
cells

Review

Primary Cilium Is Involved in Stem Cell Differentiation and
Renewal through the Regulation of Multiple
Signaling Pathways

Sila Yanardag 1 and Elena N. Pugacheva 1,2,*

����������
�������

Citation: Yanardag, S.; Pugacheva,

E.N. Primary Cilium Is Involved in

Stem Cell Differentiation and

Renewal through the Regulation of

Multiple Signaling Pathways. Cells

2021, 10, 1428. https://doi.org/

10.3390/cells10061428

Academic Editors: William Tsang,

Gang Dong and Alexander

E. Kalyuzhny

Received: 1 April 2021

Accepted: 4 June 2021

Published: 8 June 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Biochemistry, School of Medicine, West Virginia University, Morgantown, WV 26506, USA;
sy0016@mix.wvu.edu

2 West Virginia University Cancer Institute, School of Medicine, West Virginia University,
Morgantown, WV 26506, USA

* Correspondence: epugacheva@hsc.wvu.edu

Abstract: Signaling networks guide stem cells during their lineage specification and terminal dif-
ferentiation. Primary cilium, an antenna-like protrusion, directly or indirectly plays a significant
role in this guidance. All stem cells characterized so far have primary cilia. They serve as entry-
or check-points for various signaling events by controlling the signal transduction and stability.
Thus, defects in the primary cilia formation or dynamics cause developmental and health problems,
including but not limited to obesity, cardiovascular and renal anomalies, hearing and vision loss, and
even cancers. In this review, we focus on the recent findings of how primary cilium controls various
signaling pathways during stem cell differentiation and identify potential gaps in the field for future
research.

Keywords: primary cilia; stem cells; cancer stem cells; signaling; differentiation; Notch; Wnt;
TGF; mTOR

1. Structure and Function of Primary Cilia

Primary cilia are protrusions built on top of the centriole (basal body) and are present
in most stem cells [1,2]. The core of the primary cilia (axoneme) is composed of micro-
tubules connected to the basal body, which is anchored to the cell membrane via the distal
appendages. The axoneme is arranged in a 9 + 0 fashion, i.e., nine outer microtubule
doublets and no central singlets [2,3]. Each doublet is composed of a complete A-tubule
and a partial B-tubule. Retrograde transport, where the cargo is transported from the tip to
the base of the cilia, takes place on the A-tubule and is carried out by dynein proteins [4,5].

Similarly, anterograde trafficking happens on the B-tubule, and the proteins that
aid this movement are called kinesins. The building blocks of the A and B tubules (αβ
tubulin heterodimers) are transported to the tip of the cilia by kinesins (KIF3A/B) and
intraflagellar trafficking particles (IFTs74, 81) [6,7]. The αβ tubulin heterodimers move
along the axoneme of Chlamydomonas reinhardtii primarily through passive diffusion, rather
than the active transport by the IFT particles [8]. Additionally, IFT particles involved in
cargo transport include but are not limited to IFT20, IFT74, and IFT88 [6,7,9–12] (Figure 1).
For a detailed review of IFT particles and ciliary transport, see reference [13]. The dele-
tion/depletion of IFT88/Polaris or KIF3 kinesins is often used to disable cilia construction,
rendering cells non-ciliated. The axoneme is surrounded by the ciliary membrane and
forms the ciliary pockets connected to the cell membrane (Figure 1). Although the ciliary
membrane is an extension of the cell membrane, its composition is different to support com-
plex signal transduction. The ciliary membrane contains phosphatidylinositol 4-phosphate
(PI(4)P) instead of phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2), which is present in
the cellular membrane [14,15]. The ciliary membrane harbors higher concentrations of
sphingolipids and ganglioside enriched lipid rafts [16,17].
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to the S/G2 phase, cilia disassembly and resorption are initiated [18]. This process is tightly 
controlled by the activity of various proteins such as Aurora A kinase, HDAC6, Nedd9, 
etc. [18–22]. Based on its position and structure, the primary cilium is a major signaling 
hub residing at the crossroads of multiple processes. 

 

Figure 1. Structure of primary cilia. (A) Primary cilium is nucleated from the mother centriole of the 
basal body. Axoneme consists of 9 microtubule doublets formed by α and β tubulin heterodimers. 
(B) Cross-section of complete A- and partial B-tubules. (C) Dynein and kinesin proteins carrying 
cargo on the axoneme. Retrograde movement (from tip to the base) is carried out by dynein proteins, 
whereas kinesin proteins carry out anterograde movement (from base to the tip). Kinesin and 
dynein proteins are essential for the assembly and disassembly of the primary cilium as they carry 
building blocks or the depolymerizing agents along the axoneme. Created with BioRender.com. 
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pathways. These pathways include receptor tyrosine kinase (RTK), transforming growth 
factor-β (TGF-β), G-protein coupled receptor (GPCRs), Hedgehog (Hh) Wingless/int 
(Wnt), Notch, and mechanistic target of rapamycin (mTOR) [23–25]. Moreover, due to its 
physical build-up on top of the centriole, the cilia function as negative regulators of cell 
proliferation and are often found in quiescent cells, including stem cells. The disassembly 
of the cilium in response to growth factors or stem cell niche cues leads to the release of 
the mother centriole, a vital step for forming mitotic spindles and initiation of mitosis 

Figure 1. Structure of primary cilia. (A) Primary cilium is nucleated from the mother centriole of the
basal body. Axoneme consists of 9 microtubule doublets formed by α and β tubulin heterodimers.
(B) Cross-section of complete A- and partial B-tubules. (C) Dynein and kinesin proteins carrying
cargo on the axoneme. Retrograde movement (from tip to the base) is carried out by dynein proteins,
whereas kinesin proteins carry out anterograde movement (from base to the tip). Kinesin and dynein
proteins are essential for the assembly and disassembly of the primary cilium as they carry building
blocks or the depolymerizing agents along the axoneme. Created with BioRender.com.

Primary cilium biogenesis is a cell cycle-dependent event as the centrosomes are the
major players in both primary cilium biogenesis and mitosis. During the G1/G0 phase,
primary cilium is nucleated from the plus end of the mother centriole. Upon transitioning
to the S/G2 phase, cilia disassembly and resorption are initiated [18]. This process is tightly
controlled by the activity of various proteins such as Aurora A kinase, HDAC6, Nedd9,
etc. [18–22]. Based on its position and structure, the primary cilium is a major signaling
hub residing at the crossroads of multiple processes.

2. Primary Cilia and Signal Transduction

Primary cilia in stem cells function as a signaling hub for transducing signals of many
pathways. These pathways include receptor tyrosine kinase (RTK), transforming growth
factor-β (TGF-β), G-protein coupled receptor (GPCRs), Hedgehog (Hh) Wingless/int (Wnt),
Notch, and mechanistic target of rapamycin (mTOR) [23–25]. Moreover, due to its physical
build-up on top of the centriole, the cilia function as negative regulators of cell proliferation
and are often found in quiescent cells, including stem cells. The disassembly of the cilium
in response to growth factors or stem cell niche cues leads to the release of the mother
centriole, a vital step for forming mitotic spindles and initiation of mitosis [19,21,26]. De-
fects in primary cilia dynamics (assembly/disassembly) or complete loss of cilia in stem,
progenitors, or terminally differentiated cells have been associated with many diseases
collectively known as ciliopathies [27–29]. There are at least 35 identified ciliopathies,
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including polycystic kidney disease, cone-rod dystrophy, hydrocephaly, and medulloblas-
toma, to name a few. Additionally, there are over 150 established and over 200 potential
ciliopathy-related genes. Details of the ciliopathy diseases, genes and treatment options
are reviewed by Reiter et al. [27], Mitchison et al. [30], McConnachie et al. [31], and Duong
Phu et al. [32].

3. Stem Cell Biology and Classification

Stem cells are the focus of many scientific explorations ranging from neurodegener-
ative diseases to cancer, due to their ability of self-renewal and capacity to differentiate
into many types of cells. Stem cells have primary cilium, but the role of cilium in their
biology is not fully defined, especially in adult stem cells. The classification of stem cells
depends on their origin during development. Totipotent cells are formed by the first
several divisions of the fertilized egg. They have the highest differentiation potential. At
3–5 days post fertilization, pluripotent embryonic stem cells (ESCs) are formed. They make
up the embryo’s inner cell mass (ICM) and differentiate into endoderm, mesoderm, and
ectoderm [33]. Primary cilia are a general feature of ESCs and essential signaling hubs
for differentiation and self-renewal pathways [34]. The role of primary cilia in embryonic
development has been extensively studied using several model organisms, and the most
significant outcomes are reviewed here.

4. Primary Cilia in Embryonic Development: ECSs

The primary cilium is essential for healthy and complete embryonic development.
Primary cilia first appear on the epiblast cells at E6 and are present on all derivatives of the
epiblast but absent on trophoblasts and visceral endoderm ESCs [35]. Mouse embryos with
the homozygous knockout of KIF3A, KIF3B, or IFT88 lack primary cilia in the primitive
node while their wild-type counterparts are ciliated. These embryos show significant de-
velopmental defects by the time they reach E8-E9. These defects include incorrect left–right
asymmetry (situs-inversus), cardiac loop inversion and pericardiac sac ballooning, edema
around the heart, and neural tube closure defects [36–39]. These developmental defects
and lethality are attributed to the lack of primary cilia in the nodal cells or the cells that
arise from them, including neuroectoderm cells, giving rise to neural tube and neural
crest [36–40]. Ciliary depletion via conditional KIF3A knockout in neural crest cells causes
defects in hindbrain development but does not cause lethality [40]. These results indicate
that the defects induced by homozygous deletion of KIF3A, KIF3B, or IFT88 in mouse
embryos occur before forming neural crest cells. However, the differentiation capabilities
of cilia-depleted nodal cells into neurectoderm and other germ layers remain to be investi-
gated. Without primary cilium, cellular signaling pathways crucial for development are
interrupted or dysfunctional. This idea is further supported in zebrafish embryos during
development. In zebrafish, whole-body knockout of IFT88, KIF3A, FSD1, or PKD2 causes
developmental defects such as body curvature and abnormal spawn extension but does
not cause lethality [41,42]. Unlike mice, zebrafish embryos can survive past gastrula (5 h
post-fertilization) [41,43] and develop to term. Similar to reduced Hh signaling in mouse
embryos [38], mutant zebrafish embryos also exhibit lower levels of Hh signaling [41],
which appears to be critical at this stage of development.

5. Primary Cilia in Organ Development/Maintenance: Adult Stem Cells and iPSCs

Neural Progenitors (NPs) and Neural Stem cells (NSCs) which are differentiated from
ESCs, also possess primary cilia and require it for the differentiation of multiple types of
brain cells in adult organisms [44,45]. The ESCs features are controlled by distinct tran-
scription factors [46,47]. Oct4 is one of the major transcription factors stably and uniformly
expressed throughout the maturation of stem cells [48]. Another critical transcription factor
for the cell-fate specification is Nanog, which regulates ESC pluripotency through multiplex
interactions with other transcription factors such as Oct4, Sox2, and Klf4 [49]. The Oct4,
Sox2, Nanog, and Myc combination can reprogram terminally differentiated adult somatic
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cells into induced pluripotent stem cells (iPSC) [50]. The iPSCs have primary cilia [51], but
the role of the primary cilium in the reprogramming of terminally differentiated cells is
currently unknown. However, mechanical properties of cilia have been altered during re-
programming of fibroblasts to iPSCs [52]. Mesenchymal stem cells (MSCs) are multipotent
stromal cells of mesodermal and neural crest origin. These cells are often used in tissue
engineering. The MSCs derived from bone marrow, adipose tissue, muscle, or umbilical
cord can differentiate into osteoblasts, chondrocytes, adipocytes, and myocytes [53,54].
Multiple studies have been conducted to examine the role of primary cilia in MSCs and
their progenitors to produce differentiated cells. It was shown that primary cilia-dependent
signaling is required for MSCs’ proliferation and pluripotency. The expression of men-
tioned above stem cell markers Oct4, Nanog, and Sox2, were downregulated after the
deciliation [55].

Similarly, expressions of Oct4, Nanog, and Sox2 were increased upon inhibition of
Aurora A kinase (AURKA) in adipose-derived MSCs isolated from obese mice while
recovering the functional primary cilia [56,57]. These findings indicate the critical role of
the primary cilium in regulating stemness in pathological and healthy conditions. This
review focuses on the analysis of the signaling pathways involved in the maintenance
and differentiation of adult and embryonic stem cells impacted by primary cilia. We also
identify potential gaps in the research for future directions.

6. Role of Primary Cilia in Wnt/β-Catenin Regulation and Stem Cell Biology

Wnt signaling plays a critical role in MSCs and ESCs maintenance and differenti-
ation [58,59]. Signaling pathways controlled by Wnt can be categorized as canonical
(β-catenin pathway) and non-canonical (planar cell polarity and Wnt/Ca2+ pathways) and
were previously reviewed in detail by Komiya et al. [60] and Clevers and Nusse [61,62]. In
the canonical Wnt signaling pathway, Wnt ligands (Wnt1, Wnt2 Wnt2b, Wnt3, etc.) [63]
bind to the G-protein coupled receptor Frizzled (Fzd) and Low-density lipoprotein receptor-
related protein (LRP) 5/6, initiating a cascade of events that results in the stabilization and
nuclear translocation of transcription factor β-catenin and transcription of Wnt-responsive
genes (Figure 2A) [64–67]. The non-canonical Wnt signaling pathway is β-catenin inde-
pendent. In the planar cell polarity (PCP) pathway, the binding of Wnt ligands to their
receptors activates the downstream effector c-Jun N terminal kinase (JNK), which controls
the cytoskeleton. In the Wnt/Ca2+ pathway, ligand-bound Fzd receptors and co-receptor
Receptor Tyrosine Kinase-like Orphan Receptor-1/2 (ROR1/2) trigger the activation of
phospholipase C (PLC), which in turn signals for Ca2+ release from intracellular calcium
stores. Calcium release causes transcriptional activation of genes controlling cell fate and
migration while inhibiting β-catenin/TCF/LEF mediated transcription.

Wnt Signaling and Primary Cilia intersection: Primary cilia play an essential role as
regulators of Wnt signaling in various stem cells. Knockdown of the genes that cause cilia
loss, such as IFT88 or KIF3A, leads to defects in the differentiation potential of the stem cells.
Specifically, loss of cilia via depletion of IFT88, leads to an increase in Wnt5a/β-catenin
levels and defects in adipogenic differentiation, as determined by the reduced expression
of the adipogenic markers PPARγ and CEPBα [68]. These results imply that primary cilia
suppress Wnt/b-catenin expression, which is needed to induce adipogenic differentiation.
Thus, both canonical Wnt and non-canonical Wnt/Ca2+ pathways are activated when
cilia are lost [68]. The deciliation caused by KIF3A knockout in mouse embryonic stem
cells (ESC) and mouse embryonic fibroblasts (MEFs) resulted in increased Wnt/β-catenin
activity compared to the wild-type, ciliated controls [69]. The authors further show that
similar results were obtained when deciliation was achieved via IFT88 or OFD1 knockdown.
The non-ciliated ESCs and MEFs cells have more stabilized and elevated levels of nuclear
β-catenin regardless of Wnt3a/5a stimulation (Figure 2B). Interestingly, the amount of
phosphorylated disheveled (Dvl), a key regulator of Wnt signaling pathways, was found to
be higher in these cells too. These results suggest that primary cilia mediate Wnt/β-catenin
signaling in the regulation of embryonic stem cells [69]. In this context, cilia serve as a
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negative regulator of Wnt activation. It should be noted that the reporter assay results
of a similar study conducted by another group did not lead to the same conclusion [70];
however, nuclear vs. cytoplasmic levels of β-catenin or Dvl as well as the depletion
efficiency of IFT88 and IFT172 were not reported in this study.
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blasts. However, when the cells are supplemented with recombinant Wnt3a, expression 
of the differentiation markers were recovered, indicating that halted osteogenic differen-
tiation in KIF3A knockdown cells is due to primary cilium mediated impairment in 
Wnt/β-catenin signaling [71]. Similarly, conditional KIF3A depletion in osteoblasts of 
newborn mice resulted in reduced bone formation and caused osteopenia. These mice also 
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Figure 2. Role of primary cilia in Wnt/β-catenin regulation and stem cell biology. (A) Primary cilium keeps the expression
of Wnt target genes in check. Upon binding of Wnt ligands to the receptors, Disheveled (Dvl) inactivates the destruction
complex, causing release and translocation of β-catenin to the nucleus. In the nucleus, it serves as a transcription activator
and initiates the expression of Wnt target genes. At the same time, excess Dvl is targeted to proteasomal degradation
via ciliary-localized Inversin (INV), causing degradation of some of the β-catenin. (B) In the absence of primary cilium,
increased cytoplasmic localization of Dvl is observed. This causes increased levels of cytoplasmic and nuclear b-catenin,
leading to overexpression of Wnt/β-catenin target genes. Created with BioRender.com.

On the other hand, KIF3A knockdown in adult dental follicle stem cells (DFC) and den-
tal pulp stem cells (DPC) results in inhibited differentiation of these cells into osteoblasts.
However, when the cells are supplemented with recombinant Wnt3a, expression of the
differentiation markers were recovered, indicating that halted osteogenic differentiation in
KIF3A knockdown cells is due to primary cilium mediated impairment in Wnt/β-catenin
signaling [71]. Similarly, conditional KIF3A depletion in osteoblasts of newborn mice
resulted in reduced bone formation and caused osteopenia. These mice also exhibited de-
creased Ca2+ deposition in the extracellular matrix, reduced Wnt/β-catenin signaling, and
reduced Hh signaling. As a result of impaired signaling activities, a shift from osteogenesis
to adipogenesis was observed when KIF3A is conditionally depleted in osteoblasts postna-
tally [72]. The change from one signaling axis to another is often associated with deciliation,
as demonstrated in IFT88-deficient midbrain dopaminergic neuron progenitors [73]. In
this case, a deficit of Shh signaling caused by lack of cilia leads to activation of Wnt, which
is used later on for neuron development. The convergence of Shh and Phosphoinositide
(PI3K/Akt/mTORC1) signaling at cilia transition zone function was also noted in INPP5E
embryos [74]. These results show that the primary cilium-mediated signaling cascade is
not only needed for correct stem cell differentiation but is also crucial to maintain proper
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cellular fate. Furthermore, these findings highlight the context-dependency of ciliary
involvement in the regulation of signaling pathways and.

7. Role of Primary Cilia in TGF-β Regulation and Stem Cell Biology

The recruitment of mesenchymal stem cells (MSCs) is a crucial process in developing,
maintaining, and repairing tissues. TGF-β is a potent chemokine essential for the recruit-
ment of MSCs and plays a critical role in stem cell proliferation and differentiation [75].
The binding of TGF-β to the receptor (TGF-β-R) on the cellular membrane initiates the
cascade of signaling events in the cytoplasm resulting in the activation/translocation of
SMADs (SMAD2, SMAD3, and SMAD4) to the nucleus (Figure 3). The SMADs then aid in
the transcription of a wide range of TGF-β dependent genes involved in the regulation of
stemness [76].
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Figure 3. TGF-β signaling is regulated by primary cilia. In the presence of primary cilia, p-TGF-β-RI, p-SMAD2, and
SMAD4 are localized on the cilia, while p-SMAD3 is localized on the ciliary base. Stimulation of the receptor with TGF-β
ligand results in increased nuclear localization of active SMAD2/3/4 complex. In the absence of cilia, while p-SMAD3 is
still localized on the ciliary base, its nuclear localization is diminished as well as the abundance of SMAD2/3 complex in the
cell. Created with BioRender.com.

Dysregulation of TGF-β signaling or cilia has been linked to several skeletal patholo-
gies. In the recent report, it was shown that recruitment of MSCs involved in bone formation
relies on the proper construction of the primary cilium [77], which is needed for the activa-
tion of TGF-β. Active SMAD2 (p-SMAD2), p-SMAD3, and SMAD4, along with p-TGF-β-R,
localize on the ciliary axoneme and base (Figure 3). Importantly, knockdown of IFT88
(deciliation) reduced levels of p-SMAD2/3 following TGF-β stimulation. This correlates
with the diminished levels of nuclear p-SMAD2/3 [77] (Figure 3). Moreover, depletion of
IFT88 in MSCs rendered cells less chemotactic, highlighting the key role of the primary
cilium in the regulation of skeletal pathogenesis. These findings suggest that primary cilia
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are required for optimal signal transduction/activation of bone marrow MSCs following
stimulation with TGF-β.

The lack of primary cilium during embryogenesis results in the defective vasculature
and heart formation [78]. TGF-β plays an essential role in heart development, with primary
cilia present in the stem and differentiated progenitors. During cardiomyogenesis, TGF-β-
RI and II, SMAD2/3/4 upregulation, and SMAD7 (inhibitor of SMAD2/3) downregulation
were observed. The TGF-β-RI/II and SMAD2/3/4 were localized at the ciliary base
before they translocate to the nucleus, suggesting the regulation and control of TGF-β
signaling through the primary cilia [23]. However, this observation is only correlative.
Additional experiments, e.g., depletion of IFT88 or KIF3A during or before cardiomyocyte
differentiation, are needed to demonstrate the active role of primary cilia in differentiation.

TGF-β stimulation causes loss or shortening of primary cilia in osteoblasts. The
TGF-β inhibits the maturation and differentiation of osteoblasts through the inactivation
of bone morphogenic protein (BMP) 2 and BMP7, major proteins that induce osteoblast
differentiation. Interestingly, the HDAC inhibitor can rescue cells from TGF-β-mediated
inhibition of BMP2 and BMP7 signaling. It was previously shown that HDAC6 inhibitors
inhibit primary cilium disassembly [18]. When the osteoblasts are co-treated with TGF-
β and the HDAC6 inhibitor, tubacin, differentiation is restored as documented by the
increased alkaline phosphatase activity of the osteoblasts-positive regulation of matrix
mineralization. Collectively, these results indicate that the primary cilium is a key regulator
of the TGF-β and BMP signaling during osteoblast maturation. Restoration of structure
and function of the primary cilia might be a viable approach to use in the clinic as a
therapeutic intervention to treat patients suffering from diabetes [56,57] or osteoarthritis as
these chronic diseases exhibit elevated levels of TGF-β and bone resorption [79].

8. Role of Primary Cilia in mTOR Regulation and Stem Cell Biology

The mammalian target of Rapamycin (mTOR) is a serine-threonine kinase that is
ubiquitously expressed in mammalian tissue [80–82]. mTOR acts through mTORC1 and
mTORC2 complexes to assess growth factors and nutrient availability and is a fundamental
regulator of metabolism and survival [81,82]. The metabolic balance between glycolysis and
mitochondrial oxidative phosphorylation is essential for stem cell’s self-renewal and differ-
entiation capacity [83]. High glycolytic metabolism is needed to maintain pluripotency but,
as stem cells mature and differentiate, they switch towards oxidative phosphorylation [84]
in an mTOR-dependent manner. Inhibition of mTOR with rapamycin has been shown to
promote somatic cell reprogramming to iPSCs [85]. The activity of mTOR was shown to
be cilia-dependent. One of the first studies that documented the role of primary cilia in
mTOR signaling reported activation of this pathway due to a deficiency in expression of
the OFD1 gene (oral-facial digital syndrome-1) in mouse kidney tissue [86]. OFD1 is a
centrosome-associated protein involved in IFT88 recruitment to the primary cilia and the
primary cilia biogenesis. Since the homozygous deletion of OFD1 in the mouse embryo
is lethal [86], kidney-specific conditional OFD1 depletion was analyzed. The authors had
found that OFD1 depletion leads to the lack of ciliation and increased mTOR activity [86],
indicating that cilia are negative regulators of mTOR activity (Figure 4). The hyperacti-
vation of mTOR reduces the self-renewal of stem cells; thus, balanced mTOR activity is
pivotal for development. The homozygous mTOR depleted mouse embryos fail to grow
past embryonic day 6 (E6). Since complete depletion of mTOR was embryonically lethal,
functionally impaired mTOR (kinase-dead) was introduced to the blastocytes resulting
in smaller cell size and slower proliferation. Complementary to these findings, it was
shown that depletion of primary cilia in mouse kidney cells causes an increase in cell
size [87]. The mTORC1 pathway is negatively regulated by LKB1 kinase, which is localized
in the primary cilia. Depletion of primary cilia resulted in activation of mTORC1 and its
downstream target S6K [87] (Figure 4). LKB1 localization to the primary cilia is needed to
inhibit CCL2 expression [88] and potentially exert its inhibitory function on mTORC1 and
thus sustain a low level of mTORC1 activity needed for stem cell renewal and proliferation.
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Similarly, deciliation of the radial glial cells (RGCs), the progenitor cells which give rise to
glia and neurons during embryonic development, via the deletion of KIF3A or IFT88, also
resulted in activation of mTORC1 [89] (Figure 4). In addition to the increased mTORC1,
RGC deciliation caused hydrocephaly, a common phenomenon with ciliopathy diseases.
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Another aspect of mTOR signaling affecting stem cells is its role in autophagy, which
is regulated by ciliogenesis [90]. It was shown that ciliation deficiency in mouse em-
bryonic fibroblasts (MEFs) induced by knockdown of IFT20 caused downregulation of
autophagy [90]. Similarly, inhibition of autophagy suppresses ciliogenesis [91]. It is tempt-
ing to speculate that deciliation-mediated increases in mTOR activity is the reason for
downregulation in autophagy; however, mTOR inhibition in the deciliated cells did not
return autophagy to the basal levels [90], suggesting that additional mTOR-independent
regulation of autophagy by primary cilia exists.

9. The Role of Autophagy and Primary Cilia in Embryonic Stem Cells

The multiple proteins involved in the formation of autophagosomes (LC3, ATGL16,
etc.) are located on the basal body, transition zone, or the primary cilium itself [90], indicat-
ing the potential involvement of primary cilium in autophagosome formation/activity.

In agreement with this conclusion, the recent study in hESCs found that primary
cilium is involved in fate/lineage determination during the early stages of embryonic
development through the autophagosomal degradation of Nuclear factor erythroid 2-
like (Nrf2). Nrf2 is a master transcription factor that plays a crucial role in mesendoderm
(embryonic tissue layer that differentiates into mesoderm and endoderm) or neuroectoderm
(embryonic tissue from which neuronal progenitors arise, which generates neurons and
glial cells) lineage specification in hESCs [92]. Similar to the earlier studies, blockade
of primary cilium formation via knockdown of IFT88, KIF3A, or IFT20 in hESCs halted
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autophagosome formation, inhibiting Nrf2 degradation. Nrf2 accumulation switched
differentiation of hESCs from neuroectoderm towards mesendoderm lineage [92] (Figure 5).
However, there was no differential expression of mTOR response genes in neuroectoderm
and mesendoderm lineages. Thus, primary cilium-mediated lineage specification through
autophagosome activation in an mTOR-independent. These findings highlight a novel role
for primary cilium, bypassing mTOR in the regulation of autophagy. However, further
studies are needed to delineate this process.
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Figure 5. Role of Autophagy and primary cilia in embryonic stem cell lineage specification. Primary cilium promotes
autophagosome formation in hESCs, keeping embryonic development in check via the controlled degradation of Nrf2.
Inhibition of primary cilia formation results in increased levels of Nrf2 due to constrained autophagosome formation.
Increased levels of Nrf2 reduce the expression of PAX6, neuroectoderm fate-determinant transcription factor, which in turn
results in inhibition of hESC’s commitment to neuroectoderm lineage. Conversely, activation of primary cilia via serum
starvation causes higher levels of PAX6 expression and promotes commitment to neuroectoderm lineage. Created with
BioRender.com.

10. Role of Primary Cilia in Notch Regulation and Stem Cell Biology

Notch signaling is a conserved, intercellular communication pathway that regulates
stem cell fate determination, differentiation, and self-renewal in adult tissues and embry-
onic development [93]. Interestingly, multiple Notch signaling components have been
shown to localize to the primary cilium.

A Notch signaling pathway requires two cells to participate: a signal sending cell
and a receiving cell. Signal sending cells harbor the ligands for the notch signaling,
transmembrane proteins called Delta-like (DLL) and Jagged (JAG). On the other hand, the
receiving cells contain Notch receptors. Upon ligand binding, Notch receptor undergoes
multiple cleavage cycles by γ-secretase, producing Notch IntraCellular Domain (NICD).
The NICD then translocated to the nucleus [94–96], transactivating Notch target genes (Hes
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and Hey, myc, runx1, sox9) [42,97–99] (Figure 6A). The Notch-dependent transcription
regulation is reviewed in depth in reference [100].
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Figure 6. Role of primary cilia in Notch signaling. (A) Notch receptor localizes on the primary cilium. Following the binding
of the Notch receptor to the ligands DLL/JAG, NICD is cleaved by presenilin (Pres), the catalytic subunit of γ-secretase,
which localizes on the basal body. Cleaved NICD translocates to the nucleus. It serves as a transcriptional co-activator of the
RBPj (Recombination signal Binding Protein for immunoglobulin kappa j region) to express Notch response genes. (B) In
the absence of primary cilia, expression of Notch target genes is halted since Notch receptor cannot localize to the ciliary
membrane and be cleaved by presenilin, resulting in defective differentiation. Created with BioRender.com.

Ezratty and colleagues [101] first identified the involvement of primary cilium in the
Notch signaling pathway in 2011 using keratinocytes and embryonic epidermis. Notch
signaling is crucial for skin development as it triggers the differentiation of keratinocytes
during early embryonic development [102]. The authors reported the co-localization of
the Notch receptor on primary cilia and the presenilin, catalytic subunit of γ-secretase, on
the basal body. The deciliation via knockdown of IFT88 or KIF3A in the mouse embryo
skin resulted in reduced Notch receptor activity in differentiating embryonic epidermal
cells, which lead to defective cell commitment (Figure 6B). However, defective cellular
differentiation was partially restored by the expression of NICD. These findings suggest that
Notch signaling requires intact and functional primary cilium to initiate the differentiation
of the embryonic epidermis [101].

Similarly, stemness of fallopian tube adult stem cells is Notch/Wnt/cilia depen-
dent [103]. The authors also noted that disruption of primary cilium via depletion or
conditional knockout of IFTs, but not KIF3A, resulted in a hyper-proliferative phenotype.
Since multiple signaling nodes often crosstalk, it is interesting to note that Notch signaling
could activate Smo and Gli in a cilia-dependent manner in a Shh-independent fashion [104].

Similarly, Notch signaling is downregulated in cilia-impaired (knockout of cilia build-
ing genes FSD1, KIF3A, PKD2, and IFT88) zebrafish embryos compared to the wild type.
The study by Liu et al. showed that primary cilium is needed for hematogenic endothelial
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cell (HE) differentiation through the regulation of Notch signaling. HE cells give rise to
hematopoietic stem and progenitor cells (HSPC). Reduced expression of HSPC markers,
RUNX1 and CYMB, was observed in cilia-impaired zebrafish embryos due to reduced
protein levels of NICD [42]. These results suggest that Notch signaling acts downstream
of the primary cilium to control the HE to HSPC differentiation in the zebrafish embryo.
This could be through stabilizing the Notch receptor, as evident with the reduced levels
of NICD protein in cilia-deficient cells. Another possible reason for reduced NCID levels
could be deficient autophagosomal degradation of the protein in deciliated cells. The
autophagosome inhibition in cilia-deficient cells may provide potential answers.

11. Primary Cilia in Cancer and Cancer Stem Cells

Interestingly, with some documented exceptions, most cancer cells do not possess
or have defective primary cilium [105] (reviewed by Kiseleva et al. [106] and Eguether
et al. [107]). This statement is further supported by multiple reports linking the hyper-
proliferative phenotype with the lack/reduction in ciliation [103,108] and supernumerary
of centrioles [109]. While normal stem cells require cilia to maintain the quiescence state,
many proliferative progenitors tend to lose cilia. Thus, it is critical to define the ciliation
status of cancer stem cells, which supposedly originated from the normal stem cells.

Cancer stem cells (CSCs) or tumor-initiating cells (TICs) exhibit high levels of therapy
resistance and the capability to repopulate the tumor after treatment [110–112]. However,
a few mechanistic studies published in this field have shown that the effects of primary
cilia on tumorigenesis and stemness are context-dependent.

Sonic hedgehog (Shh) signaling is cilia-dependent but not all cancers are Shh-dependent:
One of the pioneering studies in this field came from Alvarrez-Buylla and colleagues on
the origins of medulloblastoma [113]. Medulloblastoma is the most common brain cancer
in children [114]. It is believed to arise from neural stem cell precursors [115] through aber-
rant activation of Shh signaling [115]. It was reported that ciliated precursor cells without
Ptch1 were able to form medulloblastoma, while non-ciliated cells, even with constitutively
active Smo protein, could not form tumors [113]. Hence, this study concludes that cilia are
needed for tumorigenesis [116], suggesting that CSC or their progenitors might possess
cilia. However, when the Hh pathway was dysregulated downstream of Smo/Ptch, cilia
were exhibiting tumor-suppressive function [113]. The ciliated cells with mutant GliA
could not form medulloblastoma because GliR proteins (also cilia activated) could balance
the activity of the GliA. In this context, CSCs might be non-ciliated.

Further supporting this notion, Gate et al. identified a subset of medulloblastoma
cells with stemness properties (CSC) that are characterized by high expression of Lewis X
(CD15) protein. These cells were found more abundantly in recurrent medulloblastoma
than in primary medulloblastoma. The recurrent cancers are treatment resistance and
aggressiveness [117]. CD15+ medulloblastoma stem cells showed increased proliferation
rates, expression of Hh response genes [118] and were not ciliated [117]. This data suggests
that non-ciliated CSC might be more aggressive and resistant to treatment. Primary
cilium was also tumor suppressive in granule cell progenitors-driven medulloblastoma
due to localized ciliary Gpr161, a known inhibitor of Shh signaling [119]. In case of
medullablastoma, presence or absence of primary cilia in precursor cells and how this
affects the tumor formation depends on the step at which the Shh signaling cascade is
dysregulated.

Similarly, rhabdomyosarcoma (RMS) and glioblastomas (GSCs) could be stratified as
cilia/Hh-dependent and independent cases [25,120,121]. If RMS develops from undiffer-
entiated myoblasts, which are ciliated, the cancer cells are Hh dependent, whereas if the
development of RMS is from more differentiated progenitors, it is characterized by a lack
of cilia, thus Hh independent. In general, the authors noted that ablation of primary cilium
strongly suppresses Hh signaling while enhancing proliferation, while cilia rescue induces
GSC differentiation and decreases proliferation [122,123]. In breast cancer, the decrease
in ciliation in basal and luminal cells/progenitors has been well documented in patient
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biopsies [124] and mouse models [125,126]. Nevertheless, a few studies have reported
the presence of rare ciliated Hh-dependent cells. These cells are cytokeratin (CK)5+, 6+,
15+ positive (basal progenitors) and might possess some stem cell features [127]. The Shh
signaling is activated in CSCs of several malignancies [128] in the stromal compartment
(reviewed here [129]), suggesting the paracrine regulation of Shh signaling in the mammary
cancers. The presence of such cells (i.e., Shh activated) might explain an otherwise con-
tradictory study on ciliated mammary stem cells (MaSCs) as a source of tumor-initiating
cells [130].

Note that Shh-driven cancers might switch to other deciliation-dependent pathways
during cancer progression, signifying limitations imposed by cilia. The examples include
an inverse correlation between Ras/MAPK cascade activation and ciliation in basal cell
carcinoma [131] and other K-Ras driven malignancies [132]. Authors suggest that primary
cilium is an important lineage gatekeeper preventing Shh to Ras/MAPK switching. It
is attractive to speculate that while the cilia-Hh axis is critical for normal stem cells, the
Ras/MAPK might be attributed to deciliated CSCs.

Hypoxia—Driving Force of Stemness and Deciliation in Cancer Cells: The tumor
microenvironment is critical in defining multiple aspects of cancer progression. In this
regard, hypoxia is one of the key factors driving tumor dissemination, metastasis, epithelial-
mesenchymal transition (EMT), and stemness. It was shown that hypoxic cancer cells and
MSCs lose cilia in HIF1α, Wnt, TNFα, or NFκB-dependent manner [133,134]. von Hippel-
Lindau disease tumor suppressor protein (VHL) targets HIF1α to proteosomal degradation
in normal conditions. Note that hypoxia or mutation-driven inactivation of VHL stabi-
lizes/activates AURKA [135,136], the key cilia disassembling factor. In summary, hypoxia
might induce stemness and contribute to the deciliation of cancer cells through AURKA.

EMT is often observed in vitro in established cancer cells but rarely reported in clinical
cancer biopsies. Moreover, EMT is not required for tumor initiation or growth but is
primarily linked to dissemination. The induction of EMT in Biliary tree stem cells, the
potential source of cholangiocarcinoma, leads to the opposite effect—loss of the cilium [137];
thus, the role of EMT in cilia biology might require further characterization.

Oncogenes and tumor suppressors are often altered during tumorigenesis via epige-
netic changes. The Enhancer of Zest Homology 2 (EZH2) makes the methyltransferase
subunit of the polycomb repressor complex 2 (PCR2) [138] and is considered to be an onco-
gene often activated in tumor cells. In melanoma, EZH2 suppresses the expression of ciliary
biogenesis genes and drives the formation of metastatic melanoma with non-ciliated stem-
like cells due to the increased activity of Wnt/β-catenin signaling [138]. The inactivation
of EZH2 in glioma stem cells (GSCs) leads to the inability to generate neurospheres, which
is indicative of the loss of stemness [139]. It can be speculated that the loss of stemness in
GSCs is caused by increase in ciliation in these cells thorough increased expression of cilia
biogenesis genes caused by inactivation of EZH2.

Intriguingly, the most prominent cancer stem cell marker, CD133/Prom1, was found to
be a key regulator of ciliary dynamics and maintenance of the normal stem cell quiescence
state [140]. The knockout of CD133 or overexpression of dominant-negative Prom1 mutant
led to the loss of cilium [141]. Overexpression of CD133 in cancer stem cells may lead
to sequestration of the components generally required for building primary cilium, thus
inducing deciliation. In this context, the loss of stemness could be expected with the
restoration of the cilia, but further studies in this field are needed to clarify the role of
primary cilia in cancer stem cell biology and the effect of the tumor microenvironment.

12. Conclusions and Future Perspectives

The primary cilium is an essential organelle for stem cell development and differ-
entiation. Several signaling pathways are interrupted if the formation of primary cilia
is inhibited. The presence of functional primary cilium is essential during embryonic
development, evident with the embryonic lethality of the whole body knock out of IFT88,
KIF3A, and KIF3B in mouse models [36–39]. Furthermore, conditional depletion of pri-
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mary cilia in adult stem cells results in aberrant signaling events [42,68,69,77,78,86,101].
Additionally, tissue-specific activation or inhibition of the Wnt/β-catenin pathway as a
result of cilia depletion should also be noted. While cilium is a positive regulator of Wnt
activation in osteal cells, it is the negative regulator of Wnt pathways in adipose, ESCs, and
MEFs [68,69,71,72]. Similarly, the dual role of the primary cilium in signaling pathways
can be seen in cancer stem cells [113]. Depletion or knockout of IFT88, KIF3A, OFD1 can be
valuable tools to study the role of primary cilia in desired settings. It should be noted that,
although lack or reduced quantities of these proteins will lead to the absence of primary
cilia, the downstream impact of the elimination of primary cilia through the depletion of
one or the other protein might be different. It is equally imperative to know the ramifica-
tions of stable and functional primary cilia as well as the precarious and malfunctioning
one to characterize the essential role of this organelle in complex and dynamic systems like
stem cells.

13. Clinical Relevance

• Understanding how the primary cilium is involved in stem cell biology is crucial to
develop new ciliotherapies [25] to eliminate developmental ciliopathy diseases such
as Meckel Syndrome.

• Targeting primary cilia and improving its stability/function in patients suffering from
bone diseases might be a new approach to improve the patients’ quality of life.

• Deciphering the role of the primary cilium in cancer stem cell biology will likely
improve our knowledge and diversify the cancer treatment options as the majority of
the signaling pathways are dysregulated in cancers.

14. Outstanding Questions

• Does the knockout or depletion of essential ciliary genes such as IFT88, IFT20, KIF3A
(“builders”) have the same impact on differentiation of the embryonic vs. adult stem
cells or iPSCs? The answer to this question might allow for defining differences
between signaling in dividing vs. quiescent stem cells.

• Since genes such as IFT88 and others have additional non-ciliary functions, the inter-
pretation of KO results might be more complicated than just lack of cilia. Better tools
need to be developed and expression controlled to decipher the cilium dependent vs.
independent impact of the knockout of IFT and kinesin proteins.

• Would chemical inhibition of these proteins deliver the same results? The answer will
allow us to discriminate between activity vs. protein-protein driven functions of the
ciliary “builders” or “disassemblers”.

• Would the utilization of proteasome inhibitors in cilia deficient embryos recover the
Notch (NICD) levels and HE to HPSC differentiation? The answer will be needed
to understand the role of protein biosynthesis/degradation, including autophagy in
ciliary homeostasis.

• Can we reprogram cancer stem cells via manipulation of primary cilia dynamics?
The answer to this question will require substantial evidence to be gathered on
the driving forces of deciliation in cancer, which includes but is not limited to
centrosome defects/amplification, lack of cilia, ”builders”, or overexpression of
cilia, “disassemblers”.
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