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The involvement of oxytocin (OT) in bone metabolism is an interesting area of research
that recently achieved remarkable results. Moreover, several lines of evidence have
largely demonstrated that OT also participates in the regulation of energy metabolism.
Hence, it has recently been determined that the posterior pituitary hormone OT directly
regulates bone mass: mice lacking OT or OT receptor display severe osteopenia,
caused by impaired bone formation. OT administration normalizes ovariectomy-induced
osteopenia, bone marrow adiposity, body weight, and intra-abdominal fat depots in
mice. This effect is mediated through inhibition of adipocyte precursor differentiation and
reduction of adipocyte size. The exquisite role of OT in regulating the bone–fat connection
adds another milestone to the biological evidence supporting the existence of a tight
relationship between the adipose tissue and the skeleton.
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Introduction

Aging is associatedwith high incidence to develop both obesity and osteoporosis (1), which are often
simultaneous pathological conditions deriving from an altered balance between fat and bone cells
in bone marrow. During menopause period, the onset or worsening of obesity and osteoporosis
dramatically occurs. Several pharmacologic strategies exert opposite effects on fat versus bone
mass. For instance, the sex hormone replacement treatment has proved to be effective in mitigating
bone loss (2, 3) and reversing menopause-related obesity (4). Likewise, but with opposite effect,
therapy with glucocorticoids could affect bone remodeling (5–7) and increase obesity (8) or bone
marrow infiltration by adipocytes (1). The ongoing studies on the balance of adipose and bone
cell differentiation in bone marrow have clearly established a negative association between fat and
bone mass. Adipocytes and osteoblasts originate from a common mesenchymal precursor that can
also differentiate into other cell types, but among the various fates, differentiation of adipocyte or
osteoblast becomes of particular relevance because factors that enable osteoblastogenesis inhibit
adipogenesis and vice versa.

Recent studies have grown the interest on pituitary hormones as endocrine skeletal regulators,
demonstrating that their levels correlate with bone microstructure and bone turnover markers
during menopause transition (9). In fact, the pituitary–bone axis importance is widely acknowl-
edged, demonstrating that several pituitary hormones, such as growth hormone (GH) (10), follicle
stimulating hormone (FSH) (11), thyroid stimulating hormone (TSH) (12), prolactin (PRL) (13),
oxytocin (OT) (14), and vasopressin (15) regulate skeletal homeostasis. Likewise, haploinsufficient
mice for pituitary hormones or their receptors showed severe skeleton defects while the primary
target organ could remain unaffected, indicating that the skeleton ismore responsible to the pituitary
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hormone control (10–15). Remarkably, haploinsufficient OT+/−

or OTR+/− mice, while lactating normally, exhibit profound
osteopenia (14). In humans, plasma OT levels directly correlate
with the development of osteopenia or osteoporosis in post-
menopausal women, as demonstrated by Breuil et al. (16, 17). In
their studies, authors showed that elevatedOT levels are associated
with high-bone mineral density (BMD), in particular, at the hip
of women with low estradiol or high-leptin serum levels (16).
Likewise, osteoporotic patients with low OT serum levels display
severe osteoporosis (17), and this association is independent from
other factors regulating OT serum levels, such as estradiol or
leptin (17).

Furthermore, several reports demonstrated that adipocytes
express OT receptors (OTRs) (18, 19). Elabd et al. (19) identified
OTR as a potential regulator of the osteoblast/adipocyte balance
in human multipotent adipose-derived stem (hMADS) cells. Both
OT and carbetocin (a stable OT analog) negatively modulated
adipogenesis while promoting osteogenesis in both hMADS cells
and human bone marrow mesenchymal stromal cells (19).

Notably, another recent study of Elabd and colleagues (20)
revealed that OT acts directly onmuscle stem cells, exerting a pro-
myogenic effects mediated by MAPK/ERK signaling. Addition-
ally, authors reported that plasma OT levels and OTR expression
in muscle stem cells dramatically decline during aging, demon-
strating that OT has a pivotal role also in homeostasis of skeletal
muscle tissue (20).

The main goal of researches on OT physiology has been to
gather new insights in the bone–fat–muscle connection, in order
to prevent and treat diseases related to the altered communication
among these tissues. For instance, during aging, the lack of mobil-
ity due to muscle mass decline could exacerbate obesity and/or
osteoporosis and vice versa. On the other hand, obesity also leads
to metabolic disorders, which in turn stimulates muscle wasting
and bone loss. Although the therapeutic potential of OT to treat
musculoskeletal and metabolic conditions in humans remains
to be determined, data from OT deficient rodent models have
revealed encouraging results (Table 1).

Peripheral OT Synthesis in Bone Marrow is
Estrogen Mediated

Estrogen dependence of OT and its receptors synthesis (21–23)
further broadened the importance of OT/OTR biological role.
OT is locally synthesized in several organs (24–26) and, like in
other tissues, estrogen stimulates OT production in bone (23).
17β-estradiol stimulates OT production in osteoblasts through
Erk phosphorylation, following a non-classical, ERE-independent
pathway. The binding of 17β-estradiol to cell membrane estro-
gen receptors (ERs), rather than nuclear ERs, is required to
induce OT synthesis. Thus, the relatively cell-impermeant analog

TABLE 1 | Mice phenotype.

OT−/− OTR−/− mice (male and female)

Bone tissue phenotype Osteopenic (at the birth; worsen with age)
Adipose tissue phenotype Obese (late-onset)
Muscle tissue phenotype Sarcopenic (early-onset)

17β-estradiol–BSA conjugate has shown to be effective in stimu-
lating Erk1/2 phosphorylation within 3min and OT expression
within 2 h (23). On the contrary, native 17β-estradiol, but not
the estradiol–BSA conjugate, increased OTR expression at ~6 h,
indicating that OTR induction by estrogen occurs through a tradi-
tional genomicmechanism (23). This local circuit of OTproduced
in bone, in response to estrogen, acts upon OTR to stimulate
further OT release, which enhances estrogen action (23).

OT Directly Regulates Bone Homeostasis

The maximal fetal and post-natal bone growth occurs during
the last phase of pregnancy and lactation when the mother loses
~120 g of calcium from her skeleton (27). During the intergen-
erational calcium transfer, the fetal skeleton is mineralized at the
expense of the mother. This bone loss was quantified as 1–3% per
month, thus much higher than 1–3% of bone loss per year affect-
ing womenwith postmenopausal osteoporosis (28). Experimental
evidence, demonstrating a direct action of OT on the skeleton
during pregnancy and lactation, revealed that this hormone plays
an important role in orchestrating the intergenerational calcium
transfer (29). Pups from mothers with genetic OT-deficiency
displayed apparently normal skeletons, without bone/cartilage
defects and any difference in bone volume fraction (BV/TV) of
trabecular bone. Instead, increase in trabecular number, decrease
in trabecular spacing, and no change in trabecular thickness were
found (29). However, consisting with the unchanged BV/TV, even
in the face of greater trabecular number, this result suggested that
in OT−/− pups each trabecula was less mineralized than in wild
type (29).

The OT action on the skeleton is mainly mediated not only
through its stimulation of osteoblast differentiation but also
through a modulation of osteoclast formation and function. OT
and OTR knock out mice develop low turnover osteoporosis that
worsens with age in both genders (2). Bone assessment analysis
revealed a pronounced decrease in vertebral and femoral trabec-
ular volume, already evident in the haploinsufficient mice, which
is accompanied by a significant reduction in bone formation rate
(14). Ex vivo osteoblasts from OT−/− and OTR−/− mice had a
lower expression of all master genes involved in osteoblast differ-
entiation and produced fewermineralized nodules than osteoblast
from wild-type littermates. Treatment with recombinant OT led
to up-regulation of bone morphogenetic protein 2 (Bmp-2) and
activating transriptor factor 4 (Atf-4), inducing osteoblast devel-
opment toward a mineralizing phenotype (14). At the same time,
OT stimulated osteoclast differentiation by increasing ratio of
receptor activator of nuclear factor-kappaB ligand (RANK-L) and
osteoprotegerin (OPG), while inhibited bone resorption by trig-
gering cytosolic Ca2+ release and nitric oxide synthesis (14). The
skeletal action of OT is mediated by OTR internalization and
its subsequent translocation to the nucleus through β-arrestin
(Arrb). In osteoblasts, OTR interacts with Rab5 and then binds to
the karyopherin transportin-1 (Tnpo1), which facilitates nuclear
transport. OTR intracellular trafficking to the nucleus is abolished
knocking down Arrb or Tnpo1 and, consequently, the action
of OT on osteoblast differentiation genes, namely osterix, Atf-4,
bone sialoprotein, and osteocalcin is dramatically abrogated (30).
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As other G protein-coupled receptors (GPCRs), OTR internal-
ization can activate signaling pathways quite distinct from those
activated by the same receptors on the cell surface. Notably, effects
of OT on osteoblast differentiation, exerted through its nuclear
translocation, are independent of its effects on activating the
MAPK pathway. In fact, despite knocking down Arrb isoforms,
which abrogate the effects of OTR on gene expression, the pErk
signal remained unaffected (30).

OT Reverses Ovariectomy-Induced Gain of
Fat Mass

Several lines of evidence demonstrated that OT signal and energy
homeostasis are often correlated (31, 32). Following food intake,
a peak of circulating OT levels across a 24-h period was found in
mice (31) and hypothalamic OT mRNA expression was decreased
with fasting and, subsequently, recovered upon refeeding (32).
Noteworthy, the hyperphagic obesity of single-minded 1 (Sim1)
haploinsufficient mice has been explained by reduced OT expres-
sion (33), whose obese phenotype can be rescued with OT treat-
ment (33). Human patients suffering hyperphagia and obesity,
such as those affected by SIM1 gene mutation (34) and by
Prader–Willi syndrome (35), have reduced number and size of
OT neurons in the paraventricular nucleus of the hypothalamus.
However, OT can also affect body mass independently from
reduction of food intake. Accordingly, OTR null mice develop
late-onset obesity characterized by augmentation of abdominal
fat pads, even in the face of unchanged daily intake of chow
(36). Data from Elabd et al. showed that hypogonadal-induced
bone loss and fat mass increase were both linked to low OT
circulating levels, and that restoring OT levels could therefore
reverse osteopenia and fat mass increase in OVX mice, used as
animal model mimicking the menopause (19).

It is well known that OVX mice gain body weight after surgery
and exhibit increased intra-abdominal fatmass. OVXmice treated
with OT displayed a significantly reduction in body weight com-
paredwithmice treated with vehicle. Interestingly, OT did not sig-
nificantly affect the body weight of Sham operated mice. Of note,
the OT treatment was less effective in decreasing body weight
compared to the quite higher effects on bone parameters (37). Fur-
thermore, plasma and liver triglyceride aswell as glucose tolerance

were not affected by the OT treatment. Interestingly, consistent
with the normalization of body fat mass, insulin secretion was
normal, suggesting that OT might protect against ovariectomy-
induced insulin resistance. Circulating levels of osteocalcin and its
undercarboxylated form were not altered following OT treatment
after ovariectomy, thus indicating that osteocalcin is not involved
in OT signaling in adipose tissue (37). Finally, the observations
that OT treatment did not significantly reduce adipocyte size, in
ovariectomy-induced hypertrophic fat depots, suggest that OT
led to a reduction of fat mass mainly through a decrease in the
formation of new adipocytes rather than a decrease of adipocyte
hypertrophy (37).

Conclusion

Menopause, characterized by high-skeletal fragility and often
accompanied by increased adiposity, is a worldwide heavy burden
for public health. Osteoblasts and adipocytes, the building cells of
bone and adipose tissue, respectively, share a common origin and,
throughout life, feature an inverse relationship in their differen-
tiation processes. Therefore, the development of new therapeutic
strategies for treating osteoporosis and obesitymight require iden-
tifying signaling pathways that stimulate mesenchymal stem cells
toward osteogenesis at the expense of adipogenesis. In view of a
potential role of OT to shift the balance in favor of osteogenesis
and against adipogenesis, further investigations will be relevant
to determine if results obtained in rodents can be translated in
human subjects. Considering that OT is an FDA-approved drug,
it would be extremely useful as skeletal anabolic agent to treat
osteoporosis, but might also have potential utility in treating
obesity and adipose tissue-related pathologies. Noteworthy, recent
findings demonstrating that OT is required for muscle tissue
regeneration and homeostasis, suggested a novel potential way to
prevent sarcopenia, which often accompanies osteoporosis and
obesity during aging.
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