a longitudinal multicenter study funded by

20 companies (including pharma and non-profit organizations), and
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TABLE 1 Overview on threemain AD data collection initiatives

Name Short description

Number of

participants Type of data collected Cognitive tests

ADNI (University of California, SF) Since 2004, ADNI collects

longitudinal data from 58

sites in North America. The

aim is to identify early

biomarkers to support

diagnosis and treatment

development.

>3500 Clinical/cognitive

assessments,

medical/family history,

neuroimaging (MRI, PET),

biospecimen (plasma, CSF,

metabolomic, proteomic),

genetic (ApoE,

GWAS/WGS data),

neuropathology

(1285 attributes)

MMSE, ADAS-cog,MoCA,

CFT, Clock Drawing, LM-I,

LM-II, BNT/MINT, RAVLT,

TMTA-B, ANART.

LAADC (OregonHealth and Sciences

University)

Dataset from the Layton

Aging &Alzheimer’s

Disease Center, supported

by the National Institute

on Aging (NIA, NIH).

Emphasis on studying

preclinical and early

dementia

1026 Clinical, MRI, and genetic

data, as well as biological

specimens.

(486 attributes)

MMSE, CFT, BNT, LM-I,

LM-II, TMTA-B, Digit span,

Digit symbol, Stroop task,

CFL,WAIS Digit Span

NACC (NIA-NIH) TheNational Alzheimer’s

Coordinating Center was

established in 1999 by 34

centres supported by U.S.

National Institute on

Aging/NIH.

35768 Clinical evaluations,

neuropathology,MRI. (187

attributes)

MoCA, LM-I, LM-II, Benson

Complex Figure copy, Digit

Span, CFT, BCF recall,

MINT, VF phonemic, TMT

A-B.

ABBREVIATIONS: ADAS-cog, Alzheimer’s Disease Assessment Scale–cognitive; ADNI, Alzheimer’s Disease Neuroimaging Initiative; ANART, American

National Adult Reading Test; ApoE, apolipoprotein E; BNT, Boston Naming Test; CFT, Category Fluency Test; CSF, cerebrospinal fluid; GWAS, genome-wide

association study; LAADC, LaytonAging&Alzheimer’sDiseaseCenter; LM, logicalmemory;MINT,multilingual gaming test;MMSE,Mini-Mental State Exam-

ination;MoCA,Montreal CognitiveAssessment;MRI,magnetic resonance imaging;NACC,National Alzheimer’sCoordinatingCenter;NIA,National Institute

on Aging; NIH, National Institutes of Health; PET, positron emission tomography; RAVLT, Rey Auditory Verbal Learning Test; TMTA/B, Trail Making Test A-B;

VF, Verbal Fluency;WAIS,Wechsler Adult Intelligence Scale;WGS, whole genome sequencing.

Note: Each includes> 1000 participants, and> 100 attributes, including cognitive tests.

other foundations, such as the National Institute on Aging (NIA), the

Foundation for the National Institutes of Health (FNIH), and the Food

and Drug Administration (FDA). The project aims to identify clinical,

biochemical, genetic, and imaging markers to guide early detection of

the disease and support treatment development, prediction of disease

progression, and trajectory. Participants meeting eligibility criteria are

recruited from various sites inNorth America.8 Other initiatives tackle

similar challenges, and consequently collect similar data, with primary

differences being the focus of study, for example, clinical, radiological,

or biological.

We report on cognitive tests that are common among the pro-

tocols of the free access initiatives listed in Table 1. Building an

exhaustive picture of all the cognitive tests used in AD clinical

practice is outside the scope of this work, as it varies for each

clinical context, location, and purpose of assessment. However, we

report detailed information for measures and test batteries com-

monly featured in data-sharing initiatives (Tables S1-S6 in sup-

porting information), assessment description, subscales, and scoring

system.

2.3 Contribution from data-driven methods

Analyses afforded by data-sharing initiatives may offer promise in

complementing aspects of current, often qualitative, clinical practice.

Data-driven models have been developed intending to identify pat-

terns from unlabeled data while requiring limited or no human input9

(for examples of discriminative, generative, and other generative

approaches, see Figure 1). One example relevant to AD is the event-

based model (EBM), which combines various disease biomarkers into

a quantitative signature of disease progression.1 Data-driven meth-

ods have been used to identify subtypes or clusters in progression

trajectories,10 or the fine-grain temporal evolution of the disease.11

Examples of data-driven approaches include identifying cognitively

defined subgroups largely comprising typical, memory-led, and atyp-

ical clusters, and comparing demographic and biological factors and

prognosis between subgroups. Cognitive measures have been used

to characterize and validate data-driven subtypes identified through

structural imaging,10,12 partially predicated on well-documented

atypical exemplars of phenotypic heterogeneity, such as posterior
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Multilevel/mixed-effects models

Generative models

Discriminative modelsSee Table 1 for example 
AD data collection 

initiatives

Example questions 
regarding:

Initial cognitive symptoms

Longitudinal change

Particular cognitive 
functions or domain

Define the research 
question

Select relevant tests 
(examples)

3.1.1 Measures for 
screening, diagnosis, and 
differential diagnosis

Candidate examples: 
● Screening measures 

(MMSE, MoCA, ACE)
● Neuropsychological 

tests (Logical 
Memory, TMT)

3.1.2 Measures to 
characterise AD 
progression

Candidate examples: 
● Disease staging or 

tracking progression 
(MMSE, ADAS-COG, 
MoCA)

3.1.3 Measures to 
evaluate discrete 
functions or domains

Candidate examples: 
● Preferentially 

language (Verbal 
fluency)

● Visuospatial (Figure 
drawing/copying)

● Executive (Stroop)

Evaluate data quality & 
appropriateness for question

See relevant sections on scoring and characteristic effects

d. Models and assumptionsc. Quality Control & Standardisationb. Test selectiona. Question

Account for 
standardisation/transformation 

● Supervised machine-learning 
(ML), using labelled data to 
discriminate between individuals 
based on profile of progression 
(e.g. from MCI to syndromic AD) 
or disease status.

● Unsupervised ML, emphasising 
clustering and applicable to 
unlabelled data.

● Deep learning methods, using 
multiple linear and non-linear 
transformations to learn abstract 
representations, supervised or 
unsupervised.

● Models not including a structure 
between available biomarker data: 
e.g. event-based and scalar 
trajectory / differential equation 
models.

● Models for structured data/data
with a well-defined spatial  
organisation: e.g. spatiotemporal, 
network propagation and 
dynamical systems models

● Class of models for data with 
complex structures and 
dependencies between 
observations, including 
clustered/longitudinal data. Allow 
for effects to vary between units 
(e.g. groups, participants)

3.2.1 Scoring issues
● Heterogeneity of scoring system
● Normative data and cut-off
● Missing data

3.2.2 Characteristic effects
● Practice effect
● Floor/ceiling effect

Select appropriate model and 
consider assumptions

Consider implications for the following:

● Standardisation (e.g. z scores, scaled scores or percentile rank), 
adjusted for demographic factors as appropriate

● Identifying sources of potential bias and misinterpretation (see 
also confounding factors: atypical presentation: 3.1.3; comorbidity: 
3.2.4)

● Composite scores (3.2.3): candidate examples include 
composites sensitive to early disease or longitudinal change, or 
composites corresponding to particular cognitive domains

● Missing data methodology
● Revisiting test selection: measures and their subscales relevant 

to the research question may be available in a different battery
● Assumptions of statistical/computational models

F IGURE 1 Flowchart representing example (A) research questions and steps regarding (B) test selection, (C) quality control and
standardization, and (D) computational/statistical methods. Example research questions (A) correspond closely to test selection (B), while
subsequent processes outlined in steps C andD are broadly relevant across questions and tests. Examplemeasures are reported in italics and
section headings underlined. Dashed arrows indicate revisiting steps, for example, revisiting test selection owing tomissing data

cortical atrophy.4,7 As with other statistical methods, models have dif-

ferent assumptions;9 these may include the assumption of a common

disease trajectory across individuals and biomarker/test indepen-

dence, which may be violated by clinical heterogeneity (typical versus

atypical presentation) and dependency between tests and biomarkers,

respectively.

3 PERSPECTIVES

Quantitative and qualitative methods are complementary for advanc-

ing our understanding of AD progression. However, quantitative

researchmustmaintain clinical relevance,which requires somedomain

knowledge that most data scientists do not have. This is particularly

important with cognitive test data, being one of the primary markers

used to track disease progression. In the following sections we present

key considerations for selecting tests for inclusion in data-driven mod-

elling studies and for avoiding common misinterpretations. Sections

are cross-referenced in Figure 1, outlining example research ques-

tions and processes regarding test selection, quality control and stan-

dardization, and computational/statistical methods. We outline recent

directions in cognitive assessment, andmake suggestions for improving

these data resources.

3.1 Considerations for test selection

Batteries of tests are generally rich and diverse, with correspondingly

diverse options for tests to select as either input to a model or for

validating a model. Taking into account the characteristics of different

tests can support best use and more accurate contribution to knowl-

edge (see Figure 1B). We focus on how different tests can be differen-

tially sensitive at various stages of the disease, and additional consid-

erations for tests particularly suited for certain analyses. Some tests

are more appropriate for detecting early cognitive impairment, while

others aremore appropriate in assessingpatients at intermediate/later

disease stages or longitudinal change. This might be due to task diffi-

culty, properties of tests, or composition of a test battery.
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3.1.1 Measures for screening, diagnosis, and
differential diagnosis

Early diagnosis of AD continues to be amajor challenge, requiring clin-

ical tools sensitive to themost subtle changes thatmight emerge in the

prodromal phase ofAD, prior to clear impairment in everyday function-

ing. Commonly used screeningmeasures include theMini-Mental State

Examination13 (MMSE), Montreal Cognitive Assessment (MoCA), and

Addenbrooke Cognitive Examination (ACE), though these should be

used as support to a comprehensive clinical assessment, being screen-

ing tools and not diagnostic instruments.13 The MoCA may outper-

form MMSE in detecting early changes due to the disease: Freitas

et al.14 found that MoCA is better at discriminating between mild

cognitive impairment (MCI) or AD patients and healthy controls, and

between MCI and AD, compared to MMSE. This might be due to the

MoCAhaving increased focus onmultiple cognitive domains (executive

function, language, short-term memory, or visuospatial skills). Individ-

ual neuropsychological measures with good sensitivity and specificity

for distinguishing AD, MCI, and healthy control participants include

the Logical Memory test,15 typically featuring immediate and delayed

recall, and Trail Making Test (TMT) accuracy and time-based mea-

sures of task-switching/inhibition, working memory, and visuomotor

ability.16

3.1.2 Measures to characterize AD progression
and evaluate moderate AD

MMSE and the Alzheimer’s Disease Assessment Scale-Cognitive sub-

scale (ADAS-Cog) are often used to stage and track AD progression

during the symptomatic phase. Within these measures, MoCA may be

more sensitive to longitudinal decline than the MMSE.14 ADAS-cog

is a commonly used indicator of disease progression in mild to mod-

erate AD, though item-level analyses suggest the ADAS-Cog is most

informative when administered to patients with moderate cognitive

impairment,17 and individual subscore and rater items may be partic-

ularly sensitive to longitudinal change.18 For examples of challenges

in appropriately selecting and interpreting tests across disease stages

including practice, floor and ceiling effects, see section 3.2.2.

3.1.3 Measures used to evaluate discrete
functions or domains

Above neuropsychological tests (eg, Logical Memory, TMT), and com-

posites thereof, are more appropriate for evaluating particular cogni-

tive domains or functions. As mentioned above, test performance is

multifactorial, for example, verbal fluency tasks place demands on both

language and executive domains, and an individual’s profile of perfor-

mance should be considered rather than a single test. For examples

of preferential assignment of subscales to domains and subdomains,

see supporting information tables (Tables S1-S6). If the purpose is to

characterize cognitive domains, composite scores may mitigate indi-

vidual test idiosyncrasies3 (see Cognitive Composites in section 3.2.3).

Measures may be confounded in their interpretation when adminis-

tered to certain patients, particularly those exhibiting prominent atyp-

ical non-memory symptoms, eg, measures of executive function fea-

turing prominent visual components being susceptible to visuospatial

impairment.

3.2 Considerations in test analysis and
interpretation

Cognitive test data variously depend on multiple factors such as the

scoring system, the task, the domains that task is preferentially mea-

suring, inter-rater reliability, and numerous other elements related to

individual characteristics and psychological status (fatigue and anxiety

are good examples of this). Providing an exhaustive summary of these

factors is outside the scope of this article. In this section we summa-

rize considerations tominimizemisinterpretation andmisuse of cogni-

tive databy computational scientists developingdata-drivenpredictive

models of the disease.

3.2.1 Scoring issues

Heterogeneity of scoring systems. Cognitive tests often differ in

administration and scoring system, complicating the comparison of

results across tests.2 In some cases, the direction of the scoring system

might be counterintuitive, eg, optimal performance represented as a

scoreof zero (ADAS-Cog total items). Tests such as theTMTA/B record

time taken to complete a task as a continuousmeasure, with long times

corresponding to poor performance. This is also true for Digit Sym-

bol and the number cancellation task in ADAS-Cog. Other tests are

scored using a defined ordinal scale, such as the Clock Drawing Test.

Batteries such as theADAS-Cog 13-item scale incorporate continuous,

censored, and ordinal measures. While standard scores are routinely

used to compare performance on different tests either within-sample

or relative to a normative sample, that skewed distributions (see below

Floor or ceiling effects in section 3.2.2) complicate their interpretation.

Tests might also include qualitative indicators such as “remembering

test instructions,” “spoken language ability,” “word-finding difficulty,”

and “comprehension” in ADAS-Cog. This heterogeneity in scoring sys-

temsmay impede comparisons or integration with othermeasures and

should be considered when planning analysis. Moreover, heterogene-

ity in the form of clinical presentation may add further complexity to

the interpretation of individual test scores (see section 3.1.3).

Normative data and cut-off. Normative data appropriately strati-

fied by demographics enables determining cut-off scores, the level at

which a performance is considered impaired. Impaired performance

is conventionally defined as below the fifth or first percentile based

on normative data in clinical practice (for a summary of misapplying

scores, see Della Sala and Cubelli6). Test-dependent variations in
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performance are influenced by demographic factors including age,

education, and sex, and care should be taken in using tests for which

normative data are not available. Correspondingly, results frommodels

trained on a certain normative sample should be handled carefully if

used to gather insights on separate samples differing in demographic

characteristics.19 The National Alzheimer’s Coordinating Center

Uniform Data Set provides an useful tool, offering neuropsychological

scores adjusted for sex, age, and education.20 It is also important to

note that if cognitive scores are already normalized for other factors

(eg, age, education), then these factors should not be added a second

time as covariates in a data-drivenmodel.

Missing data. It is important to understand possible causes of miss-

ing data, how to best interpret available information, and whether

this affects only part of the assessment or its entirety. Various fac-

torsmay underliemissing data or participants considered “untestable.”

These include patients’ difficulty in complying with test instructions,

particularly with more demanding tests and in patients with a greater

degree of cognitive impairment and/or anxiety, premorbid language

aptitude/literacy, comorbidity and uncorrected sight or hearing loss,

or time constraints. Determining whether data are missing completely

at random, missing at random, or missing not at random is reliant on

establishing factors underlyingmissing data through available records.

While many approaches assume data are missing at random, this

assumption is often violated for cognitive data where participants may

be unable to complete tests owing to degree of impairment. For a

summary of types of missing data and statistical methods to handle

missing data including random effects models, Bayesian approaches,

inverse probability weighting, and imputation, see Sterne et al.21 It is

worth noting that some subscales overlap across batteries, so a miss-

ing subscale might be available in a different battery for the same

participant.

3.2.2 Characteristic effects of cognitive tests

Practice effect. One of the main uses of cognitive tests is the repeated

administration for tracking progression, for example, in clinical tri-

als. It is therefore vital to be aware of practice effects, defined as

“the improvement in serial cognitive tests with the same or similar

test materials.”22 Such effects may be particularly evident on mea-

sures of episodic memory, between initial retesting, diminishing across

subsequent visits, and in MCI and AD patients as well as healthy

participants.23 It can also substantially alter interpretation of find-

ings with inadequate control or inappropriate analysis. To overcome

this limitation, many cognitive tests have validated alternative forms

administered in a counterbalanced order, although there is evidence

that they only attenuate and do not eliminate the effect.24 Goldberg

et al.25 suggest three different approaches to attenuate the conse-

quences of practice effect with varying advantages and disadvantages:

introducing massed practice to increase task familiarity, adopting cog-

nitive science principles to reduce practice-related gains, and develop-

ingwell-matchedalternate forms.While the aboveefforts are intended

to mitigate practice effects, there is increasing evidence on the clini-

cal utility of characterizing practice effects themselves, for example in

determining their associations with AD risk factors and biomarkers, or

predicting subsequent cognitive decline.26,27

Floor or ceiling effects. These occur when the test cannot measure

performance outside the test range, which overestimates or under-

estimates performance and skews score distributions. This is a com-

mon issue with brief cognitive tests that measure a limited range of

task performance. Patients, particularly at an early disease stage, may

make few or no errors on common tests, such as MMSE or ADAS-

Cog.28,29 A key challenge is selecting tests on which patients at inter-

mediate disease stages might perform adequately, while being of suffi-

cient difficulty to be sensitive for high-functioning patients and healthy

control participants. Tests meeting such criteria might still yield vari-

ability in task performance that differs considerably between patients

and healthy controls, or between patient groups stratified by severity.

Although not all measures are susceptible to floor and ceiling effects,30

many cognitive tests used for computational purposes might need fur-

ther analysis or subscales selection31 before comparing them to other

markers. Approaches that are less prone to floor or ceiling effects

include tests whose measurement characteristics include both accu-

racy and timed components, tests without a fixed maximum score, and

experimental designs not featured in data initiatives (eg, using a stair-

case paradigm) or composite measures.3

3.2.3 Cognitive composites

There is a recent surge in composites derived from batteries of tests

in AD research.5 They have been developed for multiple purposes,

including sensitivity to global disease severity,32 individual cognitive

domains,2,3 or longitudinal change33—particularly in the preclinical

phase relevant to secondary prevention trials.34 In their recent review,

Schneider and Goldberg5 identified 12 composite scales that have

been used in clinical trials to assess cognitive functions. Multi-domain

composites may mitigate previously discussed inability to isolate sin-

gle domains, and may be sensitive to domains that are affected in

the preclinical stages of the disease.34 Various methods have explored

composite development, such as psychometric;3 a combination of sta-

tistical, theoretical, and empirical approaches;33 and computationally

sophisticated data-driven algorithms.35 However, cognitive compos-

ites are still prone to a number of issues.5 Lim et al.36 mention the

importance of evaluating the sensitivity of each scale contributing to

the composite, as it can affect the overall sensitivity of the compos-

ite. Moreover, domains relevant to early clinical symptoms of AD are

often underrepresented.5 For example, while episodicmemory deficits

are one of the earliest and best recognized indicators of preclini-

cal AD, non-memory domains may also be susceptible to pathological

changes during the preclinical phase. Overall, a cognitive-composite

approachmight be appropriate in clinical trials and disease progression

monitoring,37 but current measures face various limitations in their

validation and psychometric assumptions.5
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3.2.4 Considering comorbidity and other factors

Comorbidities can confound cognitive test scores. Notably, depres-

sion and anxiety are known to have strong effects on cognitive perfor-

mance. For example, Qiu et al.38 reported depression contributing to

cognitive dysfunction in mild to moderate AD, highlighting a need to

handle cognitive test results carefully and consider various factors in

their interpretation. Other factors include native language, literacy,39

and uncorrected sensory loss. This reinforces the importance of con-

sidering cognitive tests in the context of behavioral and other clinical

examinations. In some cases, the qualitative experience of a patient

during a quantitative assessment is recorded and could support the

interpretation for missing data or the psychological/behavioral status

of the interviewee during the assessment.

4 FUTURE DIRECTIONS

Big data initiatives have already contributed to a better understand-

ing of AD and its characteristics. However, there are still ways in which

these resources can be further developed. First, by highlighting the

challenges of creating resources that enable a comprehensive repre-

sentation of the AD spectrum. Current large cognitive datasets are

broadly characterized by an over-representation of tests preferen-

tially reflecting certain functions (memory)more so than others (visual,

motor). This risks imposing constraints on appreciating the range and

basis of AD phenotypic heterogeneity, not only regarding canonical

atypical clinical phenotypes associated with AD,4 but also in typical

lateonsetAD.2 Furthermore,whilememory issues aregenerally among

the first AD markers, there is evidence that other cognitive functions

maybe sensitive to early detection of the disease (eg, spatial navigation

deficits40). Examples such as the Dominantly Inherited Alzheimer Net-

work (DIAN) study41 demonstrate how trials can adapt to incorporate

additional measures according to advances in research.

One important step toward the adaptation of cognitive assessments

for computational use is digital tests37, whether comprising paper-

based tests converted into a digital form or novel testing paradigms.

Examples are Cambridge Neuropsychological Test Automated Battery

(CANTAB)42 or the Cogstate battery.43 One particular feature of most

web-based testing is self-administration, which gives users the oppor-

tunity to complete the test remotely, at their own pace, and does not

require additional hardware or software download.44 More recently

we see the advent of tests using eye-tracking technology45 frequently

embedded in serious games or in augmented reality/virtual reality

systems.46 This approach overcomes the possible language barrier,

both regarding instructions and verbal responses,47 giving the possibil-

ity for computational methods to identify subtle biomarkers for early

disease detection and progression.45

Digital tests have numerous potential advantages. Not only scoring,

but also detailed reaction times and behavioral measures are recorded

in a standardized manner. Automatic development of datasets and

recording of repeated measures may facilitate data storage, saving

time and costs for analysis. One interesting advantage is the develop-

ment of adaptive computerized tests, which have promise in mitigat-

ing floor and ceiling effects48 while accommodating effective counter-

balancing. Computerized tests offer opportunities to efficiently com-

pare individuals against a population, and may offer scalable mea-

sures to determine abnormal performance currently evaluated qual-

itatively based on experience-led judgments, for example quantita-

tively evaluating speech patterns from audio recording of verbal flu-

ency.While these examples refer to administered or self-administered

cognitive assessments, digital markers of behaviors not requiring task

engagement47 increasingly evaluate speech detection features, phys-

iological measures, and activity, ultimately intending to promote eco-

logical, continuous assessment.49 Despite its potential, the uptake of

this technology is still slow compared to the classic examinations. This

might be due to limited validation, insufficient normative data, and

issues around technology access and harmonization.49 Improvement

in this area will not only reinforce the collaboration between disci-

plines, but provide consistent sources of data and patient monitoring,

hopefully leading to better early detection and understanding of the

disease.

Finally, the adoption of data-driven models in healthcare, many

of which may be considered “black box” in nature, has received a

number of criticisms. General concerns regarding interpretability of

machine learning and artificial intelligence algorithms are arguably

particularly relevant in clinical applications, where results can influ-

ence clinical decisions and health outcomes and present unique ethical

challenges.50 Interpretability touches on all stages of the development

and use of these models, including the dataset used, the explainabil-

ity of the models’ decision, and the interpretation of results according

to domain knowledge. Regarding datasets themselves, selection and

other biases in their composition must be acknowledged along with

their implications for interpreting findings. Understanding of models’

decisions is of particular importance in establishing replicability and

generalizability of results.While limitations in understanding are often

contextualized within trade-offs between their explainability and per-

formance, there are increasing efforts to explain model decisions and

results, for example based on presentingmodel featureswith observed

behavioral data.47 Regarding interpretation based on domain knowl-

edge, nominally significant results do not necessarily constitute clin-

ically meaningful or informative findings at the population, group, or

individual level. To promote relevance of analyses across clinical and

research contexts, involving clinicians and researchers with domain

expertise in interpreting cognitive test data offers key contributions

in formulating research questions, planning analyses, and interpreting

findings.

4.1 CONCLUSIONS

Research inAD ismoving toward increasing collaborationbetweendis-

ciplines to better understand and address this condition. The creation

and sharing of big datasets are important vehicles guiding this effort in
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the coming years. In particular, cognitive measures are currently one

of the most used quantitative methods in clinical practice, although

not necessarily familiar to non-clinical disciplines. We have intended

to promote understanding and address knowledge gaps around use

and misuse of cognitive tests for a broad audience of researchers from

different fields. Ultimately, we hope that better appreciation of the

promises and applications of cognitive data will stimulate timely inter-

disciplinary advances in our understanding of AD.
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