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Background. Bone grafts are used in the treatment of nonunion of fractures, bone tumors and in arthroplasty. Tissues preserved
by lyophilization or deep freezing are used as implants nowadays. Lyophilized grafts are utilized in the therapy of birth defects
and bone benign tumors, while deep-frozen ones are applied in orthopedics. The aim of the study was to compare the pyrolytic
pattern, as an indirect means of the analysis of organic composition of deep-frozen and lyophilized compact part of the human
bone. Methods. Samples of preserved bone tissue were subjected to thermolysis and tetrahydroammonium-hydroxide- (TMAH-)
associated thermochemolysis coupled with gas chromatography and mass spectrometry (Py-GC/MS). Results. Derivatives of
benzene, pyridine, pyrrole, phenol, sulfur compounds, nitriles, saturated and unsaturated aliphatic hydrocarbons, and fatty acids
(C12–C20) were identified in the pyrolytic pattern. The pyrolyzates were the most abundant in derivatives of pyrrole and nitriles
originated from proteins. The predominant product in pyrolytic pattern of the investigated bone was pyrrolo[1,2-α]piperazine-
3,6-dione derived from collagen. The content of this compound significantly differentiated the lyophilized graft from the deep-
frozen one. Oleic and palmitic acid were predominant among fatty acids of the investigated samples. The deep-frozen implants
were characterized by higher percentage of long-chain fatty acids than lyophilized grafts.

1. Introduction

Historically, the first bone graft was implanted to a patient
suffering from inflammation of humerus shaft over 120 years
ago [1, 2]. At present, bone transplantation is used in the
treatment of bone birth defects, nonunion of bone after
the injury, bone necrosis, inflammatory lesions, arthrosis,
scoliosis, hip dysplasia (hypoplasia), and after the resection
of bone benign tumors [3]. Bone grafts, besides serving as
a structural support, should also induce osteogenesis in a
recipient tissue. Stimulation of this process depends on bone
morphogenetic proteins that are bound with collagen. The
bone grafts are considered as the best grafting material
because of their osteogenetic, osteoconductive, and osteoin-
ductive properties. However, their immunogenicity may
lead to the graft rejection. Deep freezing and lyophilization
are used to overcome this problem [4]. Both biologi-
cal properties (immunogenicity, time of resorption, and

osteoinduction) and mechanical strength of allogenic grafts
depends on their chemical properties that are correlated with
the formation of free radicals and cleavage and cross-linking
of collagen, that, in turn, depend on both the procedure of
conservation (deep-freezing, freeze-drying) and conditions
of radiation sterilization (dose and temperature) [5].

As early as at the beginning of 20th century, the first stud-
ies on methods of bone grafts storage were initiated. Albie
used low temperature to preserve bone, and, on the contrary,
Gollie employed high temperature for this purpose [4]. The
drying of implants in autoclave at 120◦C was proposed by
Rittner. The freezing of grafts in body fluids such as blood
or serum or their storage in mineral oil, alcohol, formol, or
ether was recommended by some researchers [6–9]. In 1951,
Kreuza et al. proposed to lyophilize the bone grafts, and, in
1956, Turner introduced a method of bone implants storage
consisting in freeze-drying of radiation-sterilized tissue [4].
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The aim of this study was to compare the pyrolytic pat-
tern, as an indirect means of the analysis of the organic
composition of compact part of the bone preserved by a
deep-freezing and lyophilization.

2. Experimental

2.1. Material. Compact parts of thigh bones derived from
human corpses aged 45–60 years, which have been assigned
to a purpose of further grafting, were used in the study.
Bone compact parts have been obtained from the tissue
collection of the Center of Blood Donation in Katowice, and
they were milled into fine powder by a freezer mill in order
to homogenize and improve the efficiency of their further
processing.

2.2. Equipment and Procedure. Samples of the human thigh-
bone compact structure were pyrolysed at 660◦C, and
the obtained products of thermolysis and 10% methanolic
tetramethylammonium hydroxide-induced thermochemoly-
sis (TMAH) were analyzed by GC/MS with the use of the
Py-GC/MS system. The Curie-Point Pyrolyser 795050 (Pye-
Unicam) was directly attached to a capillary column HP5-MS
(60 m × 0.32 mm × 0.5 μm) of a Hewlett Packard HP-5890
gas chromatograph (GC) series II, coupled with a Hewlett
Packard HP-5989A mass spectrometer. For experimental
data collection and mass spectra interpretation, the Chem-
station software G1034C ver. C.02.00 (Hewlett Packard) was
used.

Helium was used as a carrier gas at a constant pressure of
15 psi. Thermolysis and thermochemolysis were conducted
in tubular ferromagnetic wire inductively heated to Tc of
610◦C by a pyrolytic unit. The temperature of the pyrolyser
oven was 220◦C, and the samples were heated for 5 s. The
initial temperature of the GC oven was set to 40◦C for 5 min,
then increased to 250◦C at 10◦C/min, maintained for 16 min,
and increased again at 10◦C/min to a final temperature of
270◦C held for 10 min. To neglect the solvent (TMAH-)
derived peak, the analysis was recorded after 5 min. The
temperature of ion source in spectrometer was maintained
at 200◦C and that of a quadruple at 100◦C. All spectra were
collected using 70 eV electron ionization. Mass spectra from
33 to 500 m/z were accumulated, and peaks were assigned
by comparison with the library data of the 7th Issue Wiley
Library.

2.3. Statistics. T-test for independent samples was used to
compare the products of thermolysis and thermochemolysis
of lyophilized and deep-frozen bone tissue samples. Nor-
mality of distributions has been verified by the Shapiro-
Wilk test, while the homogeneity of variances has been
ascertained by the F-test or the Levene test. The results have
been considered significant at P < 0.05. Numerical cluster
analysis was used to determine the similarity of fatty acid
profiles of investigated tissues. A dendrogram based on the
Gammas correlation coefficient as the distance measure was
generated. Statistical analysis was performed using Statistica
8.0 software.

3. Results

Chromatograms obtained after the thermolysis of deep-
frozen and lyophilized bone are presented in Figure 1. Identi-
fied analytes, classified according to their chemical structure
as derivatives of benzene, pyridine, pyrrole, phenol, sulfur
compounds, nitriles, saturated and unsaturated aliphatic
carbohydrates, and the derivatives of fatty acids, are shown
in Table 1. It was found that the derivatives of pyrrole were
predominant in a pyrolytic pattern of both analyzed kinds
of biomaterials, but, in the deep-frozen bone, the content of
these compounds was greater. It was mainly caused by the
diverse quantity of pyrrolo[1,2-α]piperazine-3,6-dione, the
amount of which in the lyophilized tissue was lower by 9.4%
compared to the deep-frozen one (Table 1, Figure 2).

The results of chromatographic analysis of fatty acids
derivatives obtained by thermochemolysis in the presence of
TMAH of lyophilized and deep-frozen bone tissue are shown
in Figure 3. The comparison of fatty acid methyl esters profile
(Figures 3 and 4, Table 2) revealed higher percentage of long
chain fatty acids (C17–C20) in deep-frozen grafts than in
lyophilized ones. The statistically significant differences in
mean percentage of C12–C16 (P = 0.0054) and C17–C20
(P = 0.0054) fatty acids between analyzed biomaterial were
found. The diverse content of mono- and diunsaturated fatty
acids (P = 0.0459 and P = 0.003, resp.) was also observed.

Numerical cluster analysis (Figure 5) showed over 80%
similarity of bone grafts fatty acid pattern. Based on the fatty
acid profile, the lyophilized and deep-frozen bone implants
were classified to separate homogenous clusters; therefore,
the resulting fatty acid profile is dependent on the method of
grafts preservation. The similarity of lyophilized and deep-
frozen bone tissue was at 87.7%.

4. Discussion

Both massive bone allografts and morselized bone pieces,
as filling material, are used in orthopedic surgery [10, 11].
Bone grafts are required in about 15% of all reconstruc-
tive operations. They are preserved by deep-freezing and
lyophilization. The process of deep-freezing affects not only
immunogenicity of the grafts but also their physical and
especially mechanical properties [12–15]. The investigation
of Pelker et al. [14] proved that deep-freezing of bone
implants at −196◦C increased their mechanical strength
by about 10%, whereas, according to Komender [12], this
property was not affected when the process was conducted
at −78◦C. The compressive strength of grafts was increased
by 20% by lyophilization followed by freezing [14]. The
storage of bone implant at −20◦C does not affect its physical
properties [16], but it does not prevent the enzymatic
degradation of its components.

The derivatives of benzene, pyridine, pyrrole, phe-
nol, sulfur compounds, nitriles, saturated and unsaturated
aliphatic hydrocarbons, and fatty acids (C12–C20) were
identified in the pyrolytic pattern of bone implants. The large
amount of nitrogen-containing compounds (derivatives of
pyrrole, pyridine, and nitriles) confirms the significant pro-
tein content in the investigated material [17]. Both Gleixner
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Table 1: The quantity of particular thermolysis products derived from the components of compact part of the human bone preserved
by deep-freezing (F) or lyophilization (L) and used for transplantation, expressed as percentage of a given analyte in a total identified
compounds.

Symbol of
compounds group

Symbol of
compound

Thermolysis product
%AUP ± SD

F L

B

B1 Benzene 0.40± 0.10 0.33± 0.08

B2 Toluene 9.33± 1.39 6.53± 1.70

B3 Ethylbenzene 0.54± 0.24 0.43± 0.30

B4 Styrene 0.73± 0.25 0.86± 0.33

P

P1 Pyridine 1.33± 0.22 1.11± 0.19

P2a 2-Methylpyridine
1.09± 0.51 0.95± 0.23

P2b 3-Methylpyridine

P3 2-Ethylpyridine 0.24± 0.47 0.11± 0.13

P4 Dimethylpyridine 0.26± 0.35 0.41± 0.24

P5 Pyridinamine 0.95± 0.38 0.85± 0.57

Py

Py1 Pyrrole 7.31± 1.25 6.19± 1.52

Py2a 1-Methylpyrrole

Py2b 2-Methylpyrrole 5.52± 1.16 4.52± 0.69
Py2c 3-Methylpyrrole

Py3a 1-Ethylpyrrole
0.48± 0.43 0.77± 0.42

Py3b 2-Ethylpyrrole

Py4a 2,3-Dimethylpyrrole

Py4b 2,5-Dimethylpyrrole 1.81± 0.96 1.76± 0.29
Py4c 2,4-Dimethylpyrrole

Py5 2-Ethyl-4-methylpyrrole 0.30± 0.35 0.38± 0.61

Py6 Pyrrole-2-carbonitrile 0.46± 0.92 1.26± 1.52

Py7 Pyrrolo-[1,2-α]-piperazine-3,6-dione 30.13± 5.57 20.71± 2.22

Ph
Ph1 Phenol 0.57± 0.72 1.22± 0.72

Ph2 4-Methylphenol 1.46± 1.03 2.28± 0.73

N

N1 2-Propenenitrile 1.73± 0.14 1.35± 0.25

N2 Isobutyronitrile 2.90± 1.73 3.64± 3.54

N3 Butenenitrile 0.12± 0.24 0.44± 0.25

N4 Butanenitrile 0.21± 0.25 0.55± 0.39

N5 4-Methyl-pentanenitrile 1.27± 0.09 0.92± 0.16

N6 Benzyl nitrile 2.82± 0.56 2.81± 0.41

N7 Benzenepropanenitrile 0.96± 0.67 1.19± 0.73

N8 Pentadecanenitrile 0.63± 1.27 0.50± 1.00

N9 Hexadecanenitrile 1.94± 1.91 2.67± 1.98

N10 Octadecenenitrile 2.20± 2.57 4.11± 1.43

N11 Octadecanenitrile 0.92± 1.47 1.61± 0.32

S S1 Methanethiol 5.01± 0.85 3.21± 0.28
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Table 1: Continued.

Symbol of
compounds group

Symbol of
compound

Thermolysis product
%AUP ± SD

F L

UA

UA1 3-Penten-1-yne 0.00 0.61± 0.71
UA2 1,3-Cyclohexadiene 0.00 0.29± 0.37
UA3 1-Heptene 0.00 0.39± 0.78
UA4 1-Octene 0.93± 0.16 1.04± 0.07
UA5 1-Nonene 0.53± 0.10 0.63± 0.04
UA6 1-Decene 0.26± 0.52 0.38± 0.59
UA7 1-Undecene 0.81± 0.61 0.78± 0.17
UA8 1-Dodecene 0.66± 0.78 0.62± 0.64
UA9 Cyclododecene 0.00 1.49± 1.20

UA10 1-Tridecene 0.49± 0.57 1.10± 1.12
UA11 1-Tetradecene 1.77± 0.56 1.89± 0.30
UA12 1,13-Tetradecadiene 0.17± 0.34 0.89± 0.90
UA13 1-Pentadecene 0.00 0.53± 0.62
UA14 1-Heksadecene 0.00 0.47± 0.41
UA15 1-Heptadecene 0.22± 0.44 0.13± 0.26
UA16 1-Octadecene 0.26± 0.51 1.16± 1.41

A

A1 Hexane 0.00 0.26± 0.52
A2 Heptane 0.00 0.20± 0.40
A3 Octane 0.66± 0.49 0.85± 0.14
A4 Nonane 0.13± 0.26 0.19± 0.28
A5 Decane 0.04± 0.08 0.42± 0.05
A6 Undecane 0.35± 0.41 0.36± 0.41
A7 Dodecane 0.00 0.31± 0.46
A8 Tridecane 0.29± 0.37 0.86± 0.55
A9 Tetradecane 0.00 0.96± 0.95

A10 Pentadecane 0.15± 0.30 0.53± 0.40

FAE FAE1 Isopropyl palmitate 2.17± 2.33 1.81± 2.35

FAA
FAA1 Hexadecanamide 1.52± 0.23 1.74± 0.64
FAA2 9-Octadecenamide 3.37± 0.81 3.69± 1.77
FAA3 Octadecanamide 0.21± 0.25 0.36± 0.10

I

I1 2-Methylpyrazine-5-carboxylic acid 0.00 0.09± 0.17
I2 N-Methyl-7-azabicyclo(2,2,1)hept-2-ene 0.39± 0.46 0.24± 0.30
I3 Cyclo(L-prolyl-L-prolyl) 1.00± 1.25 0.84± 1.08
I4 Squalene 0.00 0.22± 0.26

%AUP ± SD: the percent content of the chromatogram peak area of the compound with reference to the sum of the areas of the peaks of identified analytes
± standard deviation.
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Figure 1: Chromatograms of thermolysis products of deep-frozen (a) and lyophilized (b) bone tissue.
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Table 2: The percentage of fatty acids present in deep-frozen (F)
and lyophilized (L) human bone tissue.

FAME F L

12 : 0 0.34± 0.43 0.00

14 : 0 4.84± 1.41 4.09± 1.16

15 : 0 1.19± 1.00 1.38± 0.50

16 : 1 12.59± 2.80 8.78± 2.35

16 : 0 26.11± 4.73 25.30± 4.27

i17:1 0.00 1.19± 0.57

17 : 0 0.00 0.55± 0.28

18 : 1 45.69± 3.32 42.73± 4.32

18 : 0 4.53± 0.55 7.35± 1.51

18 : 2 3.77± 0.58 6.86± 2.57

20 : 1 0.94± 0.19 1.73± 0.39

20 : 0 0.00 0.02± 0.05

FAME: fatty acid methyl ester.
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Figure 2: Quantitative relations between the main groups of ther-
molysis products derived from the components of the compact part
of human bone preserved by deep-freezing (F) or lyophilization (L)
and classified according to their chemical structure.

et al. [18] and Poinar and Stankiewicz [19] claim that
this kind of compounds derive from proteins. Predominant
among not only pyrrole derivatives but also among all ana-
lytes pyrrolo[1,2-α]piperazine-3,6-dione was formed from
dipeptide sequences containing proline. This diketopiper-
azine derivative is a product of reaction of imine group
of N-terminal proline with amide-bound carboxylic group
of adjacent glycine [20], which occurs in characteristic for
collagens Pro-Gly sequences [21]. Toluene, ethylbenzene,
benzene, and nitriles (benzylnitrile and benzenepropanen-
itrile) originated from phenylalanyl residues as a result of
thermal degradation of the organic constituents of bone
[22]. Phenylalanine may be transformed to styrene, whereas
tyrosine forms styrene and phenol during thermolysis [23].

These derivatives are found in smaller amounts as compared
to other products of thermolysis because the content of
their parent amino acids is small in collagen—the main
component of bone [24, 25]. Tyrosine is a constituent of
bone sialoprotein (BSP) that accounts for 10 to 15% of non-
collagenous proteins of bone [26]. The scant amount of
sulfur-containing products of thermolysis results from small
quantity of sulfur-containing amino acids in bone collagen.

Among fatty acids of bone only oleic and palmitic
acid derivatives were identified by thermolysis coupled with
GC/MS. These compounds are little volatile that significantly
hinders their determination by the gas chromatography
method. Therefore, thermolysis assisted by methylation in
the presence of methanolic solution of tetramethylammo-
nium hydroxide (TMAH) was used. Interpretation of the
data obtained by this method proved the presence of fatty
acids with chain length of 12 to 20 carbons in analyzed tissue.
As in case of thermolysis without TMAH, oleic and palmitic
fatty acids were predominant among identified fatty acid
derivatives. A particularly large amount of these fatty acids
in compact part of bone was also observed by Dołȩgowska
et al. [27] and Kagawa et al. [28]. Comparing fatty acid
profiles of deep-frozen and lyophilized bone graft, it was
observed that deep-frozen bone was abundant in long-chain
fatty acids. This can be caused by the loss of more volatile
short-chain fatty acids during the process of lyophilization.
The pyrolytic pattern of deep-frozen grafts was richer in
pyrrolo[1,2-α]piperazine-3,6-dione, that is probably asso-
ciated with a larger quantity of collagen in this kind of
tissue. Płomiński and Kwiatkowski [4] reported that, due to
the inhibition of protein degrading enzymes at −70◦C, the
quantity of proteins was higher in the deep-frozen tissue than
in lyophilized one. In deep-frozen bone grafts, radiation-
induced degradation of collagen is significantly reduced, thus
their mechanical strength is greater and resorption in vivo
is slower than in the lyophilized tissue [5]. In 1960s, it
was noticed that changes in the properties of collagen were
associated with a hydratation of biomaterial. The properties
of collagen more intensively alter during the irradiation of
dehydrated collagen (lyophilized graft), because cleavage of
the collagen polypeptide chains occurs, what significantly
increases in vivo solubility of this protein and decreases
its mechanical strength. On the other hand, radiation
sterilization of the hydrated tissue (deep-frozen graft and
fresh tissue) causes radiolysis of water and formation of free
radicals which in turn cross-link the collagen chains [5], and
it is commonly known that degree of collagen cross-linking
influences its physicochemical properties.

5. Conclusion

The percentage of pyrrolo[1,2-α]piperazine-3,6-dione, ther-
molytic marker of collagen, is greater in case of pyrolysis of
deep-frozen graft as compared to lyophilized one. On the
basis of fatty acid profile, the deep-frozen and lyophilized
tissues can be classified to separate homogenous clusters.
Although fatty acid profiles of these tissues are qualitatively
similar, they differ in the quantity of particular analytes. The
content of short-chain fatty acids is smaller in the lyophilized
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Figure 3: Chromatograms of fatty acid derivatives formed during the thermolysis in the presence of TMAH of deep-frozen (a) and
lyophilized (b) bone.
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frozen (F) and lyophilized (L) compact part of the human bone
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Figure 5: Dendrogram of fatty acid profiles similarity created by a
numerical cluster analysis (F: deep-frozen; L: lyophilized; Tn: thin;
Tc: thick).

grafts as compared to deep-frozen ones, which can be a
consequence of the method used for their preservation.
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