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Abstract

Regret can be defined as the subjective experience of recognizing that one has made a mis-

take and that a better alternative could have been selected. The experience of regret is

thought to carry negative utility. This typically takes two distinct forms: augmenting immediate

postregret valuations to make up for losses, and augmenting long-term changes in decision-

making strategies to avoid future instances of regret altogether. While the short-term

changes in valuation have been studied in human psychology, economics, neuroscience,

and even recently in nonhuman-primate and rodent neurophysiology, the latter long-term

process has received far less attention, with no reports of regret avoidance in nonhuman

decision-making paradigms. We trained 31 mice in a novel variant of the Restaurant Row

economic decision-making task, in which mice make decisions of whether to spend time from

a limited budget to achieve food rewards of varying costs (delays). Importantly, we tested

mice longitudinally for 70 consecutive days, during which the task provided their only source

of food. Thus, decision strategies were interdependent across both trials and days. We sepa-

rated principal commitment decisions from secondary reevaluation decisions across space

and time and found evidence for regret-like behaviors following change-of-mind decisions

that corrected prior economically disadvantageous choices. Immediately following change-

of-mind events, subsequent decisions appeared to make up for lost effort by altering willing-

ness to wait, decision speed, and pellet consumption speed, consistent with past reports of

regret in rodents. As mice were exposed to an increasingly reward-scarce environment, we

found they adapted and refined distinct economic decision-making strategies over the course

of weeks to maximize reinforcement rate. However, we also found that even without changes

in reinforcement rate, mice transitioned from an early strategy rooted in foraging to a strategy

rooted in deliberation and planning that prevented future regret-inducing change-of-mind epi-

sodes from occurring. These data suggest that mice are learning to avoid future regret, inde-

pendent of and separate from reinforcement rate maximization.

Author summary

Regret describes a unique postdecision phenomenon in which losses are realized as a fault

of one’s own actions. Regret is often hypothesized to have an inherent negative utility, and
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humans will often incur costs so as to avoid the risk of future regret. However, current

models of nonhuman decision-making are based on reward maximization hypotheses.

We recently found that rats express regret behaviorally and neurophysiologically on neu-

roeconomic foraging tasks; however, it remains unknown whether nonhuman animals

will change strategies so as to avoid regret, even in the absence of changes in the achieved

rate of reinforcement. Here, we provide the first evidence that mice change strategies to

avoid future regret, independent of and separate from reinforcement rate maximization.

Our data suggest mice accomplish this by shifting from a foraging decision-making strat-

egy that produces change-of-mind decisions after investment mistakes to one rooted in

deliberation that learns to plan ahead.

Introduction

Regretful experiences comprise those in which an individual recognizes a better decision could

have been made in the past. Humans assert a strong desire to avoid feeling regret [1]. Regret

can have an immediate impact on influencing subsequent valuations, but it can also motivate

individuals to learn to avoid future regret-provoking scenarios altogether [2]. Recently, the

experience of regret has been demonstrated in nonhuman animals, sharing principal neuro-

physiological and behavioral correlates of regret with humans [3–4]. However, it remains

unclear if nonhuman animals are capable of learning from regret in order to avoid recurring

episodes in the future.

Counterfactual reasoning, or considering what might have been, is a critical tenet of

experiencing regret [5–6]. This entails reflecting on potentially better alternatives that could

have been selected in place of a recent decision. Thus, owning a sense of choice responsibility

and acknowledging error of one’s own agency is central to regret. Following the experience of

regret, humans often report a change in mood and augment subsequent decisions in an

attempt at self-justification or in efforts to make up for their losses [7–8]. These immediate

effects of regret on behavior describe a phenomenon distinct from the notion that individuals

will also learn to take longitudinal measures to avoid future scenarios that may induce regret.

Neuroeconomic decision-making tasks offer a controlled laboratory approach to operatio-

nalize and characterize decision-making processes comparable across species [9–12]. Recently,

a study by Steiner and Redish reported the first evidence of regret in rodents tested on a spatial

decision-making task (Restaurant Row) [4]. In this task, food-restricted rats were trained to

spend a limited time budget earning food rewards of varying costs (delays) and demonstrated

stable subjective valuation policies of willingness to wait contingent upon cued offer costs. In

rare instances in which rats disadvantageously violated their decision policies and skipped

low-cost offers only to discover worse offers on subsequent trials (e.g., made “economic mis-

takes”), they looked back at the previous reward site and displayed corrective decisions that

made up for lost time. These behaviors coincided with neural representations of retrospective

missed opportunities in the orbitofrontal cortex, consistent with human and nonhuman-pri-

mate reports of counterfactual “might-have-been” representations [2–4,8,13–15]. While these

data demonstrate that rats are responsive to the immediate effects of regret, the regret

instances were too sparse to determine whether rats also showed long-term consequences of

these regret phenomena. Thus, it remains unknown if nonhuman animals are capable of learn-

ing from such regret-related experiences, leaving open the question of whether nonhuman ani-

mals adopt longitudinal changes in economic decision-making strategies that prevent future

instances of regret from occurring in the first place.
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In the present study (Fig 1), we trained food-restricted mice to traverse a square maze with

4 feeding sites (restaurants), each with unique spatial cues and providing a different flavor

(Fig 1B). On entry into each restaurant, mice were informed of the delay that they would be

required to wait to get the food from that restaurant. In this novel variant of the Restaurant

Row task, each restaurant contained 2 distinct zones: an offer zone and a wait zone. Mice were

informed of the delay on entry into the offer zone, but delay countdowns did not begin until

mice moved into the wait zone. Thus, in the offer zone, mice could either enter the wait zone

(to wait out the delay) or skip (to proceed on to the next restaurant). After making an initial

enter decision, mice had the opportunity to make a secondary reevaluative decision to aban-

don the wait zone (quit) during delay countdowns (S1 Video). Just like rats, mice revealed

preferences for different flavors that varied between animals but were stable across days, indi-

cating subjective valuations for each flavor were used to guide motivated behaviors. Varying

flavors, as opposed to varying pellet number, allowed us to manipulate reward value without

introducing differences in feeding times between restaurants (as time is a limited commodity

on this task). Costs were measured as different delays mice would have to wait to earn a food

reward on that trial, detracting from their session’s limited 1 h time budget. Delays were ran-

domly selected between a range of offers for each trial. Tones sounded upon restaurant entry

whose pitch indicated offer cost and descended in pitch stepwise during countdowns once in

the wait zone.

Fig 1. Longitudinal economic design of the Restaurant Row task. (A) Experimental timeline. Mice were trained for

70 consecutive d, earning their only source of food on this task. Stages of training were broken up into blocks in which

the range of possible offers began in a reward-rich environment (all offers were always 1 s, green epoch) and escalated

to increasingly reward-scarce environments (offer ranges of 1–5 s, 1–15 s, 1–30 s). (B) Task schematic. Food-restricted

mice were trained to encounter serial offers for flavored rewards in 4 “restaurants.” Restaurant flavor and location were

fixed and signaled via contextual cues. Each restaurant contained a separate offer zone and wait zone. Tones sounded

in the offer zone; fixed tone pitch indicated delay (randomly selected from that block’s offer range) mice would have to

wait in the wait zone. Tone pitch descended during delay “countdown” if mice chose to enter the wait zone. Mice

could quit the wait zone for the next restaurant during the countdown, terminating the trial. Mice were tested daily for

60 min. (C) Example session (from the 1–30 s red epoch) with individual trials plotted as dots. This representative

mouse entered low delays and skipped high delays in the offer zone while sometimes quitting once in the wait zone

(black dots). Dashed vertical lines represent calculated offer zone (green) and wait zone (blue) “thresholds” of

willingness to budget time. Thresholds were measured from the inflection point of fitting a sigmoid curve to enters

versus skips or earns versus quits as a function of delay cost. Data available as a supplemental file.

https://doi.org/10.1371/journal.pbio.2005853.g001
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Taken together, in this task, mice must make serial judgements in a self-paced manner,

weighing subjective valuations for different flavors against offer costs and balancing the eco-

nomic utility of sustaining overall food intake against earning more rewards of a desirable fla-

vor. In doing so, cognitive flexibility and self-control become critical components of decision-

making valuation processes in this task, assessed in 2 separate stages of decision conflict (in the

offer and wait zones). Importantly, because mice had 1 h to work for their sole source of food

for the day, trials on this task were interdependent both within and across days. Therefore, this

was an economic task in which time must be budgeted in order to become self-sufficient across

days. Here, we tested mice for 70 consecutive d. Thus, the key to strategy development on this

task is the learning that takes place across days, for instance, when performance on a given day

produces poor yield. Monitoring longitudinal changes in decision-making strategy can pro-

vide novel insight into regret-related learning experiences.

Results

How mice were trained on the Restaurant Row task allowed us to characterize the develop-

ment of and changes in economic decision-making strategies. Mice progressed from a reward-

rich to a reward-scarce environment in blocks of stages of training across days (Fig 1A). Each

block was defined by the range of possible costs that could be encountered when offers were

randomly selected on the start of each trial upon entry into each restaurant’s offer zone. The

first block (green epoch) spanned 7 d in which all offers were always 1 s (Fig 1A). During this

time, mice quickly learned the structure of the task (Fig 2), becoming self-sufficient and stabi-

lizing the number of pellets earned (Fig 2A), reinforcement rate (Fig 2B), and number of laps

run (Fig 2C). During this block, mice rapidly developed stable flavor preferences and learned

to skip offers for less-preferred flavors and enter offers for more-preferred flavors, entering

versus skipping at roughly equal rates overall while rarely quitting (Fig 2D and 2E, S1A–S1E

Fig). The second block (yellow epoch) spanned 5 d in which offers could range between 1–5 s.

The third block (orange epoch) spanned 5 d in which offers could range between 1–15 s.

Lastly, the fourth and final block (red epoch, beginning on day 18) lasted until the end of this

experiment (day 70), in which offers could range between 1–30 s. Note that because the mice

had a limited 1 h time budget to get all of their food for the day, these changes in offer distribu-

tions produced increasingly reward-scarce environments that required more complex strate-

gies to maximize rate of reward.

Upon transitioning to the 1−30 s offer block, mice suffered a large drop in total number of

pellets earned (Fig 2A, repeated measures ANOVA, F = 9.46, p< 0.01) and reinforcement rate

(increase in time between earnings, Fig 2B, F = 253.93, p< 0.0001). With this came a number

of changes in decision-making behaviors that took place immediately, on an intermediate

timescale, and on a delayed long-term timescale. Decreases in food intake and reinforcement

rate were driven by an immediate significant increase in proportion of total offers entered (Fig

2D, F = 56.10, p< 0.0001) coupled with a significant increase in proportion of entered offers

quit (Fig 2E, F = 472.88, p< 0.0001) as mice experienced long delays in the wait zone for the

first time. This suggests that mice were apt to accept expensive offers in the offer zone even

though they did not actually earn those offers in the wait zone (S2C, S2G, S2I and S2J Fig).

This also suggests that choosing to enter versus skip in the offer zone and choosing to opt out

of waiting in the wait zone may access separate valuation algorithms. We quantified this dis-

parity in economic valuations by calculating separate “thresholds” of willingness to enter in

the offer zone and willingness to wait in the wait zone as a function of offer cost. Following the

1−30 s transition, offer zone thresholds significantly increased (maxed out at approximately

30 s) and became significantly higher than wait zone thresholds (Fig 2F, offer zone change:
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F = 151.65, p< 0.0001; offer zone versus wait zone: F = 59.85, p< 0.0001). Furthermore, we

found that these immediate behavioral changes were more robust in more-preferred restau-

rants, suggesting asymmetries in suboptimal decision-making strategies upon transition from

a reward-rich to a reward-scarce environment were dependent on differences in subjective val-

uation algorithms (S1A Fig, see S1 Text).

Because performance on this task served as the only source of food for these mice, decision-

making policies that might have been sufficient in reward-rich environments must change

when they are no longer sufficient in reward-scarce environments. We found that mice dem-

onstrated behavioral adaptations over the 2 wk following the transition to the 1−30 s offer

range so that by approximately day 32, they had effectively restored overall food intake (Fig

Fig 2. Changes in economic decisions in an increasingly reward-scarce environment. (A-B) Primary dependent variables: total

earned food intake (A) and reinforcement rate (B), measured as average time between earnings. Transition to the 1–30 s block

caused a significant decrease in food intake and reinforcement rate. By approximately day 32, food intake and reinforcement rate

renormalized back to stable baseline levels compared to previous testing in reward-rich environments. The epoch marked in pink

defines this renormalization to baseline and is used throughout the remaining longitudinal plots. (C) Number of self-paced laps

run (serially encountering an offer in each of the 4 restaurants). (D) Proportion of total offers entered versus skipped. Horizontal

dashed line represents 0.5 level. (E) Proportion of total enters earned versus quit. Horizontal dashed line represents 0.5 level. (F)

Economic decision thresholds: OZ and WZ choice outcomes as a function of cost. Horizontal dashed lines represent the maximum

possible threshold in each block. Data are presented as the cohort’s (N = 31) daily means (±1 SE) across the entire experiment.

Color code on the x-axis reflects the stages of training (offer cost ranges denoted from 1 to the number on the top of panel A).

Vertical dashed lines (except pink) represent offer block transitions. � on the x-axis indicates immediate significant behavioral

change at the block transition; otherwise, � indicates gradual significant changes within the 1–30 s block during either the early 2

wk adaptation period or late pink epoch. Data available as a supplemental file. OZ, offer zone; WZ, wait zone

https://doi.org/10.1371/journal.pbio.2005853.g002
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2A, change across 2 wk: F = 355.21, p< 0.0001; post-2 wk compared to baseline: F = 0.80,

p = 0.37) and reinforcement rates (Fig 2B, change across 2 wk: F = 183.68, p< 0.0001; post-2

wk compared to baseline: F = 0.24, p = 0.63) to baseline levels similar to what was observed in

a reward-rich environment (Fig 2A and 2B). Note that the restored reinforcement rates renor-

malization, indicated by the pink epoch in Fig 2, was not imposed by the experimenters but

was due to changes in the behavior of the mice under unchanged experimental rules (1−30 s

offers). Mice accomplished this by running more laps to compensate for food loss (Fig 2C,

F = 221.61, p< 0.0001) without altering economic decision-making policies. That is, we

observed no changes in wait zone thresholds during this 2-wk period (Fig 2F, F = 2.57, p =

0.11). By entering the majority of offers indiscriminately with respect to cost (Fig 2D, propor-

tion trials entered > 0.5: t = 31.22, p< 0.0001, S2C Fig), mice found themselves sampling

more offers in the wait zone they were also unwilling to wait for, leading to an increase in quit-

ting (Fig 2E, F = 55.37, p< 0.0001, S2G Fig).

Investing a greater portion of a limited time budget waiting for rewards that are ultimately

abandoned appears, at face value, to be a wasteful decision-making strategy. Yet mice were

able to restore food intake and reinforcement rates using this strategy. We characterized how

mice allocated their limited time budget and quantified time spent among various separable

behaviors that made up the total 1-h session (Fig 3). We first calculated the percent of total

budget engaged in making offer zone decisions to skip versus enter, wait zone decisions to quit

versus earn, postearn consumption behaviors, and travel time between restaurants (Fig 3A).

We also calculated the average time spent engaged in a single bout of each decision process

(Fig 3B–3F). The percent of total session time allocated to quit events (Fig 3A, F = 306.72, p<
0.0001), as well as average time spent waiting before quitting (Fig 3C, F = 44.21, p< 0.0001),

significantly increased immediately following the transition to 1−30 s offers. Thus, time spent

waiting in the wait zone before engaging in change-of-mind behaviors drove the immediate

decrease in reinforcement rates and overall loss of food intake. Note that this waiting and then

quitting behavior entails investing time that provided no reward. Over the subsequent 2 wk,

time spent waiting before quitting significantly decreased as mice restored food intake and

reinforcement rates (Fig 3C, F = 781.55, p< 0.0001). This suggests that mice learned to quit

more efficiently in the wait zone. We calculated economic efficiency of wait zone quits (Fig

4B) by measuring how much time was remaining in the countdown at the moment of quitting

relative to an individual’s wait zone threshold. Over these 2 wk, mice learned to quit in a more

economically advantageous manner before excess time was invested. That is, mice learned to

quit while the time remaining in the countdown was still above wait zone thresholds (Fig 4B,

F = 64.00, p< 0.0001, S1P Fig, S3 Fig, see S1 Text), avoiding quitting at a timepoint when it

would have been advantageous to otherwise finish waiting. This suggests that wait zone–quit

reevaluations were corrective actions that opposed erroneous principal valuations in the offer

zone. Interestingly, mice struggled to learn to quit efficiently in more preferred restaurants,

reflecting a reluctance to apply adaptive opt-out foraging strategies in situations with high sub-

jective valuation biases (S1K and S1P Fig see S1 Text). Despite increasing change-of-mind effi-

ciency, because the frequency of quit events increased along this 2 wk time course, the fraction

of the session budget allocated to quit events remained significantly elevated compared to

baseline (Fig 3A, F = 105.90, p< 0.0001).

After mice successfully restored food intake and reinforcement rates by refining a foraging

strategy, we found a distinct, delayed phase of additional learning that took place with pro-

longed training in the absence of any further changes in food intake (pink epoch, Fig 2A,

F = 1.82, p = 0.18), reinforcement rates (pink epoch, Fig 2B, F = 0.01, p = 0.95), or laps run

(pink epoch, Fig 2C, F = 1.54, p = 0.21). The proportion of enter-then-quit decisions decreased

over the remainder of the experiment (Fig 2E, F = 159.30, p< 0.0001) as mice learned to reject
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offers in the offer zone that they were unwilling to remain committed to once in the wait zone

(S2D–S2H Fig). This is reflected in a decrease in offer zone thresholds until they were in regis-

ter with wait zone thresholds by the end of the experiment (pink epoch, Fig 2F, offer zone

change: F = 812.40, p< 0.0001; offer zone versus wait zone at day 70: F = 0.17, p = 0.68). As a

result, mice learned to skip more often in the offer zone (pink epoch, Fig 2D, F = 116.85,

p< 0.0001). We calculated the economic efficiency of offer zone decisions by measuring the

likelihood of skipping offers above wait zone thresholds relative to the likelihood of entering

offers above wait zone threshold and found that offer zone decisions became more efficient

during the pink epoch (Fig 4A, F = 474.94, p< 0.0001). As a result, the proportion of session

budget allocated to quit events declined back to baseline levels (pink epoch, Fig 3A, budget

quitting change: F = 1639.61, p< 0.0001, day 70 compared to baseline: F = 0.17, p = 0.68). The

Fig 3. Allocation of a limited time budget among separable decision processes. (A) Cumulative time spent engaged in various

separable behaviors and decision processes calculated as percent of the total 1 h daily session’s time budget. (B) Average time in

the OZ from offer onset upon restaurant entry until either a skip or enter decision was made. (C) Average time in the WZ from

countdown onset until a quit decision was made. (D) Average time in the WZ from countdown onset until a pellet was earned. (E)

Average time near the reward site from pellet delivery until mice exited the WZ and entered the hallway, advancing to the next

restaurant. (F) Average time spent traveling in the hallway between restaurants between trials (from either a skip, quit, or postearn

leave decision until the next trial’s offer onset upon subsequent restaurant entry). Data are presented as the cohort’s (N = 31) daily

means (±1 SE) across the entire experiment. Color code on the x-axis reflects the stages of training (offer cost ranges denoted from

1 to the number on the top of panel A). Vertical dashed lines (except pink) represent block transitions. � on the x-axis indicates

immediate significant behavioral change at the block transition; otherwise, � indicates gradual significant changes within the 1−30

s block during either the early 2 wk adaptation period or late pink epoch. Data available as a supplemental file. OZ, offer zone;

WZ, wait zone.

https://doi.org/10.1371/journal.pbio.2005853.g003
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only change observed in average time spent per decision across decision processes during this

phase of learning was in offer zone time, which increased over extended training as skip fre-

quency increased (pink epoch, Fig 3B, offer zone time: F = 490.14, p< 0.0001; wait zone quit

time: F = 0.10, p = 0.75; earn time: F = 0.11, p = 0.74; linger time: F = 0.73, p = 0.39; travel time:

F = 0.01, p = 0.94).

Upon closer examination of offer zone behaviors (Fig 5), we found marked changes follow-

ing the 1–30 s transition in skip decisions but not in enter decisions. We calculated the reac-

tion time from offer onset until either a skip or enter decision was made. We also tracked each

animal’s x and y location path trajectory as they passed through the offer zone. From this, we

could capture the degree to which animals interrupted smooth offer zone passes with “pause

and look” reorientation behaviors known as vicarious trial and error (VTE). VTE is a well-

studied behavioral phenomenon that reveals ongoing deliberation and planning during

moments of embodied indecision, supported by numerous electrophysiological experiments

reporting concurrent neural representations of possible future outcomes compared serially

[16–25]. The physical “hemming and hawing” characteristic of VTE is best measured by calcu-

lating changes in velocity vectors of discrete body x and y positions over time as dx and dy.

Fig 4. Development of separate intermediate wait zone and long-term offer zone efficient decision-making

strategies. (A) Offer zone inefficiency ratio. VO = WZ–O. Probability of entering negatively valued offers relative to

the probability of skipping negatively valued offers. Horizontal dashed line indicates equivalent 1:1 ratio of entering

versus skipping negatively valued offers. (B) Wait zone inefficiency ratio. VL = WZ–TL. Probability of quitting

negatively valued offers when VL was positive relative to when VL was still negative. Horizontal dashed line indicates

equivalent 1:1 ratio of quitting inefficiently versus efficiently. Data are presented as the cohort’s (N = 31) daily means

(±1 SE) across the entire experiment. Color code on the x-axis reflects the stages of training (offer cost ranges denoted

from 1 to the number on the top of panel A). Vertical dashed lines (except pink) represent block transitions. � on the x-

axis indicates ratio significantly greater than 1:1 immediately following the 1–30 s block transition; otherwise, �

indicates gradual significant changes within the 1–30 s block during either the early 2 wk adaptation period or late pink

epoch. Data available as a supplemental file. O, offer cost; TL, countdown time left; VL, value of time left in countdown

at the moment of quitting; VO, offer value; WZ, wait zone threshold.

https://doi.org/10.1371/journal.pbio.2005853.g004
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From this, we can calculate the momentary change in angle, Phi, as dPhi. When this metric is

integrated over the duration of the pass through the offer zone, VTE is measured as the abso-

lute integrated angular velocity, or IdPhi, until either a skip or enter decision was made (Fig

5A and 5B, day 70 examples path traces). In a reward-rich environment, offer zone reaction

time became more rapid (green-yellow-orange epochs, Fig 5C, F = 157.78, p< 0.0001), and

paths measured by IdPhi became more stereotyped (green-yellow-orange epochs, Fig 5D,

F = 150.19, p< 0.0001) as mice learned the structure of the task and made ballistic decisions.

However, in a reward-scarce environment, skip reaction time (Fig 5C, F = 92.00, p< 0.0001)

and skip VTE (Fig 5D, F = 117.80, p< 0.0001) began to increase following the transition to

1–30 s offers. These behaviors stabilized after food intake, and reinforcement rates were

restored for the remainder of the experiment (pink epoch, Fig 5C, skip time: F = 2.21, p = 0.14;

Fig 5D, skip VTE: F = 0.45, p = 0.50) as offer zone thresholds declined (Fig 2F) and skip fre-

quency increased (Fig 2D). This suggests that mice enacted deliberative strategies in the offer

zone after prolonged training. Mice learned to plan to skip expensive offers that previously

would have been rapidly entered and then ultimately quit. Furthermore, following the transi-

tion to 1–30 s offers, enter decisions remained fast (Fig 5C, F = 1.73, p = 0.19) with low VTE

(Fig 5D, F = 0.97, p = 0.32), suggesting enter decisions that ultimately led to quits were eco-

nomically disadvantageous snap judgements in the offer zone that were subsequently re-

evaluated and corrected in the wait zone. Skip reaction time and VTE were higher in more

Fig 5. Development of deliberative behaviors during principal OZ valuations. (A-B) Example x and y locations of a

mouse’s path trajectory in the OZ (wait zone not depicted) over time during a single trial (from day 70). (A) Skip

decision for a high-delay offer. The mouse initially oriented toward entering (right) but then ultimately reoriented to

skip (left). WZ Th. minus offer captures the relative subjective “value” of the offer. Negative value denotes an

economically unfavorable offer. (B) Enter decision for positively valued offer; rapid without reorientations. This OZ

trajectory pattern is indistinguishable from enter-then-quit decisions for negatively valued offers. (C) Average OZ RT

split by enter versus skip decisions across days of training. (D) Average OZ VTE behavior split by enter versus skip

decisions across days of training. Data are presented as the cohort’s (N = 31) daily means (±1 SE) across the entire

experiment. Color code on the x-axis in (C-D) reflects the stages of training (offer cost ranges denoted from 1 to the

number on the top of panel C). Vertical dashed lines (except pink) represent block transitions. � indicates gradual

significant changes within the 1–30 s block during the early 2 wk adaptation period. Data available as a supplemental

file. OZ, offer zone; RT, reaction time; VTE, vicarious trial and error; WZ Th., wait zone threshold.

https://doi.org/10.1371/journal.pbio.2005853.g005
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preferred restaurants (S1G–S1J Fig), suggesting decisions to skip expensive offers for desired

flavors were more difficult. Furthermore, refining the economic efficiency of this deliberative

strategy was more difficult to learn in more-preferred restaurants (S1O Fig, S4 Fig, S5 Fig, see

S1 Text).

This opens an intriguing question: if the changes that took place with prolonged training

did not change the efficiency of food receipt, and if the only change after the development of

deliberative strategies was a reversal of the increase in quit frequency, what does a reduction in

change-of-mind decisions serve these animals? Given that there was no gain in food intake or

reinforcement rate nor decrease in energy expenditure, what might be the driving force behind

this delayed learning process?

A strength of the Restaurant Row task is its capability of measuring how economic deci-

sions in one trial influence economic decisions in the following trial. This between-trial

sequence feature of Restaurant Row captures post-decision-making phenomena, like regret

[4]. A key factor in experiencing regret is the realization that a user-driven mistake has been

made and that an alternative response could have led to a more ideal outcome. A change-of-

mind quit decision in this novel variant of the Restaurant Row task thus presents an economic

scenario in which mice take action to opt out of and abandon ongoing investments in the wait

zone following an economically disadvantageous enter decision. As shown above, quits are

economically advantageous reevaluations of prior snap judgements made in the offer zone.

Thus, quit events reveal a potential economic scenario in which an agent’s decision has led to

an economically disadvantageous option, whereby a counterfactual opportunity (“should have

skipped it in the first place”) could provoke a regret-like experience.

Economic theories of human decision-making have hypothesized that regret adds a nega-

tive component to a utility function [1,7,26–28]. These theories suggest that an important driv-

ing force for human decision-making is the avoidance of future regret [2,8,29–31]. In order to

test if decisions following enter-then-quit sequences carry added negative utility akin to regret

previously demonstrated in Restaurant Row, we examined decision outcomes in the subse-

quent restaurant encounter following change-of-mind decisions compared to those following

skip decisions (Fig 6). We compared enter-then-quit events to skip events (Fig 6A) that were

matched for total time spent in the first restaurant before ultimately turning down the offer

and advancing to the subsequent restaurant (Fig 6B). For example, we compared a skip deci-

sion that used up 2 s of offer zone time to an enter-then-quit sequence that used up a total of 2

s of combined offer zone and wait zone time. Consistent with previous reports in rats who

attempted to make up for lost effort following regret, we found that, following quits, mice were

more likely to accept offers in the next trial (Fig 6C, F = 39.26, p< 0.0001), did so quickly (Fig

6D, F = 163.28, p< 0.0001), and upon earning subsequent rewards, rapidly consumed food

and exited the reward site (Fig 6E F = 191.89, p< 0.0001), compared to trials following skips.

Quit-induced effects on subsequent trials existed across the entire experiment (Fig 6F–6H)

and remained, even after controlling for flavor preferences (S6 Fig, see S1 Text). This suggests

that enter-then-quit sequences were capable of augmenting subsequent valuations, even when

change-of-mind reevaluations were matched to skip decisions for resource depletion and even

during early stages of training amidst simpler foraging strategies before deliberative strategies

developed.

Taken together, on a multiple-week timescale, mice transitioned from a foraging strategy

that learned to become efficient (Fig 4B) to a distinct deliberative strategy that separately

learned to become efficient later (Fig 4A). This change in strategy effectively traded enter-

then-quit reevaluative decisions in the wait zone for skip decisions during principal valuations

in the offer zone, with no overt benefit other than reducing the frequency of change-of-mind

events. Quit events and skip events came from the same distribution of offer lengths (S7 Fig).
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Based on these data, it seems that not only can a change-of-mind experience have an immedi-

ate impact on subsequent valuations but it can also impact longer-term learning in mice capa-

ble of augmenting decision-making strategies. The resulting decision-making strategy appears

to be one rooted in deliberation and planning as a means of avoiding future change-of-mind

scenarios altogether.

Discussion

Numerous studies have demonstrated that human individuals develop long-term strategies to

avoid future instances of regret [2,7–8,14]. This phenomenon is distinct from the ability of

regret to drive compensatory augmentations in valuation processes of immediately subsequent

opportunities. While the immediate effects of regret have been demonstrated in rodents [4],

Fig 6. Regret-like sequence effects following change-of-mind wait zone reevaluations. (A) Following either a skip or enter-

then-quit decision in R1, we characterized behaviors on the subsequent trial in R2. (B) Distribution of time spent in R1 from

offer onset until a skip decision (OZ time) or quit decision (OZ time plus wait zone time) was made. To control for the effects

of differences in time spent skipping versus entering-then-quitting in R1 on behavior in Restaurant 2, we compared trials

matched for resource depletion between conditions. (C-D) Data averaged across the 1–30 s offer block. (C) Probability of

entering an offer in R2 after skipping versus quitting in R1. (D) OZ RT in R2 after skipping versus quitting in R1. (E) Time

spent consuming an earned pellet and lingering at the reward site in R2 after skipping versus quitting in R1. (F-H) Postskip

versus post-enter-then-quit sequence data across the entire experiment from (C-E), respectively. Data are presented as the

cohort’s (N = 31) means (±1 SE). Color code on the x-axis in (F-H) reflects the stages of training (offer cost ranges denoted

from 1 to the number on the top of panel F). Vertical dashed lines (except pink) represent block transitions. � indicate

significant difference between skip versus quit conditions. Data available as a supplemental file. OZ, offer zone; R1, restaurant

1; R2, restaurant 2; RT, reaction time.

https://doi.org/10.1371/journal.pbio.2005853.g006
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long-term regret-avoidance learning, however, has not been previously observed. Here, we

provide support not only for growing evidence that rodents (mice as well as rats) are capable

of experiencing regret-like episodes but also that such experiences, separate from and indepen-

dent of reinforcement maximization, can drive long-term changes in decision-making

strategies.

Much of the animal learning literature has focused primarily on reinforcement maximiza-

tion as the sole motivator of reward-related learning in decision-making paradigms [32–35].

That is, the goal of increasing reward reinforcement rate is thought to underlie animal behav-

ior. Temporal difference error algorithms demonstrate a well-characterized mechanism of

reward maximization–driven motivation in reinforcement learning theory [33–36]. Such

learning algorithms, supported by neural representations of escalating response vigor and

reward expectancies in mesolimbic dopamine systems, update behavioral policies or learn

novel contingencies in order to optimize a given cost function and produce maximum reward

yield [37–42]. Behavioral and neurophysiological data in both humans and nonhuman animals

support a reward maximization theory of learning algorithms.

In the present study, we found evidence of reward-maximization learning algorithms as

mice progressed from reward-rich to reward-scarce environments and made increasingly effi-

cient wait zone decisions in a self-paced manner on a time-sensitive economic decision-mak-

ing task during which they earned their only source of food. We also found distinct learning

processes separated across space and time in the offer zone that took place on a much longer

timescale. We found that mice reduced the frequency of wait zone change-of-mind decisions

by learning to plan ahead in the offer zone, without any additional gain in reinforcement rates

or reduction in energy expenditure. Other hypothesized drivers of human learning besides

reinforcement maximization and energy expenditure minimization include managing affec-

tive states, particularly ameliorating or minimizing negative affect [43–44]. Avoiding pain,

stress, threat, or anxiety is a well-studied motivator in human learning as well as in nonhu-

man-animal fear conditioning or punishment learning paradigms [45–46]. However, in a

reward context, negative affect associated with regret and reward-related outcome experiences,

while well-characterized in humans, is far less understood in animal learning models of posi-

tive reinforcement, reward-seeking learning.

The relatively straightforward view of reward maximization–driven reinforcement learning

is challenged by the decision-making phenomena made tractable in these economic decision-

making paradigms [33]. Postdecision regret is a well-known example that poses issues for tra-

ditional reinforcement learning algorithms dependent on updating stimuli or actions associ-

ated with actual experienced reward outcomes [33]. Hypothetical outcomes of forgone

alternatives processed during counterfactual thinking that turn out to be better than chosen

actions—key in regret—are indeed capable of driving long-term changes in future decision

strategies through fictive learning, but it is a process that has been sparsely studied in nonhu-

man animals [3–7,13–15]. Mapping counterfactual outcomes onto corrective actions that

could have been taken aids in the development of new decision strategies aimed to avoid regret

in the future, yet this is a poorly understood behavioral and neural process.

Change-of-mind behaviors present unique decision-making scenarios that, when assessed

on an economic task, can capture the economic advantageous versus disadvantageous nature

of principal valuations and subsequent reevaluative choices. On this novel variant of the Res-

taurant Row task, we separate principal valuations (offer zone) from reevaluative choices (wait

zone) across space and time within a single trial. Furthermore, change-of-mind behaviors

present a powerful means of studying counterfactual decision processes [47–49]. In the context

of the neuroeconomics of regret, a few questions arise: what drives individuals to change their

minds? Which decisions might be economically fallible: the original choice, the delayed
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reconsideration, neither, or both? Why might individuals be reluctant to change their minds,

how is this related to regret, and how might this interact with subjective valuation reinforce-

ment learning algorithms?

Change-of-mind decisions occur every day in the real world, yet there is the general con-

sensus that many individuals find this unpleasant and are often reluctant to do so, even when

its utility is apparent [50–53]. Imagine the common scenario of a person in a food court during

a 1h lunch break deciding which line to wait in—a direct analogue of what we test here in the

Restaurant Row task. The decision to back out of waiting in any given line often comes with a

sore feeling, even if doing so was an advantageous decision. Conversely, “going down with the

ship” describes the sometimes-irrational motivation to refuse overturning a principal judge-

ment and abandoning a partial investment. This is thought to be motivated by a desire to

avoid being wasteful, admitting mistakes, or challenging one’s own beliefs. Thus, following an

investment history, it is reasonable to appreciate that progress made toward a goal may be dif-

ficult to abandon, doing so may generate a source of cognitive dissonance, and thus, the deci-

sion to override a principal judgement when reevaluating continued investment errs on the

side of perseveration, however economically irrational that may be. This describes a well-

known decision-making phenomenon termed the sunk cost fallacy, in which the value of con-

tinued investment toward reward receipt is inflated as a function of irrecoverable past invest-

ments [54]. Mice, rats, and humans all demonstrate sensitivity to sunk costs in the wait zone

when making quit decisions as a function of investment history on translated variants of the

Restaurant Row task [55]. Thus, quit-induced regret and sunk cost–driven perseveration

appear to be intimately related here. That is, after making a principal judgement in the offer

zone to accept an offer at a cost higher than subjective value indicates one should (i.e., an initial

economic violation of wait zone threshold), subjects are faced with a change-of-mind

dilemma, torn between irrationally waiting out the expensive offer versus rationally backtrack-

ing and changing their plans, when affective contributions appear to weigh these options

against one another.

In our food court example, the economically rational decision would be to select a line

immediately and to make one’s decision while waiting in line. However, this is not what is typ-

ically observed—instead, it is far more common for people to deliberate before choosing and

investing in any one option, despite the fact that this wastes time planning. Despite reevaluat-

ing an ongoing investment being the economically efficient and rational strategy, this hinges

on a high frequency of change-of-mind decisions. After prolonged training in the Restaurant

Row task, mice show a shift from the select-and-reevaluate foraging strategy to the deliberate-

first strategy, even though it produces no change in reinforcement rate or energy expenditure.

Thus, we conclude that mice are capable of learning from regret-related experiences induced

by change-of-mind decisions and that they develop a forward-looking deliberative strategy

that, although expensive in time and in computational resources, is economically advanta-

geous because regret itself induces a negative utility. Rather than learning to deal with regret,

sometimes mice take the time to plan ahead and learn to just avoid regret altogether.

Materials and methods

Mice

31-C57BL/J6 male mice, 13 wk old, were trained in Restaurant Row. Mice were single-housed

(beginning at 11 wk of age) in a temperature- and humidity-controlled environment with a

12 h light/12 h dark cycle with water ad libitum. Mice were food restricted to a maximum of

85% free-feeding body weight and trained to earn their entire day’s food ration during their

1 h Restaurant Row session. Experiments were approved by the University of Minnesota
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Institutional Animal Care and Use Committee (IACUC; protocol number 1412A-32172) and

adhered to NIH guidelines. Mice were tested at the same time every day during their light

phase in a dimly lit room, were weighed before and after every testing session, and were fed a

small postsession ration in a separate waiting chamber on rare occasions to prevent extremely

low weights according to IACUC standards (not <85% free-feeding weights). Previous studies

using this task yielded reliable behavioral findings with minimal variability in at least sample

sizes of n = 7.

Pellet training

Mice underwent 1 wk of pellet training prior to the start of being introduced to the Restaurant

Row maze. During this period, mice were taken off of regular rodent chow and introduced to

a single daily serving of BioServ full-nutrition 20 mg dustless precision pellets in excess (5 g).

This serving consisted of a mixture of chocolate-, banana-, grape-, and plain-flavored pellets.

Next, mice (hungry, before being fed their daily ration) were introduced to the Restaurant

Row maze 1 d prior to the start of training and were allowed to roam freely for 15 min to

explore, get comfortable with the maze, and familiarize themselves with the feeding sites. Res-

taurants were marked with unique spatial cues. Restaurant location remained fixed throughout

the entire experiment. Feeding bowls in each restaurant were filled with excess food on this

introduction day.

Restaurant Row training

Task training was broken into 4 stages. Each daily session lasted for 1 h. At test start, one res-

taurant was randomly selected to be the starting restaurant where an offer was made if mice

entered that restaurant’s T-shaped offer zone from the appropriate direction in a counterclock-

wise manner. During the first stage (days 1–7), mice were trained for 1 wk being given only 1 s

offers. Brief low-pitch tones (4,000 Hz, 500 ms) sounded upon entry into the offer zone and

repeated every second until mice skipped or until mice entered the wait zone, after which a

pellet was dispensed. To discourage mice from leaving earned pellets uneaten, motorized feed-

ing bowls cleared an uneaten pellet upon restaurant exit. Leftover pellets were counted after

each session, and mice quickly learned to not leave the reward site without consuming earned

pellets. The next restaurant in the counterclockwise sequence was always and only the next

available restaurant where an offer could be made, such that mice learned to run laps encoun-

tering offers across all 4 restaurants in a fixed order serially in a single lap. During the second

stage (day 8–12), mice were given offers that ranged from 1 s to 5 s (4,000 Hz to 5,548 Hz, in

387 Hz steps) for 5 d. Offers were pseudorandomly selected, such that all 5 offer lengths were

encountered in 5 consecutive trials before being reshuffled, selected independently between

restaurants. Again, offer tones repeated every second in the offer zone indefinitely until either

a skip or enter decision was made. In this stage and subsequent stages, in the wait zone, 500 ms

tones descended in pitch every second by 387 Hz steps, counting down to pellet delivery. If the

wait zone was exited at any point during the countdown, the tone ceased, and the trial ended,

forcing mice to proceed to the next restaurant. Stage 3 (days 13–17) consisted of offers from 1

s to 15 s (4,000–9,418 Hz) for another 5 d. Stage 4 (days 18–70) offers ranged from 1 s to 30 s

(4,000–15,223 Hz) and lasted until mice showed stable economic behaviors. We used 4 Audio-

tek tweeters positioned next to each restaurant, powered by Lepy amplifiers, to play local tones

at 70 dB in each restaurant. We recorded speaker quality to verify frequency playback fidelity.

We used Med Associates 20 mg feeder pellet dispensers and 3D-printed feeding bowl recepta-

cles fashioned with mini-servos to control automated clearance of uneaten pellets. Animal

tracking, task programming, and maze operation were powered by AnyMaze (Stoelting). Mice
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were tested at the same time every day in a dimly lit room, were weighed before and after every

testing session, and were fed a small postsession ration in a separate waiting chamber on rare

occasions as needed to prevent extremely low weights according to IACUC standards (not

<85% free-feeding weights).

Statistical analysis

All data were processed in Matlab, and statistical analyses were carried out using JMP Pro 13

Statistical Discovery software package from SAS. All data are expressed as mean +/− 1 SE. Sam-

ple size is included in each figure. No data were lost to outliers. Offer zone thresholds were cal-

culated by fitting a sigmoid function to offer zone choice outcome (skip versus enter) as a

function offer length for all trials in a single restaurant for a single session and measuring the

inflection point. Wait zone thresholds were calculated by fitting a sigmoid function to wait zone

choice outcomes (quit versus earn) as a function of offer length for all entered trials in a single

restaurant for a single session. For dynamic analyses that depend on thresholds (e.g., Fig 4),

analyses at each timepoint used that timepoint’s threshold information. Statistical significance

was assessed using Student t tests, one-way, two-way, and repeated-measures ANOVAs, using

mouse as a random effect in a mixed model, with post-hoc Tukey t tests correcting for multiple

comparisons. Significance testing of immediate changes at block transitions were tested using a

repeated-measures ANOVA between 1 d pre- and 1 d posttransition. These are indicated by sig-

nificance annotations below the x-axis on relevant figures. Significance testing of gradual

changes within block were tested using a repeated-measures ANOVA across all days within a

given block or epoch. These are indicated by significance annotations within the plot either

directly above or below the data centered within the epoch of interest. If significant interactions

between factors were found (e.g., x rank), these are reflected by multiple significance annota-

tions either below the x-axis or within the plot, respectively. The period of renormalization was

estimated based on animal self-driven performance improvements in the 1–30 s block and not

imposed on the animals by experimenters nor the protocol design. Renormalization was charac-

terized by identifying the number of days in the 1–30 s block, after which total pellet earnings

and reinforcement rate reliably stabilized (within a sliding 5 d window) and was no different

from performance in relatively reward-rich environments collapsing across the first 3 training

blocks. This was estimated to be approximately by day 30 of the experiment.

Supporting information

S1 Fig. Interactions between subjective flavor preferences and longitudinal economic deci-

sion processes. Flavors were ranked from least preferred to most preferred based on total pel-

let earnings in each restaurant at the end of each session. (A) Pellets earned in each restaurant

show early development of flavor preferences that persist throughout the entire experiment.

(B) Percentage of offers entered. Horizontal dashed line indicates 100%. (C-E) Total number

of trials entered (C), skipped (D), and quit (E). (F) Percentage of entered offers quit. Horizon-

tal dashed line indicates 50%. (G-J) Offer zone behaviors for enter (G, time; I, VTE) and skip

(H, time; J, VTE) decisions. (K) Time spent in the wait zone during tone countdown before

quitting. (L) Time spent in the wait zone consuming an earned food pellet and lingering near

the reward site before advancing to the next trial. (M-N) Offer zone (M) and wait zone (N)

thresholds. Horizontal dashed lines represent the maximum possible threshold in each block.

(O) Offer zone inefficiency ratio. VO = WZ–O. Probability of entering negatively valued offers

relative to the probability of skipping negatively valued offers. Horizontal dashed line indicates

equivalent 1:1 ratio of entering versus skipping negatively valued offers. (P) Wait zone ineffi-

ciency ratio. VL = WZ–TL. Probability of quitting negatively valued offers when VL was
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positive relative to when VL was still negative. Horizontal dashed line indicates equivalent 1:1

ratio of quitting inefficiently versus efficiently. (Q) Reward-earning optimality. Proportion of

pellets mice actually earned in each restaurant relative to model-estimated maximal predicted

earnings. Horizontal dashed line indicates 100% optimal earnings. Data are presented as the

cohort’s (N = 31) daily means (±1 SE) across the entire experiment. Color code on the x-axis

reflects the stages of training (offer cost ranges denoted from 1 to the number on the top of

panel A). Vertical dashed lines (except pink) represent offer block transitions. � on the x-axis

indicates immediate significant behavioral change at the block transition. � on the x-axis in

(O-P) indicates significantly inefficient decisions (above the 1:1 efficiency ratio line). Other-

wise, � indicates gradual significant changes within the 1–30 s block during either the early 2

wk adaptation period or late pink epoch. n.s., not significant; O, offer cost; TL, countdown

time left; VL, value of time left in countdown at the moment of quitting; VO, offer value; VTE,

vicarious trial and error; WZ, wait zone threshold.

(TIF)

S2 Fig. Decision outcomes as function of offer costs across stages of training. Choice proba-

bility to enter versus skip in the offer zone (A-D) or earn versus quit in the wait zone (E-H) rel-

ative to all offers (normalized to all session trials) as a function of cost during 1–5 s training (A,

E), 1–15 s training (B,F), early 1–30 s training (C,G, first 5 d), and late 1–30 s training (D,H,

last 5 d). Vertical dashed lines indicate average threshold. Wait zone thresholds remained rela-

tively stable across 1–15 s and 1–30 s offer blocks. Offer zone thresholds became in register

with wait zone thresholds by the end of the 1–30 s training. Horizontal dashed lines indicate

choice probability if decisions were made at random. Data are presented as the cohort’s

(N = 31) means (±1 SE). (I-J) Offer zone outcome (I) and trial-end outcome (J) probabilities as

a function of offer cost over the 1–30 s training block (red epoch). All subjects pooled together

for visualization purposes. Solid white line represents cohort’s overall average offer zone

threshold. Dashed white line represents cohort’s overall average wait zone threshold. Pink line

represents onset of food intake and reinforcement rate renormalization after 2 wk of adapta-

tion following the transition to 1–30 s offers (pink epoch spans days 32–70).

(TIF)

S3 Fig. Economic characterization of wait zone strategy across stages of training. (A-D)

Histogram of wait zone events as a function of time spent waiting and as a function of offer

cost. Diagonal unity line (time spent waiting = offer cost) represents earned trials, while the

remaining data points represent quit decisions. Horizontal and vertical dashed lines represent

average WZs across the 1–5 s block (A), 1–15 s block (B), early 1–30 s block (C, first 5 d), and

late 1–30 s block (D, last 5 d). (E-H) Average time spent waiting before quitting as a function

of O split by flavor ranking. (I-L) Histogram of quit decisions as a function of VO and VL.

VO = WZ–O. VL = WZ–TL. O, offer cost; TL, countdown time left; VL, value of time left in

countdown at the moment of quitting; VO, offer value; WZ, wait zone threshold

(TIF)

S4 Fig. Development of deliberative decisions as a function of VO across training. (A-B)

Offer zone reaction time (A) and VTE behavior (B) as a function of VO (VO = WZ–O) over

days of learning in the 1–30 s offer block (red epoch). Blue line represents 0 value trials (where

offer = WZ). Pink line represents onset of food intake and reinforcement rate renormalization

after 2 wk of adaptation following the transition to 1–30 s offers (pink epoch spans days 32–

70). Graphical projection against the back wall displays data presented as the cohort’s (N = 31)

daily means (±1 SE) during the last 5 d of training (days 65–70). Z-axis is redundant with color

scale for visualization purposes. (C-D) Days 65–70 offer zone time (C) and VTE (D) as a
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function of VO split by flavor rank. Vertical dashed black lines represent 0 value trials. O, offer

cost; VO, offer value; VTE, vicarious trial and error; WZ, wait zone threshold

(TIF)

S5 Fig. Signal detection theory approach to characterize the development of deliberative

value-based discriminability and biases. (A) Offer zone decision distributions as a function

of VO (VO = WZ–O) split by enter versus skip decisions. As a function of a sliding R.O.C. crite-

rion, R.O.C. curves (B) can be generated by plotting calculated hit rate and false-alarm-rate pairs

at each liberal-to-conservative sliding R.O.C. criterion. Relative to each sliding R.O.C. criterion,

hits, misses, false alarms, and correct rejections are characterized by enter versus skip outcomes

for offers whose values lie either to the left or right of the R.O.C. criterion. Economic violations

(“X’s”) represent either “misses” in incorrectly detected criterion-relative negatively valued

offers (thus, entering) or “F.A.’s” in incorrectly detected criterion-relative positively valued offers

as criterion-relative negatively valued offers (thus, skipping). Hits represent correctly detected

criterion-relative positively valued offers (thus, entering), and C.R.’s represent correctly detected

criterion-relative negatively valued offers (thus, skipping). Hit rate = hits / total enters. F.A.

rate = F.A.’s / total skips. (B) Offer zone R.O.C. curves changes from being linear (day 18,

chance-decision-maker) to bowed-shaped (day 70, good-value-based-signal-detector) quantified

by an increase in A.U.C. (solid red line indicates chance unity line with 0.5 A.U.C.). (C) Offer

zone R.O.C. A.U.C. plotted across days of training in the 1–30 s offer block (red epoch) split by

flavor ranking. Vertical pink line represents onset of food intake and reinforcement rate renor-

malization after 2 wk of adaptation following the transition to 1–30 s offers (pink epoch spans

days 32–70). (D) Offer zone R.O.C. curve skew describes a value bias (tail) of either enter or skip

distributions. This is evident in (A) by the (-) left tail of the enter distribution and reflected in

(B) by an asymmetry of R.O.C. curve bowedness. Dashed red diagonal line in (B) aids in visuali-

zation of R.O.C. curve asymmetry. Gaussian fit peak deviation from this line is quantified in

(D). (E-H) reflect same analyses in wait zone decisions. Data (C-D) and (G-H) presented as the

cohort’s (N = 31) daily means (±1 SE). � indicate significant change over 1–30 s offer block. A.U.

C., area under the curve; C.R., correct rejection; F.A., false alarm; n.s., not significant; O, offer

cost; R.O.C., receiver operating characteristic; VO, offer value; WZ, wait zone threshold

(TIF)

S6 Fig. Controlling for flavor preferences in regret-like sequence effects. To control for

potential differences in restaurant sequences due to the identity of flavor preferences in Res-

taurant 2 following quits versus skips in Restaurant 1, we sorted scenarios such that the Restau-

rant 2 was always either the least or most preferred flavor. (A) Probability of entering an offer

in Restaurant 2 after skipping versus quitting in Restaurant 1. Augmented by quits (increased)

versus skips in only least preferred restaurants. (B) Offer zone reaction time in Restaurant 2

after skipping versus quitting in Restaurant 1. Augmented by quits (decreased) versus skips in

both least and most preferred restaurants. (C) Time spent consuming an earned pellet and lin-

gering at the reward site in Restaurant 2 after skipping versus quitting in Restaurant 1. Aug-

mented by quits (decreased) versus skips in only most preferred restaurants. Data averaged

across the 1–30 s offer block. � indicate significant difference between skip versus quit condi-

tions.

(TIF)

S7 Fig. Visualization of offer-length distributions between skip and quit events. (A) Histo-

gram of offer length distributions comparing trials that ended as skips versus quits from data

pooled across animals from days 60–70. (B) Samples were randomly selected from the skip dis-

tribution to match the number of samples from the quit distribution. Skip resampling was
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bootstrapped 100 times and replotted in (B). These data indicate both trial types derive from

the same offer length distributions.

(TIF)

S8 Fig. Controlling for the effects of VTE on reinforcement rate. Reinforcement rate (inter-

earn-interval) is plotted across days, comparing observed date (black) versus 4 different com-

puter models that simulated what the expected reinforcement rate would be if high-VTE trials

were adjusted. High- versus low-VTE trials were determined by a median split of VTE values

taken across the entire experiment. The removal simulation (red) simply removed high-VTE

trials before reinforcement rates were calculated. The 3 replacement simulations (cyan, blue,

purple) resampled trial outcomes from low-VTE trials and differed based on how offer length

was resampled when earned trials were simulated (offer length retained from the high-VTE

trial, offer length randomly selected from the distribution for low-VTE trials, or offer length

randomly selected from the uniform range of offers for that block, respectively). These simula-

tions indicate no contributions to reinforcement rate due to high-VTE trials during the early

1–30 s epoch, despite having an effect late into 1–30 s training. Data presented as the cohort’s

(N = 31) daily means (±1 SE). Color code on the x-axis reflects the stages of training (offer cost

ranges denoted from 1 to the number on the top of the plot). � indicates significant difference

compared against observed data. n.s., not significant; VTE, vicarious trial and error.

(TIF)

S1 Text. Supplemental analyses and discussion. Additional analyses and discussion are avail-

able in the supplemental text, including analyses and discussion on (1) early conditioned place

behaviors; (2) the development of default responses in the reward-rich components of train-

ing; (3) how demand elasticity changed across the longitudinal design; (4) evidence that the

mice behaved suboptimally on this task; (5) postregret compensatory valuations; and (6) the

relationship between the reluctance to skip, the development of deliberative strategies as the

environment became reward-scarce, and VTE behaviors. VTE, vicarious trial and error.

(DOCX)

S1 Video. Example behavior on Restaurant Row. In this excerpt, a top-down view of the

maze is presented. The mouse’s position is tracked automatically at center-of-mass (orange

dot). The 4 corners of the maze represent the 4 restaurants, each fixed in location with unique

visual patterns on the walls (chocolate vertical stripes, banana checker, grape triangle, plain

horizontal stripes). Orange lines on the maze represent computer-overlaid boundaries separat-

ing offer zones, wait zones, and between-restaurant corridors. Tones sounded upon offer zone

entry repeated with a fixed interval but did not descend in pitch (“count-down”) until entry

into the wait zone (also at the same fixed interval). Note the VTE behaviors shown in the offer

zone and the quit event occurring in the last example in the grape restaurant. Video is from

day 70 of a well-trained mouse. VTE, vicarious trial and error.

(MP4)
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