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Avoiding detection can provide significant survival advantages for prey, preda-

tors, or the military; conversely, maximizing visibility would be useful for

signalling. One simple determinant of detectability is an animal’s colour relative

to its environment. But identifying the optimal colour to minimize (or maxi-

mize) detectability in a given natural environment is complex, partly because

of the nature of the perceptual space. Here for the first time, using image proces-

sing techniques to embed targets into realistic environments together with

psychophysics to estimate detectability and deep neural networks to interpolate

between sampled colours, we propose a method to identify the optimal colour

that either minimizes or maximizes visibility. We apply our approach in two

natural environments (temperate forest and semi-arid desert) and show how

a comparatively small number of samples can be used to predict robustly the

most and least effective colours for camouflage. To illustrate how our approach

can be generalized to other non-human visual systems, we also identify the

optimum colours for concealment and visibility when viewed by simulated

red–green colour-blind dichromats, typical for non-human mammals.

Contrasting the results from these visual systems sheds light on why some

predators seem, at least to humans, to have colouring that would appear detri-

mental to ambush hunting. We found that for simulated dichromatic observers,

colour strongly affected detection time for both environments. In contrast,

trichromatic observers were more effective at breaking camouflage.
1. Introduction
Recently, interest in camouflage among evolutionary biologists has grown con-

siderably [1], and many of the basic principles of how to conceal oneself have

become far clearer. The range of research is wide and empirical support has

been provided for many of the diverse strategies employed in the animal king-

dom. Studies measuring the effectiveness of camouflage tend follow the same

basic format: a small number of colours, patterns or colour/pattern combinations

are generated that capture the proposed camouflage principles; and then the uti-

lity of the camouflage is evaluated, perhaps in the field by measuring predation

rates, or in the laboratory measuring detection speed and accuracy, identification

ability, or capture rate, using either human or non-human subjects. The same

basic method is also used in the assessment of military camouflage (e.g. [2–5]).

If the goal is to compare only a few colours/patterns in a given context then

this strategy has much to commend it, being both simple to analyse and easy to

understand. However, if the question is ‘what is the optimal camouflage strategy

to employ in a given context?’, the approach is ineffective: the range of possible

patterns is too large.
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Optimal camouflage depends on a diverse range of factors:

size, viewing distance, height above the ground, lighting,

occlusion, the nature and variability of the environment, as

well as the characteristics of the visual system of the observer

[1,6–10]. The optimal colours and patterns may also vary

depending on the mechanism by which the camouflage acts,

whether to hinder detection, identification, selection or capture

[1,10]. Consequently, in the animal kingdom, the range of

camouflage patterns and strategies is wide; in human appli-

cations (e.g. military), the range of potential patterns is even

wider because pattern generation is not constrained by biologi-

cal mechanisms [11]. A reliable, systematic means of finding

the optimal coloration and pattern for either minimizing

(camouflage) or maximizing (conspicuity) visibility for a

given range of environments would have wide applicability.

Here we concentrate on one simple but important charac-

teristic of camouflage: its colour. Partly this is because colour

is obviously an important property in determining the visi-

bility of a target but, more importantly, because the space of

all possible colours is far larger than traditionally explored. If

colour could be characterized by a single dimension (say

simply its luminance), then identifying the most (or least) con-

cealing colours in a given context would be straightforward.

We could systematically vary the colour along this single

dimension and use a principled method to assess its visibility:

finding maxima (and minima) in one dimensional spaces is

simple. In contrast, even though colour is relatively low dimen-

sional, an exhaustive evaluation of all colours, even if done at a

coarse scale, scales badly: the number of locations required in

colour space increases exponentially with dimensionality. We

would like a method that could scale to this number of dimen-

sions, and if this works, hopefully scale it to additional

dimensions (such as texture).

Equally, investigating only those colours and patterns seen

in nature (e.g. [12]) omits possibilities that became extinct with-

out leaving a fossil record, or those that evolution has not

realized because of phylogenetic or developmental constraints.

To address the challenges presented by a large multi-

dimensional parameter space, without needing to impose

artificial constraints, we propose a method for identifying opti-

mal colours, patterns or colour/pattern combinations in any

given context that uses deep neural networks. Specifically, we

use them to interpolate smoothly between the colours that

have been (noisily) tested, to other colours that have not.

Neural networks have been used for finding structure in

unlabelled data (unsupervised learning) [13]; classification of

inputs based on previously labelled data [14]; or regression

(predicting real valued measurements) [15]. In some ways

this may be considered a ‘sledge-hammer’ approach: usually

the simple problems such as interpolating a three-dimensional

space would be dealt with a simpler method such as Gaussian

process-based smoothing [16]. However, such methods often

inherit strong assumptions, such as constant variability/

noise for all values of the function. While these assumptions

may be reasonable for the simple three-dimensional problems

studied here, deep neural networks are a more general solution

and can potentially be applied to more complicated spaces.

Here we use deep neural networks to implement nonlinear

regression and use it, after training, to interpolate between

measured inputs and predict responses for unseen inputs.

While the data sampling requirements of our method are

modest compared with contemporary ‘big data’ standards,

they are nevertheless large enough to preclude field trials.
Using computer presentation and human participants, we

can change stimuli rapidly and accurately capture the reaction

times taken to identify them. However, because many camou-

flage strategies (such as concealment of shape based on

countershading [17]) simply do not make sense in a uniformly

illuminated two-dimensional world, and many objects are

effectively impossible to conceal unless partly hidden by the

foreground, we built our stimuli using multiple layers in

order to achieve some level of realism. Our stimuli were built

from three layers: (1) a foreground occlusion layer; (2) a

target layer; and (3) a background layer. We then used these

stimuli to construct a visual search task that in some sense

matches the task of predators and prey, albeit without active

movements through the environment. In this way we can

control each of the dimensions of interest.

To provide some confidence that the approach generalizes,

we demonstrate our method using human participants to

identify targets of single colour in trichromat and simulated

dichromat conditions in two natural environments. Dichro-

matic colour is straightforward to simulate for trichromats,

using image processing; though the downside is the lack of

the lifetime’s experience of dichromacy that a natural prota-

nope has, something returned to in the discussion. The

natural environments we used were temperate forest and

semi-arid desert. We show: (1) that our methods allow rapid

presentation of coloured objects embedded in realistic environ-

ments; (2) how neural networks can be combined with

bootstrap techniques to provide a statistical characterization

of the visibility function (the mapping between the colour of

an object and its geometric mean detection time); and (3) that

the optimally concealed and conspicuous targets depend not

only on the environment they are embedded in, but also on

the nature of the visual system of the observer.
2. Results
2.1. Training networks
Human reaction time data for each condition were combined to

provide a trichromat dataset and dichromat dataset (each one

consisting of 500 trials � 10 participants ¼ 5000) for each geo-

graphical location. In order to be able to interpolate and

predict reaction times for target colours that had not been

sampled during the experiment, and to take account of inter-

subject variability in responses, residual deep neural network

models were built using the high-level neural network API

Keras 2.1.2 [18] running on top of neural network library

TensorFlow 1.5.0 [19], separately for each combination of geo-

graphical location and chromatic condition. Inputs to the

networks were the colour of the target (as RGB triplets), occlu-

sion level and a one-hot array for participant IDs, while the

output was the predicted reaction time. An alternative colour

space such as CIELab or HSV could have been used; however,

as neural networks form their own internal representations of

distances [20] the choice of colour space is irrelevant. To pro-

vide for a measure of accuracy in our predictions (an

estimate of standard error) we created 100 bootstraps of our

networks. The bootstrap method is a test or metric that uses

random sampling with replacement. The bootstrap method

allows assignment of accuracy measures, defined here in

terms of variance and is particularly useful when the value

of interest is, as in the present case, a complicated function

[21]. By averaging the bootstrapped network predictions we
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Figure 1. Mean predicted reaction times from bootstrapped neural networks. Error bars represent 1 s.e.m. (Online version in colour.)
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calculate both a data dependent smoothing of the reaction time

function and an estimate of our certainty of its estimate. Each

network was trained on a random sample of 90% of the data

and validated with the remaining 10%. In order to establish

the number of residual blocks to use, networks were trained

with two, four and six residual blocks. By comparing vali-

dation loss we found that four residual blocks gave the

lowest error in all conditions, and accordingly this configur-

ation was used. Further information for details of network

configuration (together with how residual blocks are defined),

comparing validation losses and parameters can be found in

electronic supplementary material.

2.2. Network predictions
The training process resulted in 100 models for each geographi-

cal location and chromatic condition, i.e. four sets of 100

models. Using each set of trichromat bootstrapped models,

we submitted 16 777 216 colour samples (the whole RGB

gamut), collecting predicted reaction times for each. Similarly,

for each set of dichromat bootstrapped models, we submitted

the entire simulated dichromat gamut (64 229 colour samples).

All network predictions were made using 37.5% occlusion,

which was the average occlusion level across experimental

trials. From the bootstrap values, we found the easiest and

hardest to see colours by averaging across the reaction times

for the 100 bootstraps per condition. In order to compare

predicted reaction times for colours within and between geo-

graphical locations, statistics were calculated using random

permutation tests, all based on 100 000 resamples. The pre-

dicted detection times were significantly longer in the

dichromat treatment than in the trichromat treatment for

both locations (all p , 0.0001, figure 1). The difference between

the hardest and easiest to find colours within geographical

locations was also found to be significant for both chromatic

conditions (all p , 0.0001). p-Values were adjusted for multiple

comparisons with false discovery rate [22].

To provide an illustration of how networks predict reaction

times to the respective colour gamuts, we created polar plots
showing the predicted reaction times with respect to the hard-

est to see colour (figure 2). For trichromats in the forest

environment, the top left panel of figure 2 shows that a shade

of dark green/khaki is the hardest to find and shades of red,

magenta and neon green are the easiest to find. In the desert tri-

chromat setting (bottom left panel) trichromats find shades of

beige (plainly reminiscent of light and dark sand) the most dif-

ficult and again neon green the easiest to find. For the forest

dichromat condition, top right panel of figure 2 clearly shows

that a dark olive shade is the hardest to find, while blue,

white and bright yellow stand out most. In the desert trichro-

mat condition (bottom right panel) the hardest to find colour

is a lighter beige shade and the easiest light blue. The white

spaces containing no colour points in figure 2 illustrate that

no (or few) points were found at those reaction times. In

other words, using the top left panel for forest trichromat, the

white space at around 2208 indicates that none of the light

blue hues were difficult to find.

2.3. Validation
To provide a level of confirmation that dichromat colours are

harder to see than trichomat colours and that the ordinality

(in terms of reaction times) was comparable, we conducted a

simple validation experiment using the same method as the

original data collection. The only difference in the procedure

was that colour choices were confined to three categories:

easiest, intermediate (chosen halfway between reaction time

extremes) and hardest. Twenty-five colours were chosen arbi-

trarily within a 25 ms margin of the predicted reaction times

associated with each category (figure 3 illustrates the stimuli

used). This was done because, although we have identified a

single hardest and easiest colour for each condition, characteriz-

ing an entire function simply by its maxima and minima fails to

capture the function completely. Data were analysed using gen-

eralized linear mixed models and we found that the results of

the validation were consistent with predictions from the

neural networks. Further information for details of the data

analysis can be found in electronic supplementary material.
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Figure 2. Polar plots showing the predicted reaction time difference from the hardest to find colours in the centre of the plot for each geographical location and
chromatic condition. The angle is given by hue, representing red starting at 08, yellow (from 608), green (1208), cyan (1808), blue (2408) and magenta (3008).
Distance is given by the difference in reaction time from the hardest to find colour. From the hardest to see colour in the centre of the plot, each contour represents
an additional 100 ms predicted reaction time. (Online version in colour.)
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3. Discussion
Based on an approach using simple image synthesis, psycho-

physics and deep neural networks for interpolation, we

identified the optimal colours for camouflage and conspicuity,

an approach not previously tried for multi-dimensional per-

ception-based experiments. We have shown that our method

is capable of predicting entire parameter spaces and demon-

strated its effectiveness with two- and three-dimensional

colour spaces of considerable size. Furthermore, we provided

confirmation that neural network predictions of hardest and

easiest colours were consistent with human participants

using a validation experiment. Interestingly, in some con-

ditions the distribution with respect to hues appears to be

multi-modal; for example, the hardest to find colours for the

trichromat desert condition are either shades of dark beige or

a lighter beige shade (resembling sand). This suggests that,

unsurprisingly, there might be multiple solutions to the same

problem, which intuitively seem to represent what is seen in

natural and human-made camouflage [11].
In both the neural network predictions and the validation

experiment, dichromatic targets were found to be significantly

harder to detect than trichromatic targets for temperate forest

and semi-arid desert conditions. Since our experiments were

carried out using interleaved projected images of forest and

desert scenes, it is important to rule out the possible confound

of a greater switch cost between trials in different chromatic

conditions (e.g. the switch cost is greater in the dichromat

versus trichromat condition). To achieve this, we used an inter-

stimulus interval of a mid-grey screen displayed for 2 s and

checked that the mean luminance differences between trichro-

matic and simulated dichromatic images from the same

geographical locations to the mean luminance of the intersti-

mulus screen were not significantly different in both

locations (temperate forest: t(62) ¼ 20.5206, p ¼ 0.6045;

semi-arid desert: t(62) ¼ 20.1397, p ¼ 0.8893). Consequently

this does not account for the difference between simulated

dichromat and trichromat reaction times.

The result, that trichromatic vision is more effective at

breaking camouflage, seems to run counter to oft-quoted
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Figure 3. Representation of colours at similar reaction times. For each geographical location and colour condition the spheres represent, for illustration, 25 randomly
sampled colours at a given reaction time (+25 ms). The easiest to see colours are shown on the left, intermediate colours (chosen halfway between reaction time
extremes) in the middle, and the hardest on the right. Reaction time steps were: temperate forest trichromat—387 ms, 576 ms, 766 ms; temperate forest dichro-
mat—458 ms, 705 ms, 952 ms; semi-arid desert trichromat—374 ms, 485 ms, 595 ms; semi-arid desert dichromat—429 ms, 605 ms, 781 ms. (Online version in
colour.)
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historical accounts of the military value of dichromatic

observers and contemporary theories for the maintenance

of visual pigment polymorphisms in many New World

monkey species [23,24]. However, the most recent work in

this area suggests that evidence supporting an advantage

for dichromats in camouflage breaking is, at best, equivocal

[25]. This view seems to be confirmed by a brief survey

of the literature. In one paper, Morgan et al. [26] review litera-

ture from as early as 1940 [27], which claims that dichromatic

benefit would accrue in only limited situations, describing

the early literature as largely descriptive and offering no

empirical support. Morgan et al. [26] go on to describe their

own empirical work with human observers, reporting dichro-

matic advantage, but their experiments were limited to a

precisely controlled geometric display. Another study tested

white-faced capuchins [28], arguing that some benefit accrues

for dichromats; however, it is difficult to untangle the
confounding effects of different light levels and relative

abundance of target insects.

More ecologically relevant, Lovell et al. [29] investigated

both trichromat and dichromat visual systems with respect

to changes of illuminant in natural scenes, concluding that

a foraging advantage accrues to trichromatic mammals

because their visual system is less confounded by abrupt

and unpredictable changes in illumination [29, p. 2069];

that is, it is less affected by shadows and changes in

illumination. This is consistent with the present results.

An advantage for dichromats under particular conditions,

but overall advantage for trichromats, seems to reflect the

broad findings of this literature; indeed, it is the overall con-

clusion of Troscianko et al. [25]. They found that trichromats

perform better, but under particular conditions dichromats

have an advantage. Our results suggest that, in two dissimi-

lar environments, the average detection times for optimal
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Figure 4. The effectiveness of tiger colouring in the dichromat context is striking. Image of a tiger (Panthera tigris) from the point of view of a simulated dichromat
(a) and trichromat receiver (b). (Online version in colour.)
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colours for a trichromatic observer are lower than those for

optimal colours for a simulated dichromatic observer. It

remains possible that the increased ability of the trichromatic

system to break camouflage more effectively might simply be

because the average distance between two colours will

always be equal or greater in a higher dimensional space.

However, discriminability depends on multiple factors

(such as noise and distance from the observer), so it is not

a given that higher dimensionality improves discrimination.

Our data do not provide evidence for or against such a

proposal.

The intuitive statement below seems to sum up much of

the empirical work that has been carried out:
. . .But for every instance of this kind that might be suggested,
there are innumerable examples in which the colour-blind obser-
ver is at a marked disadvantage, and in other ways would of
course be a source of real danger. Moreover, if the normal
person were provided with pieces of coloured glass, it would
be most unlikely that the colour-blind person would ever be
able to score off him. [28]
Comparing the performance of trichromat and dichromat

observers does not necessarily explain the visual ecology of

real-world examples. What constitutes the best colour for

camouflage of animals depends very much on the visual

system of their prey and/or predator. Consider the coat of a

tiger (Panthera tigris); it has fur that appears orange to a trichro-

mat observer rather than some shade of green, though the latter

should be more appropriate camouflage for an ambush hunter

in forests. However, as illustrated in figure 4a, when viewed as

a dichromat, the tiger’s colour is very effective.
4. Conclusion
Based on our results and given that most non-human mam-

mals have dichromatic colour vision that is unable to reliably

differentiate orange and green, it seems that there is little

benefit to actually become green if the receiver is dichromat.

Hence predators (e.g. tigers), whose main prey is other

mammals (e.g. deer), experience little evolutionary pressure to

evolve green coloration from a trichromatic perspective. Deer

are dichromats [30,31] and, for them, most of their predators,

like tigers, appear green. Moreover, producing a green coat

would require a significant change to mammalian biochemistry

since mammals rely on the large polymers, eumelanin and

phaeomelanin, to produce black and yellow-red colours,

which are the basis of the limited palette we see [32]. Indeed,
the only mammal with a green coat is considered to be the

sloth whose colour is actually due to a green alga (Trichophilus
welckeri) that grows in its fur [33]. For species seeking conceal-

ment from dichromats there appears to be little pressure to

actually become green. In contrast, when hiding from trichro-

mats, simple coloration is not that effective. The open

question is therefore not why predators are not green, but

why their major prey are not trichromats.
5. Methods
5.1. Participants
For collecting training data, five male and five female partici-

pants (each undertaking counterbalanced trichromat and

dichromat experimental sessions) were recruited. Four partici-

pants (three female and one male) none of whom participated

in the training data experiment took part in the validation exper-

iment. All participants had normal or corrected-to-normal vision

and were members of the University of Bristol. Informed consent

was obtained from all participants as stated in the Declaration

of Helsinki. All experiments were approved by the Ethics

Committee of the University of Bristol’s Faculty of Science.

5.2. Stimulus construction (preliminaries)
Stimuli were created from three layers: (1) a foreground occlusion

layer; (2) a target layer containing the search object; and (3) a back-

ground layer. (1) and (3) were taken from two locations, selected to

represent two very different types of natural background (temperate
forest in October 2015 in Leigh Woods, north Somerset, UK, 2838.60

W, 51827.80 N, and semi-arid desert in April 2016 in the Tabernas

Desert, Almerı́a, Spain, 2841.30 E, 37802.9 N). Collection of the

images for (3) consisted of choosing representative locations and

taking 2848� 4288 pixel photographs with a tripod mounted

Nikon D90 digital SLR camera (Nikon Corp., Tokyo, Japan).

Images for (1) were acquired using a large blue screen (1.8 m �
2.8 m blue cotton muslin photography background cloth mounted

on a lightweight frame) that could be easily manoeuvred across the

scene captured for (3). The blue-screen images were used with a

chromakey technique to create occlusion of the search object

during stimulus construction. Again, these images were captured

using the tripod mounted Nikon D90 digital SLR.

The captured occlusion layer images were pre-processed in

order to obtain the location of the blue screen as a mask. This pro-

vided for permissible locations of the centre of the search object

that we wanted participants to find (see below), and identified

all of those pixels that were needed to form the occlusion. This

pre-processing allowed a location for the search object to be rapidly



Figure 5. Examples of the background and blue screen images. Top left: a semi-arid desert background image. Top right: blue screen image using the same semi-
arid desert scene. Centre: an example of a shaded sphere. Bottom left: an example of a trichromat stimulus displayed to participants using the semi-arid desert
background images. Bottom right: a dichromat stimulus example using the temperate forest background images. (Online version in colour.)
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chosen and occlusion created during the experiment. The top

panels of figure 5 show the images used in pre-processing.

A bespoke program, written using Matlab 2017b (The

MathWorks, Inc., Natick, MA, USA) and the Psychtoolbox-3 exten-

sions [34,35], was used to construct and present the stimuli, and to

collect experimental data.
5.3. Stimulus construction (presentation)
During each trial, stimuli were constructed by randomly choosing

a background image, together with its associated occlusion image,

from a pool of 32 images and their permissible locations for the

stimulus, for each geographical location. The occlusion image

was pre-processed from the blue screen image and a matrix pro-

duced (the same size as the background image) containing a

logical ‘true’ for every permissible centre for the search object.

The combination of backgrounds (32 per location) and potential

positions for the search image (mean 284 650 per image) provided

a very large number of possible scenes. The target was a sphere,

128 pixels in diameter, constructed dynamically using a sample

colour with pseudo-realistic shading to achieve a spherical look

(an example of a coloured sphere is shown in the central panel of

figure 5). While we acknowledge that there are few perfectly

round/spherical things in nature, we chose a sphere because it

was easy to create and shade to look realistic. Maintaining a con-

stant size and shape also had the benefit that any effects that

might be attributable to changing shape could be discounted.

Based on the mask, a pixel position was randomly chosen as

the centre point for the sphere and the sphere superimposed on

the background. Also using the mask, the pixels occluding the

sphere were then superimposed onto the sphere. Examples of

the completed stimuli are shown in lower panels of figure 5.

Dichromatic representations of the stimuli were created using
an implementation of the protan equation from Vienot et al.
[36], which creates a representation of a trichromat (RGB)

image as perceived by people with protanopia.

5.4. Procedure
Images were projected onto a 1900� 1070 mm screen (Euroscreen,

Halmstad, Sweden) from 3100 mm using a 1920� 1080 pixel

HD (contrast ratio 300 000 : 1) LCD projector (PT-AE7000U; Panaso-

nic Corp., Kadoma, Japan). For Yxy measurements of projected

colours, see electronic supplementary material, table S7. Partici-

pants sat behind a table 2 m from the display screen with a

keyboard in front of them. The experimental stimulus subtended

a visual angle of 608 by 33.758 and the target sphere 48. Participants

were randomly assigned to one of two colour space conditions

which was presented in the first block (either trichromat or dichro-

mat, the other condition being presented later on a separate

occasion). A central fixation cross on a mid-grey background was

displayed for 2 s prior to stimulus onset. Participants had up to

10 s to find and indicate on which side of the screen the stimulus

sphere was presented. Failure to respond caused the trial to be

recorded as a failure and the experiment to move on the next stimu-

lus. Reaction times and errors were recorded. Each block consisted

of 1000 trials (plus eight practice trials). Trials were based on 500

forest and 500 desert backgrounds presented in a random order.

We used simple uniform random sampling without replacement

to select sphere colours using a 24-bit RGB gamut. Occlusion

levels were chosen randomly between 25% and 50%.

Data accessibility. Details of network configuration, parameters and data
analysis can be found in electronic supplementary material. Datasets
for reaction times to stimuli are available online. Leigh Woods (temperate
forest): https://doi.org/10.6084/m9.figshare.7111214. Tabernas Desert
(semi-arid desert): https://doi.org/10.6084/m9.figshare.7111217.

https://doi.org/10.6084/m9.figshare.7111214
https://doi.org/10.6084/m9.figshare.7111214
https://doi.org/10.6084/m9.figshare.7111217
https://doi.org/10.6084/m9.figshare.7111217
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